Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows

Hao Wu

School of Mathematical Sciences
Fudan University

Two Days Workshop on LC-flows
Pavia, March 242014

Outline

(1) Introduction
(2) Main results and ideas of their proof

- Decomposition of the viscoelastic system
- Well-posedness revisited
- Optimal L^{2}-decay of global solutions near equilibrium
- Weak-strong uniqueness
(3) Open problems

Joint work with X.-P. Hu (Courant Institute of Mathematical Sciences).

The flow map

- Let Ω_{0}^{X} be the reference domain, Ω_{t}^{x} be the deformed domain at time t with variables X and x, respectively.
- $X \sim$ the Lagrangian coordinate system
- $x \sim$ the Eulerian coordinate system
- Flow map $x(X, t): \Omega_{0}^{X} \rightarrow \Omega_{t}^{x}$

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} x(X, t)=\mathbf{u}(x(X, t), t), \quad t>0 \\
x(X, 0)=X
\end{array}\right.
$$

It links the two coordinate systems: Both sides describe the velocity of a particle labeled with X at position x and time t.

The deformation tensor F

- Let $\tilde{\mathrm{F}}$ be the Jacobian matrix of the map $X \rightarrow x(X, t)$ defined by

$$
\widetilde{\mathrm{F}}(X, t)=\frac{\partial x(X, t)}{\partial X} .
$$

- Push forward to the Eulerian coordinate:

$$
\mathrm{F}(x(X, t), t)=\widetilde{\mathrm{F}}(X, t)
$$

By chain rule,

$$
\mathrm{F}_{t}+\mathbf{u} \cdot \nabla_{x} \mathrm{~F}=\nabla_{x} \mathbf{u F}
$$

- The deformation tensor F carries all the information about how the configuration is deformed with respect to the reference configuration, including microstructures, patterns etc.

Kinematic transport of liquid crystal

- d: orientation director of nematic liquid crystal molecules
- Kinematic transport relation

Rod-like molecule $\mathbf{d}(x(X, t), t)=\mathrm{Fd}_{0}(X)$
General ellipsoidal shapes $\mathbf{d}(x(X, t), t)=\mathbb{E} \mathbf{d}_{0}(X)$
where $\mathbb{E}(x(X, t), t)$ satisfies

$$
\mathbb{E}_{t}+\mathbf{u} \cdot \nabla_{x} \mathbb{E}=S \mathbb{E}+(2 \alpha-1) A \mathbb{E},
$$

$A=\frac{1}{2}\left(\nabla_{x} \mathbf{u}+\nabla_{x}^{T} \mathbf{u}\right)$ and $S=\frac{1}{2}\left(\nabla_{x} \mathbf{u}-\nabla_{x}^{T} \mathbf{u}\right)$,
$2 \alpha-1=\frac{r^{2}-1}{r^{2}+1}$ with r being the aspect ratio of the ellipsoids.

- The general transport equation for \mathbf{d} :

$$
\mathbf{d}_{t}+u \cdot \nabla_{x} \mathbf{d}-S \mathbf{d}-(2 \alpha-1) A \mathbf{d}=0 .
$$

It includes the transport of the center of mass and the rotating/stretching effect of the director \mathbf{d} under the flow.

The incompressible viscoelastic system

Consider the Cauchy problem in for $\mathbb{R}^{d}, d=2,3$:

$$
\left\{\begin{array}{l}
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla \mathbf{u}-\mu \Delta \mathbf{u}+\nabla p=\nabla \cdot\left(\frac{\partial W(\mathrm{~F})}{\partial \mathrm{F}} \mathrm{~F}^{T}\right), \\
\nabla \cdot \mathbf{u}=0, \tag{1}\\
\mathrm{~F}_{t}+\mathbf{u} \cdot \nabla \mathrm{F}=\nabla \mathbf{u F}, \\
\left.\mathbf{u}(t, x)\right|_{t=0}=\mathbf{u}_{0}(x),\left.\quad \mathrm{F}(t, x)\right|_{t=0}=\mathrm{F}_{0}(x),
\end{array}\right.
$$

- $W(\mathrm{~F})$: the elastic energy functional
- $\frac{\partial W(F)}{\partial F}$: the Piola-Kirchhoff stress tensor
- $\frac{\partial W(\mathrm{~F})}{\partial \mathrm{F}} \mathrm{F}^{T}$: the Cauchy-Green tensor
- The latter is the change variable form of the former one (from Lagrangian to Eulerian coordinates).
- For simplicity, we confine ourselves to the Hookean linear elasticity

$$
W(\mathrm{~F})=\frac{1}{2}|\mathrm{~F}|^{2} .
$$

Some remarks

- System (1) is an important model in complex fluids
- It presents the competition between the elastic energy and the kinetic energy.
- The deformation tensor F carries all the kinematic transport information of the micro-structures and configurations.
- Equivalent to the classical Oldroyd-B model for viscoelastic fluids in the case of infinite Weissenberg number.
- From mathematical point of view:
a coupling of a "parabolic" system for \mathbf{u} with a "hyperbolic" system for F.

