Equilibrium configurations of nematic liquid crystals on surfaces

Marco Veneroni

Joint work with: Antonio Segatti and Michael Snarski

University of Pavia

Brown University Providence

Two Days Workshop on LC-flows Pavia, March 24-25, 2014

The Nematic phase:

- Mostly uniaxial (rods - cylinders)
- No positional order (random centers of mass)
- Long-range directional order (parallel long axes)

Basic mathematical description: represent the mean orientation through a unit vector field, *the director*, $\mathbf{n} : \Omega \to \mathbb{S}^2$

(Alternative description: order tensor, $s(\mathbf{u} \otimes \mathbf{u} - \frac{1}{3}Id)$)

Nematic shells

• Physics:

Thin films of nematic liquid crystal coating a small particle

[Figure: Bates, Skačej, Zannoni. Defects and ordering in nematic coatings on uniaxial and biaxial colloids. *Soft Matter*, 2010.]

Model:

Compact surface $\Sigma \subset \mathbb{R}^3$.

Director:

$$\mathbf{n}: \Sigma \to \mathbb{S}^2$$
 with $\mathbf{n}(x) \in T_x \Sigma$

3D director theory, in a domain $\Omega \subset \mathbb{R}^3$

• Frank - Oseen - Zocher elastic energy density (Distortion free energy density)

$$w(\mathbf{n}) = \frac{k_1}{2} (\operatorname{div} \mathbf{n})^2 + \frac{k_2}{2} (\mathbf{n} \cdot \operatorname{curl} \mathbf{n})^2 + \frac{k_3}{2} |\mathbf{n} \times \operatorname{curl} \mathbf{n}|^2$$
$$+ (k_2 + k_{24}) \operatorname{div}((\nabla \mathbf{n})\mathbf{n} - \mathbf{n} \operatorname{div} \mathbf{n})$$

One-constant approximation

$$W(\mathbf{n}) = \frac{k}{2} \int_{\Omega} |\nabla \mathbf{n}|^2 \, \mathrm{d}x$$

Energy models

3D director theory, in a domain $\Omega \subset \mathbb{R}^3$ 2D director theory, on a surface $\Sigma \subset \mathbb{R}^3$ • Frank - Oseen - Zocher elastic energy density Intrinsic surface energy $W_{in}(\mathbf{n}) = \frac{k}{2} \int_{\Sigma} |\mathbf{D}\mathbf{n}|^2 \,\mathrm{d}S$ One-constant approximation $W(\mathbf{n}) = \frac{k}{2} \int_{\Omega} |\nabla \mathbf{n}|^2 \, \mathrm{d}x$ Extrinsic surface energy $W_{ex}(\mathbf{n}) = \frac{k}{2} \int_{\Sigma} |\nabla_s \mathbf{n}|^2 \,\mathrm{d}S$

Intrinsic energy: Straley, *Phys. Rev. A*, 1971; Helfrich and Prost, *Phys. Rev. A*, 1988; Lubensky and Prost, *J. Phys. II France*, 1992.

Extrinsic energy: Napoli and Vergori, Phys. Rev. Lett., 2012.

Notation:

ν: normal vector to Σ

• c_1, c_2 : principal curvatures, i.e., eigenvalues of $-d\boldsymbol{\nu} \sim \begin{bmatrix} c_1 & 0\\ 0 & c_2 \end{bmatrix}$

• Shape operator:

$$T_p\Sigma \to T_p\Sigma, \quad X \mapsto -\mathrm{d}\boldsymbol{\nu}(X)$$

• Scalar 2nd fundamental form:

$$h: T_p \Sigma \times T_p \Sigma \to \mathbb{R}, \quad h(X, Y) = \langle -d\boldsymbol{\nu}(X), Y \rangle$$

• Vector 2nd fundamental form:

$$II: T_p\Sigma \times T_p\Sigma \to N_p\Sigma, \quad II(X,Y) = h(X,Y)\boldsymbol{\nu}$$

