Equilibrium configurations of nematic liquid crystals on surfaces

Marco Veneroni

Joint work with: Antonio Segatti and Michael Snarski

University of
Pavia

Brown University
Providence

Two Days Workshop on LC-flows
Pavia, March 24-25, 2014

Liquid Crystals

The Nematic phase:

Crystalline solid

- Mostly uniaxial (rods - cylinders)
- No positional order (random centers of mass)
- Long-range directional order (parallel long axes)

Figure: Garcia-Amorós, Velasco. In Advanced Elastomers Technology, Properties and Applications, 2012.

Basic mathematical description: represent the mean orientation through a unit vector field, the director, $\mathbf{n}: \Omega \rightarrow \mathbb{S}^{2}$
(Alternative description: order tensor, $s\left(\mathbf{u} \otimes \mathbf{u}-\frac{1}{3} I d\right)$)

Nematic shells

- Physics:

Thin films of nematic liquid crystal coating a small particle
[Figure: Bates, Skačej, Zannoni. Defects and ordering in nematic coatings on uniaxial and biaxial colloids. Soft Matter, 2010.]

- Model:

Compact surface $\Sigma \subset \mathbb{R}^{3}$.
Director:

$$
\mathbf{n}: \Sigma \rightarrow \mathbb{S}^{2} \quad \text { with } \quad \mathbf{n}(x) \in T_{x} \Sigma
$$

Energy models

3D director theory, in a domain $\Omega \subset \mathbb{R}^{3}$

- Frank - Oseen - Zocher elastic energy density (Distortion free energy density)
$w(\mathbf{n})=\frac{k_{1}}{2}(\operatorname{div} \mathbf{n})^{2}+\frac{k_{2}}{2}(\mathbf{n} \cdot \operatorname{curl} \mathbf{n})^{2}+\frac{k_{3}}{2}|\mathbf{n} \times \operatorname{curl} \mathbf{n}|^{2}$
$+\left(k_{2}+k_{24}\right) \operatorname{div}((\nabla \mathbf{n}) \mathbf{n}-\mathbf{n} \operatorname{div} \mathbf{n})$

One-constant approximation

$$
W(\mathbf{n})=\frac{k}{2} \int_{\Omega}|\nabla \mathbf{n}|^{2} \mathrm{~d} x
$$

Energy models

3D director theory, in a domain $\Omega \subset \mathbb{R}^{3}$

- Frank - Oseen - Zocher elastic energy density

2D director theory, on a surface $\Sigma \subset \mathbb{R}^{3}$

Intrinsic surface energy

$$
W_{\text {in }}(\mathbf{n})=\frac{k}{2} \int_{\Sigma}|\mathrm{D} \mathbf{n}|^{2} \mathrm{~d} S
$$

One-constant approximation

$$
W(\mathbf{n})=\frac{k}{2} \int_{\Omega}|\nabla \mathbf{n}|^{2} \mathrm{~d} x
$$

Extrinsic surface energy

$$
W_{e x}(\mathbf{n})=\frac{k}{2} \int_{\Sigma}\left|\nabla_{s} \mathbf{n}\right|^{2} \mathrm{~d} S
$$

Intrinsic energy: Straley, Phys. Rev. A, 1971; Helfrich and Prost, Phys. Rev. A, 1988; Lubensky and Prost, J. Phys. II France, 1992.
Extrinsic energy: Napoli and Vergori, Phys. Rev. Lett., 2012.

Notation:

- ν : normal vector to Σ
- c_{1}, c_{2} : principal curvatures, i.e., eigenvalues of $-\mathrm{d} \boldsymbol{\nu} \sim\left[\begin{array}{cc}c_{1} & 0 \\ 0 & c_{2}\end{array}\right]$
- Shape operator:

$$
T_{p} \Sigma \rightarrow T_{p} \Sigma, \quad X \mapsto-\mathrm{d} \boldsymbol{\nu}(X)
$$

- Scalar 2nd fundamental form:

$$
h: T_{p} \Sigma \times T_{p} \Sigma \rightarrow \mathbb{R}, \quad h(X, Y)=\langle-\mathrm{d} \boldsymbol{\nu}(X), Y\rangle
$$

- Vector 2nd fundamental form:

$$
I I: T_{p} \Sigma \times T_{p} \Sigma \rightarrow N_{p} \Sigma, \quad I I(X, Y)=h(X, Y) \boldsymbol{\nu}
$$

Energy models

X, Y tangent fields on Σ, extended to \mathbb{R}^{3}
$\nabla_{X} Y=$ covariant derivation of Y in direction X, i.e. $(\nabla Y) X=\frac{\partial Y^{i}}{\partial x^{i}} X^{j}$

Orthogonal decomposition:

$$
\mathbb{R}^{3} \sim T_{p} \mathbb{R}^{3}=T_{p} \Sigma \oplus N_{p} \Sigma
$$

Gauss formula:

$$
\nabla_{X} Y=\mathrm{D}_{X} Y+I I(X, Y)
$$

Define
$P:=$ orthogonal projection on $T_{p} \Sigma$

Energy models

X, Y tangent fields on Σ, extended to \mathbb{R}^{3}
$\nabla_{X} Y=$ covariant derivation of Y in direction X, i.e. $(\nabla Y) X=\frac{\partial Y^{i}}{\partial x^{j}} X^{j}$

Orthogonal decomposition:

$$
\mathbb{R}^{3} \sim T_{p} \mathbb{R}^{3}=T_{p} \Sigma \oplus N_{p} \Sigma
$$

Gauss formula:

$$
\nabla_{X} Y=\mathrm{D}_{X} Y+I I(X, Y)
$$

Define

- $P:=$ orthogonal projection on $T_{p} \Sigma$
- $\nabla_{s} Y:=\nabla Y \circ P$

$$
\left|\nabla_{s} \mathbf{n}\right|^{2}=|\mathrm{D} \mathbf{n}|^{2}+|\mathrm{d} \boldsymbol{\nu}(\mathbf{n})|^{2}
$$

- Relationship between functional framework and topology of Σ
(a) Existence of minimizers and gradient flow of $W_{e x}$
- Parametrize a specific surface (the axisymmetric torus) and obtain precise description of local and global minimizers

Functional framework

$$
W_{e x}(\mathbf{n})=\frac{1}{2} \int_{\Sigma}\left\{|\mathrm{D} \mathbf{n}|^{2}+|(\mathrm{d} \boldsymbol{\nu}) \mathbf{n}|^{2}\right\} \mathrm{d} S
$$

Define the Hilbert spaces

$$
\begin{gathered}
L_{\mathrm{tan}}^{2}(\Sigma):=\left\{\mathbf{u} \in L^{2}\left(\Sigma ; \mathbb{R}^{3}\right): \mathbf{u}(x) \in T_{x} \Sigma \text { a.e. }\right\} \\
H_{\mathrm{tan}}^{1}(\Sigma):=\left\{\mathbf{u} \in L_{\mathrm{tan}}^{2}(\Sigma):\left|\mathrm{D}_{i} \mathbf{u}^{j}\right| \in L^{2}(\Sigma)\right\}
\end{gathered}
$$

Objective: minimize $W_{e x}$ on

$$
H_{\tan }^{1}\left(\Sigma ; \mathbb{S}^{2}\right):=\left\{\mathbf{u} \in H_{\tan }^{1}(\Sigma):|\mathbf{u}|=1 \text { a.e. }\right\}
$$

Note:

- $H_{\mathrm{tan}}^{1}\left(\Sigma ; \mathbb{S}^{2}\right)$ is a weakly closed subset of $H_{\mathrm{tan}}^{1}(\Sigma)$

Functional framework

$$
W_{e x}(\mathbf{n})=\frac{1}{2} \int_{\Sigma}\left\{|\mathrm{D} \mathbf{n}|^{2}+|(\mathrm{d} \boldsymbol{\nu}) \mathbf{n}|^{2}\right\} \mathrm{d} S
$$