Energy models

X, Y tangent fields on Σ , extended to \mathbb{R}^3 $\nabla_X Y$ = covariant derivation of Y in direction X, i.e. $(\nabla Y)X = \frac{\partial Y^i}{\partial x^j}X^j$

Define

- P := orthogonal projection on $T_p \Sigma$
- $\nabla_s Y := \nabla Y \circ P$

 $\left|
abla_{s}\mathbf{n}
ight|^{2}=\left|\mathrm{D}\mathbf{n}
ight|^{2}+\left|\mathrm{d}oldsymbol{
u}(\mathbf{n})
ight|^{2}$

Energy models

X, Y tangent fields on Σ , extended to \mathbb{R}^3 $\nabla_X Y$ = covariant derivation of Y in direction X, i.e. $(\nabla Y)X = \frac{\partial Y^i}{\partial x^j}X^j$

Define

- P := orthogonal projection on $T_p \Sigma$
- $\nabla_s Y := \nabla Y \circ P$

 $\left|
abla_{s}\mathbf{n}\right|^{2}=\left|\mathrm{D}\mathbf{n}\right|^{2}+\left|\mathrm{d}oldsymbol{
u}(\mathbf{n})
ight|^{2}$

- **(**) Relationship between functional framework and topology of Σ
- **②** Existence of minimizers and gradient flow of W_{ex}
- Parametrize a specific surface (the axisymmetric torus) and obtain precise description of local and global minimizers

$$W_{ex}(\mathbf{n}) = \frac{1}{2} \int_{\Sigma} \left\{ |\mathbf{D}\mathbf{n}|^2 + |(\mathrm{d}\boldsymbol{\nu})\mathbf{n}|^2 \right\} \mathrm{d}S$$

Define the Hilbert spaces

$$L^{2}_{tan}(\Sigma) := \left\{ \mathbf{u} \in L^{2}(\Sigma; \mathbb{R}^{3}) : \mathbf{u}(x) \in T_{x}\Sigma \text{ a.e.} \right\}$$
$$H^{1}_{tan}(\Sigma) := \left\{ \mathbf{u} \in L^{2}_{tan}(\Sigma) : |\mathbf{D}_{i}\mathbf{u}^{j}| \in L^{2}(\Sigma) \right\}$$

Objective: minimize W_{ex} on

$$H_{\operatorname{tan}}^{1}(\Sigma; \mathbb{S}^{2}) := \left\{ \mathbf{u} \in H_{\operatorname{tan}}^{1}(\Sigma) : |\mathbf{u}| = 1 \text{ a.e.} \right\}$$

Note:

• $H^1_{tan}(\Sigma; \mathbb{S}^2)$ is a weakly closed subset of $H^1_{tan}(\Sigma)$ laim:

• $H^1_{tan}(\Sigma; \mathbb{S}^2)$ is empty, unless genus(Σ)=1

$$W_{ex}(\mathbf{n}) = \frac{1}{2} \int_{\Sigma} \left\{ |\mathbf{D}\mathbf{n}|^2 + |(\mathrm{d}\boldsymbol{\nu})\mathbf{n}|^2 \right\} \mathrm{d}S$$

Define the Hilbert spaces

$$L^{2}_{tan}(\Sigma) := \left\{ \mathbf{u} \in L^{2}(\Sigma; \mathbb{R}^{3}) : \mathbf{u}(x) \in T_{x}\Sigma \text{ a.e.} \right\}$$
$$H^{1}_{tan}(\Sigma) := \left\{ \mathbf{u} \in L^{2}_{tan}(\Sigma) : |\mathbf{D}_{i}\mathbf{u}^{j}| \in L^{2}(\Sigma) \right\}$$

Objective: minimize W_{ex} on

$$H_{\operatorname{tan}}^{1}(\Sigma; \mathbb{S}^{2}) := \left\{ \mathbf{u} \in H_{\operatorname{tan}}^{1}(\Sigma) : |\mathbf{u}| = 1 \text{ a.e.} \right\}$$

Note:

• $H^1_{tan}(\Sigma; \mathbb{S}^2)$ is a weakly closed subset of $H^1_{tan}(\Sigma)$ Claim:

• $H^1_{tan}(\Sigma; \mathbb{S}^2)$ is empty, unless genus(Σ)=1

The hairy ball Theorem

"There is no continuous unit-norm vector field on \mathbb{S}^2 "

More generally, if *v* is a smooth vector field on the compact oriented manifold Σ , with finitely many zeroes x_1, \ldots, x_m , then

$$\sum_{j=1}^{m} \operatorname{ind}_{j}(v) = \chi(\Sigma) \qquad \text{(Poincaré-Hopf Theorem)}$$

• $\operatorname{ind}_{j}(v)$, "index of v in x_{j} " = number of windings of v/|v| around x_{j}

• $\chi(\Sigma)$, "Euler characteristic of Σ " = # Faces - # Edges + # Vertices

- On a sphere: χ(S²) = 2 → e.g. two zeros of index 1, ... ⇒ no continuous fields on S²
- On a torus: χ(T²) = 0
 ⇒ possible continuous fields on T²
- On a genus g surface Σ: χ(Σ) = 2 2g if g ≠ 1 ⇒ no continuous fields on Σ

Poincaré-Hopf does not apply directly: $H^1_{tan}(\Sigma) \not\subseteq C^0_{tan}(\Sigma)...$...still:

 $\int_{B_1 \setminus B_{\varepsilon}} |\nabla v(\mathbf{x})|^2 d\mathbf{x} = \int_0^{2\pi} \int_{\varepsilon}^{\pi} \frac{1}{\rho^2} \rho \, d\rho \, d\theta = -2\pi \ln(\varepsilon) \stackrel{\varepsilon \searrow 0}{\longrightarrow} +\infty$

 $v \notin H^1(B_1)$, but $|\nabla v| \in L^p(B_1)$ for all $1 \leq p < 2$.

- On a sphere: χ(S²) = 2 → e.g. two zeros of index 1, ... ⇒ no continuous fields on S²
- On a torus: χ(T²) = 0
 ⇒ possible continuous fields on T²
- On a genus g surface Σ: χ(Σ) = 2 2g if g ≠ 1 ⇒ no continuous fields on Σ

Poincaré-Hopf does not apply directly: $H^1_{tan}(\Sigma) \not\subseteq C^0_{tan}(\Sigma)$...

 $v \notin H^1(B_1)$, but $|\nabla v| \in L^p(B_1)$ for all $1 \leq p < 2$.

- On a sphere: $\chi(\mathbb{S}^2) = 2 \rightarrow \text{e.g. two zeros of index } 1, ... \Rightarrow$ no continuous fields on \mathbb{S}^2
- On a torus: χ(T²) = 0
 ⇒ possible continuous fields on T²
- On a genus g surface Σ: χ(Σ) = 2 2g if g ≠ 1 ⇒ no continuous fields on Σ

Poincaré-Hopf does not apply directly: $H^1_{tan}(\Sigma) \not\subseteq C^0_{tan}(\Sigma)...$...still:

$$v(\mathbf{x}) := \frac{\mathbf{x}}{|\mathbf{x}|} \quad \text{on } B_1 \setminus \{0\} \qquad \longrightarrow \qquad |\nabla v(\mathbf{x})|^2 = \frac{1}{|\mathbf{x}|^2}$$
$$\int_{B_1 \setminus B_{\varepsilon}} |\nabla v(\mathbf{x})|^2 d\mathbf{x} = \int_0^{2\pi} \int_{\varepsilon}^1 \frac{1}{\rho^2} \rho \, d\rho \, d\theta = -2\pi \ln(\varepsilon) \xrightarrow{\varepsilon \searrow 0} +\infty$$

 $v \notin H^1(B_1)$, but $|\nabla v| \in L^p(B_1)$ for all $1 \leq p < 2$.