Define the Hilbert spaces

$$
\begin{gathered}
L_{\mathrm{tan}}^{2}(\Sigma):=\left\{\mathbf{u} \in L^{2}\left(\Sigma ; \mathbb{R}^{3}\right): \mathbf{u}(x) \in T_{x} \Sigma \text { a.e. }\right\} \\
H_{\mathrm{tan}}^{1}(\Sigma):=\left\{\mathbf{u} \in L_{\mathrm{tan}}^{2}(\Sigma):\left|\mathrm{D}_{i} \mathbf{u}^{j}\right| \in L^{2}(\Sigma)\right\}
\end{gathered}
$$

Objective: minimize $W_{e x}$ on

$$
H_{\tan }^{1}\left(\Sigma ; \mathbb{S}^{2}\right):=\left\{\mathbf{u} \in H_{\tan }^{1}(\Sigma):|\mathbf{u}|=1 \text { a.e. }\right\}
$$

Note:

- $H_{\tan }^{1}\left(\Sigma ; \mathbb{S}^{2}\right)$ is a weakly closed subset of $H_{\mathrm{tan}}^{1}(\Sigma)$

Claim:

- $H_{\mathrm{tan}}^{1}\left(\Sigma ; \mathbb{S}^{2}\right)$ is empty, unless genus $(\Sigma)=1$

Topological constraints

The hairy ball Theorem

"There is no continuous unit-norm vector field on \mathbb{S}^{2} "
More generally, if v is a smooth vector field on the compact oriented manifold Σ, with finitely many zeroes x_{1}, \ldots, x_{m}, then

$$
\sum_{j=1}^{m} \operatorname{ind}_{j}(v)=\chi(\Sigma) \quad \text { (Poincaré-Hopf Theorem) }
$$

- $\operatorname{ind}_{j}(v)$, "index of v in x_{j} " $=$ number of windings of $v /|v|$ around x_{j}
- $\chi(\Sigma)$, "Euler characteristic of $\Sigma "=$ \# Faces - \# Edges + \# Vertices

$\operatorname{ind}_{0}(v)=0$

$\operatorname{ind}_{0}(v)=1$

$\operatorname{ind}_{0}(v)=-1$

Topological constraints

- On a sphere: $\chi\left(\mathbb{S}^{2}\right)=2 \rightarrow$ e.g. two zeros of index $1, \ldots$ \Rightarrow no continuous fields on \mathbb{S}^{2}
- On a torus: $\chi\left(\mathbb{T}^{2}\right)=0$
\Rightarrow possible continuous fields on \mathbb{T}^{2}
- On a genus g surface $\Sigma: \chi(\Sigma)=2-2 g$ if $g \neq 1 \Rightarrow$ no continuous fields on Σ
Poincaré-Hopf does not apply directly: $H_{\tan }^{1}(\Sigma) \mathbb{Z} C_{\tan }^{0}(\Sigma)$..

Topological constraints

- On a sphere: $\chi\left(\mathbb{S}^{2}\right)=2 \rightarrow$ e.g. two zeros of index $1, \ldots$ \Rightarrow no continuous fields on \mathbb{S}^{2}
- On a torus: $\chi\left(\mathbb{T}^{2}\right)=0$
\Rightarrow possible continuous fields on \mathbb{T}^{2}
- On a genus g surface $\Sigma: \chi(\Sigma)=2-2 g$ if $g \neq 1 \Rightarrow$ no continuous fields on Σ
Poincaré-Hopf does not apply directly: $H_{\tan }^{1}(\Sigma) \nsubseteq C_{\tan }^{0}(\Sigma) \ldots$

Topological constraints

- On a sphere: $\chi\left(\mathbb{S}^{2}\right)=2 \rightarrow$ e.g. two zeros of index $1, \ldots$ \Rightarrow no continuous fields on \mathbb{S}^{2}
- On a torus: $\chi\left(\mathbb{T}^{2}\right)=0$
\Rightarrow possible continuous fields on \mathbb{T}^{2}
- On a genus g surface $\Sigma: \chi(\Sigma)=2-2 g$ if $g \neq 1 \Rightarrow$ no continuous fields on Σ