Poincaré-Hopf Theorem suggests that

if $\chi(\Sigma) \neq 0$, unit-norm vector fields on Σ must have defects.

• Simple defects just fail to be H^1

Theorem

Let Σ be a compact smooth surface without boundary, embedded in \mathbb{R}^3 . Then

 $H^1_{\operatorname{tan}}(\Sigma; \mathbb{S}^2) \neq \emptyset \quad \Leftrightarrow \quad \chi(\Sigma) = 0.$

Poincaré-Hopf Theorem suggests that

if $\chi(\Sigma) \neq 0$, unit-norm vector fields on Σ must have defects.

• Simple defects just fail to be H^1

Theorem

Let Σ be a compact smooth surface without boundary, embedded in \mathbb{R}^3 . Then

$$H^1_{\mathrm{tan}}(\Sigma; \mathbb{S}^2) \neq \emptyset \quad \Leftrightarrow \quad \chi(\Sigma) = 0.$$

Results

• Stationary problem:

There exists $\mathbf{n} \in H^1_{tan}(\Sigma; \mathbb{S}^2)$ which minimizes W_{ex} .

• Gradient-flow:

Given $\mathbf{n}_0 \in H^1_{tan}(\Sigma; \mathbb{S}^2)$, there exists

$$\mathbf{n} \in L^{\infty}(0, +\infty; H^{1}_{tan}(\Sigma; \mathbb{S}^{2})), \quad \partial_{t}\mathbf{n} \in L^{2}(0, +\infty; L^{2}_{tan(\Sigma)})$$

which solves

$$\partial_t \mathbf{n} - \Delta_g \mathbf{n} + d\nu(\mathbf{n}) = |\mathbf{D}\mathbf{n}|^2 \mathbf{n} + |d\nu(\mathbf{n})|^2 \mathbf{n} \quad \text{a.e. in } \Sigma \times (0, +\infty),$$

$$\mathbf{n}(0) = \mathbf{n}_0 \qquad \text{a.e. in } \Sigma.$$

Well-posedness

Sketch:

Relax: instead of solving

$$\partial_t \mathbf{n} = -\nabla W_{ex}(\mathbf{n}), \quad \text{on } |\mathbf{n}| = 1,$$

solve

$$\partial_t \mathbf{n}^{\varepsilon} = -\nabla \left(W_{ex}(\mathbf{n}^{\varepsilon}) + \frac{1}{4\varepsilon^2} \int_{\Sigma} (|\mathbf{n}^{\varepsilon}|^2 - 1)^2 \mathrm{d}S \right).$$

• Recover the quadratic terms $|D\mathbf{n}|^2\mathbf{n} + \dots$ with the *Chen-Struwe trick for harmonic maps*:

$$-\Delta \mathbf{n} = |\mathbf{D}\mathbf{n}|^2 \mathbf{n} \quad \Rightarrow \quad \begin{cases} -\Delta \mathbf{n} = \lambda \mathbf{n}, \\ \lambda = |\mathbf{D}\mathbf{n}|^2 \end{cases}$$

if $|\mathbf{n}| = 1,$
$$\Delta \mathbf{n} \times \mathbf{n} = 0 \quad \Rightarrow \quad \begin{cases} -\Delta \mathbf{n} = \lambda \mathbf{n}, \\ \lambda = -\Delta \mathbf{n} \cdot \mathbf{n} = |\mathbf{D}\mathbf{n}|^2 \end{cases}$$

• Apply the trick to $(\partial_t \mathbf{n}^{\varepsilon} - \Delta_g \mathbf{n}^{\varepsilon} + d\nu(\mathbf{n}^{\varepsilon})) \times \mathbf{n}^{\varepsilon}$

Well-posedness

Sketch:

Relax: instead of solving

$$\partial_t \mathbf{n} = -\nabla W_{ex}(\mathbf{n}), \quad \text{on } |\mathbf{n}| = 1,$$

solve

$$\partial_t \mathbf{n}^{\varepsilon} = -\nabla \left(W_{ex}(\mathbf{n}^{\varepsilon}) + \frac{1}{4\varepsilon^2} \int_{\Sigma} (|\mathbf{n}^{\varepsilon}|^2 - 1)^2 \mathrm{d}S \right).$$