Poincaré-Hopf does not apply directly: $H_{\tan }^{1}(\Sigma) \nsubseteq C_{\tan }^{0}(\Sigma) \ldots$
..still:

$$
\begin{aligned}
v(\mathbf{x}):= & \frac{\mathbf{x}}{|\mathbf{x}|} \text { on } B_{1} \backslash\{0\} \\
& \int_{B_{1} \backslash B_{\varepsilon}}|\nabla v(\mathbf{x})|^{2} \mathrm{~d} \mathbf{x}=\int_{0}^{2 \pi} \int_{\varepsilon}^{1} \frac{1}{\rho^{2}} \rho \mathrm{~d} \rho \mathrm{~d} \theta=-2 \pi \ln (\varepsilon) \xrightarrow{\varepsilon>0}+\infty
\end{aligned}
$$

$v \notin H^{1}\left(B_{1}\right)$, but $|\nabla v| \in L^{p}\left(B_{1}\right)$ for all $1 \leq p<2$.

Summary (1)

- Poincaré-Hopf Theorem suggests that if $\chi(\Sigma) \neq 0$, unit-norm vector fields on Σ must have defects.
- Simple defects just fail to be H^{1}

Theorem
I et Σ be a compact smooth surface without boundary, embedded in \mathbb{R}^{3}. Then

Summary (1)

- Poincaré-Hopf Theorem suggests that if $\chi(\Sigma) \neq 0$, unit-norm vector fields on Σ must have defects.
- Simple defects just fail to be H^{1}

Theorem

Let Σ be a compact smooth surface without boundary, embedded in \mathbb{R}^{3}. Then

$$
H_{\mathrm{tan}}^{1}\left(\Sigma ; \mathbb{S}^{2}\right) \neq \emptyset \quad \Leftrightarrow \quad \chi(\Sigma)=0
$$

Well-posedness

Results

- Stationary problem:

There exists $\mathbf{n} \in H_{\tan }^{1}\left(\Sigma ; \mathbb{S}^{2}\right)$ which minimizes $W_{e x}$.

- Gradient-flow:

Given $\mathbf{n}_{0} \in H_{\tan }^{1}\left(\Sigma ; \mathbb{S}^{2}\right)$, there exists

$$
\mathbf{n} \in L^{\infty}\left(0,+\infty ; H_{\tan }^{1}\left(\Sigma ; \mathbb{S}^{2}\right)\right), \quad \partial_{t} \mathbf{n} \in L^{2}\left(0,+\infty ; L_{\tan (\Sigma)}^{2}\right)
$$

which solves

$$
\begin{aligned}
\partial_{t} \mathbf{n}-\Delta_{g} \mathbf{n}+\mathrm{d} \nu(\mathbf{n}) & =|\mathrm{Dn}|^{2} \mathbf{n}+|\mathrm{d} \nu(\mathbf{n})|^{2} \mathbf{n} & & \text { a.e. in } \Sigma \times(0,+\infty) \\
\mathbf{n}(0) & =\mathbf{n}_{0} & & \text { a.e. in } \Sigma .
\end{aligned}
$$

Well-posedness

Sketch:

- Relax: instead of solving

$$
\partial_{t} \mathbf{n}=-\nabla W_{e x}(\mathbf{n}), \quad \text { on }|\mathbf{n}|=1,
$$

solve

$$
\partial_{t} \mathbf{n}^{\varepsilon}=-\nabla\left(W_{e x}\left(\mathbf{n}^{\varepsilon}\right)+\frac{1}{4 \varepsilon^{2}} \int_{\Sigma}\left(\left|\mathbf{n}^{\varepsilon}\right|^{2}-1\right)^{2} \mathrm{~d} S\right) .
$$