• Recover the quadratic terms $|D\mathbf{n}|^2\mathbf{n} + \dots$ with the *Chen-Struwe trick for harmonic maps*:

$$-\Delta \mathbf{n} = |\mathbf{D}\mathbf{n}|^2 \mathbf{n} \qquad \Rightarrow \qquad \begin{cases} -\Delta \mathbf{n} = \lambda \mathbf{n}, \\ \lambda = |\mathbf{D}\mathbf{n}|^2 \end{cases}$$

if $|\mathbf{n}| = 1,$
$$\Delta \mathbf{n} \times \mathbf{n} = 0 \qquad \Rightarrow \qquad \begin{cases} -\Delta \mathbf{n} = \lambda \mathbf{n}, \\ \lambda = -\Delta \mathbf{n} \cdot \mathbf{n} = |\mathbf{D}\mathbf{n}|^2 \end{cases}$$

• Apply the trick to $(\partial_t \mathbf{n}^{\varepsilon} - \Delta_g \mathbf{n}^{\varepsilon} + d\nu(\mathbf{n}^{\varepsilon})) \times \mathbf{n}^{\varepsilon}$

Well-posedness

Sketch:

• Relax: instead of solving

$$\partial_t \mathbf{n} = -\nabla W_{ex}(\mathbf{n}), \quad \text{on } |\mathbf{n}| = 1,$$

solve

$$\partial_t \mathbf{n}^{\varepsilon} = -\nabla \left(W_{ex}(\mathbf{n}^{\varepsilon}) + \frac{1}{4\varepsilon^2} \int_{\Sigma} (|\mathbf{n}^{\varepsilon}|^2 - 1)^2 \mathrm{d}S \right).$$

• Recover the quadratic terms $|D\mathbf{n}|^2\mathbf{n} + \dots$ with the *Chen-Struwe trick for harmonic maps*:

$$-\Delta \mathbf{n} = |\mathbf{D}\mathbf{n}|^2 \mathbf{n} \qquad \Rightarrow \qquad \begin{cases} -\Delta \mathbf{n} = \lambda \mathbf{n}, \\ \lambda = |\mathbf{D}\mathbf{n}|^2 \end{cases}$$

if $|\mathbf{n}| = 1,$
$$\Delta \mathbf{n} \times \mathbf{n} = 0 \qquad \Rightarrow \qquad \begin{cases} -\Delta \mathbf{n} = \lambda \mathbf{n}, \\ \lambda = -\Delta \mathbf{n} \cdot \mathbf{n} = |\mathbf{D}\mathbf{n}|^2 \end{cases}$$

• Apply the trick to
$$(\partial_t \mathbf{n}^{\varepsilon} - \Delta_g \mathbf{n}^{\varepsilon} + d\nu(\mathbf{n}^{\varepsilon})) \times \mathbf{n}^{\varepsilon}$$

Given an orthonormal frame $\{e_1, e_2\}$, represent the director by the angle α such that

$$\mathbf{n} = \cos(\alpha)\mathbf{e}_1 + \sin(\alpha)\mathbf{e}_2 \qquad (*)$$

Note: locally it is always possible.

Question:

Given $\mathbf{n} \in H^1_{tan}(\Sigma; \mathbb{S}^2)$, is it possible to find a global orthonormal frame $\{\mathbf{e}_1, \mathbf{e}_2\}$ and $\alpha \in H^1(\Sigma; \mathbb{R})$ satisfying (*)?

(No) Example:

Answer:

Given

- $\mathbf{n} \in H^1_{\mathrm{tan}}(\Sigma; \mathbb{S}^2)$
- a global orthonormal frame $\{\mathbf{e}_1, \mathbf{e}_2\}$
- a parametrization $Q := [0, 2\pi] \times [0, 2\pi] \xrightarrow{X} \Sigma$

it is possible to find and $\alpha \in H^1(Q)$ satisfying

$$\mathbf{n} \circ X = \cos(\alpha)\mathbf{e}_1 + \sin(\alpha)\mathbf{e}_2$$

Sketch:

define

$$\omega := \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{x^2 + y^2} \qquad \text{on } \mathbb{R}^2 \setminus \{\mathbf{0}\}.$$

• fix $p_0 \in \Sigma$, define

$$\alpha(p) := \alpha_0 + \int_{\gamma} \mathbf{n}^* \omega$$
 (γ : path connecting p_0 and p)

• α is well-defined if and only if $\int_{\gamma} \mathbf{n}^* \omega = 0$ on loops

Answer:

Given

- $\mathbf{n} \in H^1_{\mathrm{tan}}(\Sigma; \mathbb{S}^2)$
- a global orthonormal frame $\{\mathbf{e}_1, \mathbf{e}_2\}$
- a parametrization $Q := [0, 2\pi] \times [0, 2\pi] \xrightarrow{X} \Sigma$

it is possible to find and $\alpha \in H^1(Q)$ satisfying

$$\mathbf{n} \circ X = \cos(\alpha)\mathbf{e}_1 + \sin(\alpha)\mathbf{e}_2$$

Sketch:

define

$$\omega := \frac{x \operatorname{dy} - y \operatorname{dx}}{x^2 + y^2} \quad \text{on } \mathbb{R}^2 \setminus \{\mathbf{0}\}.$$

• fix $p_0 \in \Sigma$, define

$$\alpha(p) := \alpha_0 + \int_{\gamma} \mathbf{n}^* \omega$$
 (γ : path connecting p_0 and p)

• α is well-defined if and only if $\int_{\gamma} \mathbf{n}^* \omega = 0$ on loops

If $\alpha \in H^1(Q)$ is a representation of $\mathbf{n} \in H^1_{tan}(\mathbb{T}^2; \mathbb{S}^2)$, there exists $(m_1, m_2) \in \mathbb{Z} \times \mathbb{Z}$ such that

- $\alpha_{|\{\theta=0\}} = \alpha_{|\{\theta=2\pi\}} + 2m_1\pi$
- $\alpha_{|\{\phi=0\}} = \alpha_{|\{\phi=2\pi\}} + 2m_2\pi$

Correspondence between classes in

Fundamental group of \mathbb{T}^2 Loops / Homotopy classes

Fields $\mathbf{n} \in H^1_{tan}(\mathbb{T}^2; \mathbb{S}^2)$ / degree on generators $H^1(Q)$ "periodic" functions α / boundary conditions

Figure: In clockwise order, from top-left corner: index (1,1), (1,3), (3,3), (3,1). The colour represents the angle $\alpha \mod 2\pi$, the arrows represent the vector field **n**.

α -representation

Translate the energies:

$$\begin{split} W_{in}(\mathbf{n}) &= \frac{1}{2} \int_{\Sigma} |\mathbf{D}\mathbf{n}|^2 \mathrm{d}S = \frac{1}{2} \int_{Q} |\nabla_s \alpha|^2 \mathrm{d}S + M_{in}(R/r) \\ W_{ex}(\mathbf{n}) &= \frac{1}{2} \int_{\Sigma} |\nabla_s \mathbf{n}|^2 \mathrm{d}S = \frac{1}{2} \int_{Q} \left\{ |\nabla_s \alpha|^2 + \eta \cos(2\alpha) \right\} \mathrm{d}S + M_{ex}(R/r) \end{split}$$

where M_{in}, M_{ex} are constant in α and $\eta = \frac{c_1^2 - c_2^2}{2}$. For $\alpha \equiv const$ on Q,

Figure: The ratio of the radii $\mu = R/r$ is : $\mu = 1.1$ (dotted line), $\mu = 2/\sqrt{3}$ (dashed dotted line), R/r = 1.25 (dashed line), R/r = 1.6 (continuous line).