- Recover the quadratic terms $|\mathrm{Dn}|^{2} \mathbf{n}+\ldots$ with the Chen-Struwe trick for harmonic maps:

Well-posedness

Sketch:

- Relax: instead of solving

$$
\partial_{t} \mathbf{n}=-\nabla W_{e x}(\mathbf{n}), \quad \text { on }|\mathbf{n}|=1
$$

solve

$$
\partial_{t} \mathbf{n}^{\varepsilon}=-\nabla\left(W_{e x}\left(\mathbf{n}^{\varepsilon}\right)+\frac{1}{4 \varepsilon^{2}} \int_{\Sigma}\left(\left|\mathbf{n}^{\varepsilon}\right|^{2}-1\right)^{2} \mathrm{~d} S\right)
$$

- Recover the quadratic terms $|\mathrm{Dn}|^{2} \mathbf{n}+\ldots$ with the Chen-Struwe trick for harmonic maps:

$$
-\Delta \mathbf{n}=|\mathrm{D} \mathbf{n}|^{2} \mathbf{n} \quad \Rightarrow \quad\left\{\begin{aligned}
-\Delta \mathbf{n} & =\lambda \mathbf{n}, \\
\lambda & =|\mathrm{D} \mathbf{n}|^{2}
\end{aligned}\right.
$$

if $|\mathbf{n}|=1$,

$$
\Delta \mathbf{n} \times \mathbf{n}=0 \quad \Rightarrow \quad\left\{\begin{aligned}
-\Delta \mathbf{n} & =\lambda \mathbf{n}, \\
\lambda & =-\Delta \mathbf{n} \cdot \mathbf{n}=|\mathrm{D} \mathbf{n}|^{2}
\end{aligned}\right.
$$

Well-posedness

Sketch:

- Relax: instead of solving

$$
\partial_{t} \mathbf{n}=-\nabla W_{e x}(\mathbf{n}), \quad \text { on }|\mathbf{n}|=1
$$

solve

$$
\partial_{t} \mathbf{n}^{\varepsilon}=-\nabla\left(W_{e x}\left(\mathbf{n}^{\varepsilon}\right)+\frac{1}{4 \varepsilon^{2}} \int_{\Sigma}\left(\left|\mathbf{n}^{\varepsilon}\right|^{2}-1\right)^{2} \mathrm{~d} S\right)
$$

- Recover the quadratic terms $|\mathrm{Dn}|^{2} \mathbf{n}+\ldots$ with the Chen-Struwe trick for harmonic maps:

$$
-\Delta \mathbf{n}=|\mathrm{D} \mathbf{n}|^{2} \mathbf{n} \quad \Rightarrow \quad\left\{\begin{aligned}
-\Delta \mathbf{n} & =\lambda \mathbf{n}, \\
\lambda & =|\mathrm{D} \mathbf{n}|^{2}
\end{aligned}\right.
$$

if $|\mathbf{n}|=1$,

$$
\Delta \mathbf{n} \times \mathbf{n}=0 \quad \Rightarrow \quad\left\{\begin{aligned}
-\Delta \mathbf{n} & =\lambda \mathbf{n} \\
\lambda & =-\Delta \mathbf{n} \cdot \mathbf{n}=|\mathrm{D} \mathbf{n}|^{2}
\end{aligned}\right.
$$

- Apply the trick to $\left(\partial_{t} \mathbf{n}^{\varepsilon}-\Delta_{g} \mathbf{n}^{\varepsilon}+\mathrm{d} \nu\left(\mathbf{n}^{\varepsilon}\right)\right) \times \mathbf{n}^{\varepsilon}$

Given an orthonormal frame $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$, represent the director by the angle α such that

$$
\mathbf{n}=\cos (\alpha) \mathbf{e}_{1}+\sin (\alpha) \mathbf{e}_{2}
$$

$$
(*)
$$

Note: locally it is always possible.