Explicit forms of surface differential operators on the torus

Let
$$Q := [0, 2\pi] \times [0, 2\pi] \subset \mathbb{R}^2$$
, and let $X : Q \to \mathbb{R}^3$ be

$$X(\theta,\phi) = \begin{pmatrix} (R+r\cos\theta)\cos\phi\\ (R+r\cos\theta)\sin\phi\\ r\sin\theta \end{pmatrix}$$

$$\nabla_s \alpha = g^{ii}\partial_i \alpha = \frac{1}{r^2}(\partial_\theta \alpha)X_\theta + \frac{1}{(R+r\cos\theta)^2}(\partial_\phi \alpha)X_\phi$$

$$= \frac{1}{r}(\partial_\theta \alpha)\mathbf{e}_1 + \frac{1}{R+r\cos\theta}(\partial_\phi \alpha)\mathbf{e}_2,$$

$$\begin{split} \Delta_s &= \frac{1}{\sqrt{\bar{g}}} \partial_i (\sqrt{\bar{g}} g^{ij} \partial_j) = \frac{1}{\sqrt{\bar{g}}} \left(\partial_\theta \left(\sqrt{\bar{g}} \frac{1}{r^2} \partial_\theta \right) + \partial_\phi \left(\sqrt{\bar{g}} \frac{1}{(R+r\cos\theta)^2} \partial_\phi \right) \right) \\ &= \frac{1}{r^2} \partial_{\theta\theta}^2 - \frac{\sin\theta}{r(R+r\cos\theta)} \partial_\theta + \frac{1}{(R+r\cos\theta)^2} \partial_{\phi\phi}^2. \end{split}$$

Local minimizers

• Energy:

$$W_{ex}(\mathbf{n}) = \frac{1}{2} \int_{Q} \left\{ \left| \nabla_{s} \alpha \right|^{2} + \eta \cos(2\alpha) \right\} \mathrm{d}S + M_{ex}(R/r)$$

Features: not convex, not coercive

• Euler-Lagrange equation:

$$\Delta_s \alpha + \eta \sin(2\alpha) = 0$$
 on Q

with $(2\pi m_1, 2\pi m_2)$ -periodic boundary conditions (Notation: $\alpha \in H^1_{\mathbf{m}}(Q)$, $\mathbf{m} = (m_1, m_2) \in \mathbb{Z} \times \mathbb{Z}$).

Decompose $\alpha \in H^1_{\mathbf{m}}(Q)$ into:

$$\alpha = u + \psi_{\mathbf{m}}$$
 with $u \in H^1_{per}(Q)$

$$H^1_{\mathbf{m}}(Q), \ \Delta_s \psi_{\mathbf{m}} = 0$$

Reduced problem: given m,

- build $\psi_{\mathbf{m}} \in H^1_{\mathbf{m}}(Q)$
- If ind $u \in H^1_{per}(Q)$ such that

 $\Delta_s u + \eta \sin(2u + 2\psi_{\mathbf{m}}) = 0$

Local minimizers

• Energy:

$$W_{ex}(\mathbf{n}) = \frac{1}{2} \int_{Q} \left\{ \left| \nabla_{s} \alpha \right|^{2} + \eta \cos(2\alpha) \right\} \mathrm{d}S + M_{ex}(R/r)$$

Features: not convex, not coercive

• Euler-Lagrange equation:

$$\Delta_s \alpha + \eta \sin(2\alpha) = 0$$
 on Q

with $(2\pi m_1, 2\pi m_2)$ -periodic boundary conditions (Notation: $\alpha \in H^1_{\mathbf{m}}(Q)$, $\mathbf{m} = (m_1, m_2) \in \mathbb{Z} \times \mathbb{Z}$).

Decompose $\alpha \in H^1_{\mathbf{m}}(Q)$ into:

$$\alpha = u + \psi_{\mathbf{m}}$$
 with $u \in H^1_{per}(Q)$ and $\psi_{\mathbf{m}} \in H^1_{\mathbf{m}}(Q), \ \Delta_s \psi_{\mathbf{m}} = 0$

Reduced problem: given m,

● build ψ_m ∈ H¹_m(Q) **●** find u ∈ H¹_{ner}(Q) such that

 $\Delta_s u + \eta \sin(2u + 2\psi_{\mathbf{m}}) = 0$

$\alpha ext{-flow}$

Given
$$\mathbf{m} = (m_1, m_2) \in \mathbb{Z} \times \mathbb{Z}$$
, let $\mu := R/r$
 $\Psi_{\mathbf{m}}(\theta, \phi) := m_1 \sqrt{\mu^2 - 1} \int_0^\theta \frac{1}{\mu + \cos(s)} ds + m_2 \phi.$

there exists a classical solution $\alpha \in H^1_m(Q) \cap C^\infty(Q)$. Moreover, *α* is odd on any line passing through the origin.

Gradient flow:

If $u_0 \in H^2_{per}(Q)$, then there is a unique

$$u \in C^{0}([0,T]; H^{2}_{per}(Q)) \cap C^{1}([0,T]; L^{2}(Q))$$

such that

$$\partial_t u(t) - \Delta_s u(t) = \eta \sin(2u(t) + 2\psi_{\mathbf{m}}), \qquad u(0) = u_0,$$

$$\sup_{T>0} \|u(T)\|_{\infty} < C \quad \text{and} \quad \sup_{T>0} \left\{ \|\partial_{t}u\|_{L^{2}(0,T;L^{2}(Q))} + \|\nabla_{s}u(T)\|_{L^{2}(Q)} \right\} \leq C.$$

$\alpha ext{-flow}$

Given
$$\mathbf{m} = (m_1, m_2) \in \mathbb{Z} \times \mathbb{Z}$$
, let $\mu := R/r$
 $\Psi_{\mathbf{m}}(\theta, \phi) := m_1 \sqrt{\mu^2 - 1} \int_0^\theta \frac{1}{\mu + \cos(s)} ds + m_2 \phi.$

② there exists a classical solution $\alpha \in H^1_m(Q) \cap C^\infty(Q)$. Moreover, *α* is odd on any line passing through the origin.

Gradient flow:

If $u_0 \in H^2_{per}(Q)$, then there is a unique

$$u \in C^{0}([0,T]; H^{2}_{per}(Q)) \cap C^{1}([0,T]; L^{2}(Q))$$

such that

$$\partial_t u(t) - \Delta_s u(t) = \eta \sin(2u(t) + 2\psi_{\mathbf{m}}), \qquad u(0) = u_0,$$

$$\sup_{T>0} \|u(T)\|_{\infty} < C \quad \text{and} \quad \sup_{T>0} \left\{ \|\partial_t u\|_{L^2(0,T;L^2(Q))} + \|\nabla_s u(T)\|_{L^2(Q)} \right\} \le C.$$

Reconstruct (i)

$$\alpha(t,x) := u(t,x) + \psi_{\mathbf{m}}(x), \qquad \alpha(t) \in H^{1}_{\mathbf{m}}(Q)$$

and, as $t \to +\infty$, $\alpha(t) \to$ solution of E.L. eq.

Q Reconstruct (ii):

$$\mathbf{n}(t,x) := \cos \alpha(t,x)\mathbf{e}_1(x) + \sin \alpha(t,x)\mathbf{e}_2(x)$$

has constant winding **m** along the flow.

Discretize the gradient flow, choose $\alpha_0 \in H^1_{per}(Q)$

Figure: Configuration of a numerical solution α of the gradient flow. Left R/r = 2.5; right: R/r = 1.33. The colour represents the angle $\alpha \in [0, \pi]$, the arrows represent the vector field **n**.

Figure: Configuration of the scalar field α and of the vector field **n** of a numerical solution to the the gradient flow, for R/r = 1.2 (left). Zoom-in of the central region of the same fields (right).

Numerical experiments – identifying +n and -n