Question:

Given $\mathbf{n} \in H_{\mathrm{tan}}^{1}\left(\Sigma ; \mathbb{S}^{2}\right)$, is it possible to find a global orthonormal frame $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ and $\alpha \in H^{1}(\Sigma ; \mathbb{R})$ satisfying $(*)$?
(No) Example:

Answer:

Given

- $\mathbf{n} \in H_{\tan }^{1}\left(\Sigma ; \mathbb{S}^{2}\right)$
- a global orthonormal frame $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$
- a parametrization $Q:=[0,2 \pi] \times[0,2 \pi] \xrightarrow{X} \Sigma$
it is possible to find and $\alpha \in H^{1}(Q)$ satisfying

$$
\mathbf{n} \circ X=\cos (\alpha) \mathbf{e}_{1}+\sin (\alpha) \mathbf{e}_{2}
$$

Answer:

Given

- $\mathbf{n} \in H_{\tan }^{1}\left(\Sigma ; \mathbb{S}^{2}\right)$
- a global orthonormal frame $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$
- a parametrization $Q:=[0,2 \pi] \times[0,2 \pi] \xrightarrow{X} \Sigma$
it is possible to find and $\alpha \in H^{1}(Q)$ satisfying

$$
\mathbf{n} \circ X=\cos (\alpha) \mathbf{e}_{1}+\sin (\alpha) \mathbf{e}_{2}
$$

Sketch:

- define

$$
\omega:=\frac{x \mathrm{~d} y-y \mathrm{~d} x}{x^{2}+y^{2}} \quad \text { on } \mathbb{R}^{2} \backslash\{\mathbf{0}\} .
$$

- fix $p_{0} \in \Sigma$, define

$$
\alpha(p):=\alpha_{0}+\int_{\gamma} \mathbf{n}^{*} \omega \quad\left(\gamma: \text { path connecting } p_{0} \text { and } p\right)
$$

- α is well-defined if and only if $\int_{\gamma} \mathbf{n}^{*} \omega=0$ on loops

If $\alpha \in H^{1}(Q)$ is a representation of $\mathbf{n} \in H_{\tan }^{1}\left(\mathbb{T}^{2} ; \mathbb{S}^{2}\right)$, there exists $\left(m_{1}, m_{2}\right) \in \mathbb{Z} \times \mathbb{Z}$ such that

$$
\begin{aligned}
& \text { - } \alpha_{\mid\{\theta=0\}}=\alpha_{\mid\{\theta=2 \pi\}}+2 m_{1} \pi \\
& \text { - } \alpha_{\mid\{\phi=0\}}=\alpha_{\mid\{\phi=2 \pi\}}+2 m_{2} \pi
\end{aligned}
$$

Correspondence between classes in

Fundamental group of \mathbb{T}^{2} Loops / Homotopy classes

Fields $\mathbf{n} \in H_{\mathrm{tan}}^{1}\left(\mathbb{T}^{2} ; \mathbb{S}^{2}\right)$ / degree on generators
$H^{1}(Q)$ "periodic" functions $\alpha /$ boundary conditions

Figure: In clockwise order, from top-left corner: index $(1,1),(1,3),(3,3),(3,1)$. The colour represents the angle $\alpha \bmod 2 \pi$, the arrows represent the vector field \mathbf{n}.

α-representation

Translate the energies:

$$
\begin{aligned}
& W_{i n}(\mathbf{n})=\frac{1}{2} \int_{\Sigma}|\mathrm{D} \mathbf{n}|^{2} \mathrm{~d} S=\frac{1}{2} \int_{Q}\left|\nabla_{s} \alpha\right|^{2} \mathrm{~d} S+M_{i n}(R / r) \\
& W_{e x}(\mathbf{n})=\frac{1}{2} \int_{\Sigma}\left|\nabla_{s} \mathbf{n}\right|^{2} \mathrm{~d} S=\frac{1}{2} \int_{Q}\left\{\left|\nabla_{s} \alpha\right|^{2}+\eta \cos (2 \alpha)\right\} \mathrm{d} S+M_{e x}(R / r)
\end{aligned}
$$

where $M_{i n}, M_{e x}$ are constant in α and $\eta=\frac{c_{1}^{2}-c_{2}^{2}}{2}$.
For $\alpha \equiv$ const on Q,

Figure: The ratio of the radii $\mu=R / r$ is : $\mu=1.1$ (dotted line), $\mu=2 / \sqrt{3}$ (dashed dotted line), $R / r=1.25$ (dashed line), $R / r=1.6$ (continuous line).

Explicit forms of surface differential operators on the torus

Let $Q:=[0,2 \pi] \times[0,2 \pi] \subset \mathbb{R}^{2}$, and let $X: Q \rightarrow \mathbb{R}^{3}$ be

$$
X(\theta, \phi)=\left(\begin{array}{c}
(R+r \cos \theta) \cos \phi \\
(R+r \cos \theta) \sin \phi \\
r \sin \theta
\end{array}\right)
$$

$$
\begin{aligned}
\nabla_{s} \alpha=g^{i i} \partial_{i} \alpha & =\frac{1}{r^{2}}\left(\partial_{\theta} \alpha\right) X_{\theta}+\frac{1}{(R+r \cos \theta)^{2}}\left(\partial_{\phi} \alpha\right) X_{\phi} \\
& =\frac{1}{r}\left(\partial_{\theta} \alpha\right) \mathbf{e}_{1}+\frac{1}{R+r \cos \theta}\left(\partial_{\phi} \alpha\right) \mathbf{e}_{2},
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{s}=\frac{1}{\sqrt{\bar{g}}} \partial_{i}\left(\sqrt{\bar{g}} g^{i j} \partial_{j}\right) & =\frac{1}{\sqrt{\bar{g}}}\left(\partial_{\theta}\left(\sqrt{\bar{g}} \frac{1}{r^{2}} \partial_{\theta}\right)+\partial_{\phi}\left(\sqrt{\bar{g}} \frac{1}{(R+r \cos \theta)^{2}} \partial_{\phi}\right)\right) \\
& =\frac{1}{r^{2}} \partial_{\theta \theta}^{2}-\frac{\sin \theta}{r(R+r \cos \theta)} \partial_{\theta}+\frac{1}{(R+r \cos \theta)^{2}} \partial_{\phi \phi .}^{2} .
\end{aligned}
$$

Local minimizers

- Energy:

$$
W_{e x}(\mathbf{n})=\frac{1}{2} \int_{Q}\left\{\left|\nabla_{s} \alpha\right|^{2}+\eta \cos (2 \alpha)\right\} \mathrm{d} S+M_{e x}(R / r)
$$

Features: not convex, not coercive

- Euler-Lagrange equation:

$$
\Delta_{s} \alpha+\eta \sin (2 \alpha)=0 \quad \text { on } Q
$$

with ($2 \pi m_{1}, 2 \pi m_{2}$)-periodic boundary conditions
(Notation: $\left.\alpha \in H_{\mathbf{m}}^{1}(Q), \quad \mathbf{m}=\left(m_{1}, m_{2}\right) \in \mathbb{Z} \times \mathbb{Z}\right)$.

- Energy:

$$
W_{e x}(\mathbf{n})=\frac{1}{2} \int_{Q}\left\{\left|\nabla_{s} \alpha\right|^{2}+\eta \cos (2 \alpha)\right\} \mathrm{d} S+M_{e x}(R / r)
$$

Features: not convex, not coercive

- Euler-Lagrange equation:

$$
\Delta_{s} \alpha+\eta \sin (2 \alpha)=0 \quad \text { on } Q
$$

with ($2 \pi m_{1}, 2 \pi m_{2}$)-periodic boundary conditions
(Notation: $\left.\alpha \in H_{\mathbf{m}}^{1}(Q), \quad \mathbf{m}=\left(m_{1}, m_{2}\right) \in \mathbb{Z} \times \mathbb{Z}\right)$.
Decompose $\alpha \in H_{\mathbf{m}}^{1}(Q)$ into:

$$
\alpha=u+\psi_{\mathbf{m}} \quad \text { with } u \in H_{p e r}^{1}(Q) \quad \text { and } \quad \psi_{\mathbf{m}} \in H_{\mathbf{m}}^{1}(Q), \Delta_{s} \psi_{\mathbf{m}}=0
$$

Reduced problem: given \mathbf{m},
(1) build $\psi_{\mathbf{m}} \in H_{\mathbf{m}}^{1}(Q)$

- find $u \in H_{p e r}^{1}(Q)$ such that

$$
\Delta_{s} u+\eta \sin \left(2 u+2 \psi_{\mathbf{m}}\right)=0
$$

Given $\mathbf{m}=\left(m_{1}, m_{2}\right) \in \mathbb{Z} \times \mathbb{Z}$, let $\mu:=R / r$
-

$$
\psi_{\mathbf{m}}(\theta, \phi):=m_{1} \sqrt{\mu^{2}-1} \int_{0}^{\theta} \frac{1}{\mu+\cos (s)} \mathrm{d} s+m_{2} \phi
$$

(e) there exists a classical solution $\alpha \in H_{\mathrm{m}}^{1}(Q) \cap C^{\infty}(Q)$. Moreover, α is odd on any line passing through the origin.

Gradient flow:

Given $\mathbf{m}=\left(m_{1}, m_{2}\right) \in \mathbb{Z} \times \mathbb{Z}$, let $\mu:=R / r$
©

$$
\psi_{\mathbf{m}}(\theta, \phi):=m_{1} \sqrt{\mu^{2}-1} \int_{0}^{\theta} \frac{1}{\mu+\cos (s)} \mathrm{d} s+m_{2} \phi
$$

(2) there exists a classical solution $\alpha \in H_{\mathrm{m}}^{1}(Q) \cap C^{\infty}(Q)$. Moreover, α is odd on any line passing through the origin.

Gradient flow:

If $u_{0} \in H_{p e r}^{2}(Q)$, then there is a unique

$$
u \in C^{0}\left([0, T] ; H_{p e r}^{2}(Q)\right) \cap C^{1}\left([0, T] ; L^{2}(Q)\right)
$$

such that

$$
\partial_{t} u(t)-\Delta_{s} u(t)=\eta \sin \left(2 u(t)+2 \psi_{\mathbf{m}}\right), \quad u(0)=u_{0}
$$

$$
\sup _{T>0}\|u(T)\|_{\infty}<C \quad \text { and } \quad \sup _{T>0}\left\{\left\|\partial_{t} u\right\|_{L^{2}\left(0, T ; L^{2}(Q)\right)}+\left\|\nabla_{s} u(T)\right\|_{L^{2}(Q)}\right\} \leq C .
$$

- Reconstruct (i)

$$
\alpha(t, x):=u(t, x)+\psi_{\mathbf{m}}(x), \quad \alpha(t) \in H_{\mathbf{m}}^{1}(Q)
$$

and, as $t \rightarrow+\infty, \alpha(t) \rightarrow$ solution of E.L. eq.
(2) Reconstruct (ii):

$$
\mathbf{n}(t, x):=\cos \alpha(t, x) \mathbf{e}_{1}(x)+\sin \alpha(t, x) \mathbf{e}_{2}(x)
$$

has constant winding \mathbf{m} along the flow.

Numerical experiments

Discretize the gradient flow, choose $\alpha_{0} \in H_{p e r}^{1}(Q)$

Figure: Configuration of a numerical solution α of the gradient flow. Left $R / r=2.5$; right: $R / r=1.33$. The colour represents the angle $\alpha \in[0, \pi]$, the arrows represent the vector field \mathbf{n}.

Numerical experiments

Figure: Configuration of the scalar field α and of the vector field \mathbf{n} of a numerical solution to the the gradient flow, for $R / r=1.2$ (left). Zoom-in of the central region of the same fields (right).

Numerical experiments - identifying $\mathbf{+ n}$ and $\mathbf{- n}$