Well-posedness results in the literature

Existence and uniqueness of local classical solutions and global classical solutions near-equilibrium.
(A) Incompressible case:

- 2D: Lin-Liu-Zhang 2005 CPAM, Lei-Zhou 2005 SIMA
- 3D: Chen-Zhang 2006 CPDE, Lei-Liu-Zhou 2008 ARMA
- Small strain/large rotation in 2D: Lei-Liu-Zhou 2007 CMS, Lei 2010 ARMA
- Critical space: Qian 2010 NA, Zhang-Fang 2012 SIMA
- Initial boundary value problem: Lin-Zhang 2008 CPAM
(B) Compressible case:
- Well-posedness: Hu-Wang 2010/2011/2012 JDE, Qian-Zhang 2010 ARMA, Qian 2011 JDE
- Decay estimate: Hu-Wu G.C. 2013 SIMA

Basic energy law

- Total energy: kinetic + elastic

$$
\mathcal{E}(t)=\frac{1}{2}\|\mathbf{u}(t)\|_{L^{2}}^{2}+\frac{1}{2}\|\mathbf{F}\|_{L^{2}}^{2} .
$$

- Basic energy law

$$
\frac{d}{d t} \mathcal{E}(t)+\mu\|\nabla \mathbf{u}\|_{L^{2}}^{2}=0
$$

\Longrightarrow absence of damping mechanism in F.

- Partial dissipation structure is the Main Difficulty in the study of global existence of smooth solutions near equilibrium and its long-time behavior.

Basic properties I

Lemma (Incompressibility)

Assume that det $\mathrm{F}_{0}=1$, then

$$
\operatorname{det} \mathrm{F}(t, x)=1, \quad \text { for } t \geq 0, x \in \mathbb{R}^{d}
$$

which is equivalent to

$$
\nabla \cdot \mathbf{u}=0 .
$$

Lemma (div-curl structure)
Assume that $\nabla \cdot \mathrm{F}_{0}^{T}=0$, then

$$
\nabla \cdot \mathrm{F}^{T}(t, x)=0, \quad \text { for } t \geq 0, x \in \mathbb{R}^{d}
$$

Basic properties II

Let \mathbb{I} be the $d \times d$ identity matrix. Introduce the strain tensor

$$
\mathrm{E}=\mathrm{F}-\mathbb{I} .
$$

Lemma

Assume that

$$
\nabla_{m} \mathrm{E}_{0 i j}-\nabla_{j} \mathrm{E}_{0 i m}=\mathrm{E}_{0 l j} \nabla_{l} \mathrm{E}_{0 i m}-\mathrm{E}_{0 l m} \nabla \nabla_{l} \mathrm{E}_{0 i j},
$$

then for $t \geq 0, x \in \mathbb{R}^{d}$

$$
\nabla_{m} \mathrm{E}_{i j}(t, x)-\nabla_{j} \mathrm{E}_{i m}(t, x)=\mathrm{E}_{l j}(t, x) \nabla_{l} \mathrm{E}_{i m}(t, x)-\mathrm{E}_{l m}(t, x) \nabla_{l} \mathrm{E}_{i j}(t, x) .
$$

$\Longrightarrow \nabla \times \mathrm{E}$ is indeed a higher-order nonlinearity.

Key to global existence near equilibrium

- 2D: Lin-Liu-Zhang 2005 CPAM

There exists a vector $\phi=\left(\phi_{1}, \phi_{2}\right)$ such that

$$
\mathrm{F}=\nabla^{\perp} \phi=\left(\begin{array}{cc}
-\partial_{2} \phi_{1} & -\partial_{2} \phi_{2} \\
\partial_{1} \phi_{1} & \partial_{1} \phi_{2}
\end{array}\right) .
$$

Find damping effect for

$$
\mathbf{w}=\mathbf{u}-\mu^{-1}(\phi(x)-x)
$$

- 3D: Lei-Liu-Zhou 2008 ARMA

For the strain tensor $E=F-\mathbb{I}$, introducing

$$
\mathbf{w}=-\Delta \mathbf{u}+\mu^{-1} \nabla \cdot \mathbf{E}
$$

which has a damping effect, then using the fact that $\nabla \times E$ is indeed a higher-order nonlinear term.

The Cauchy problem

Consider

$$
\left\{\begin{array}{l}
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla \mathbf{u}-\mu \Delta \mathbf{u}+\nabla p=\nabla \cdot \mathrm{E}+\nabla \cdot\left(\mathrm{EE}^{T}\right) \tag{2}\\
\nabla \cdot \mathbf{u}=0 \\
\mathrm{E}_{t}+\mathbf{u} \cdot \nabla \mathrm{E}=\nabla \mathbf{u}+\nabla \mathbf{u} \mathrm{E} \\
\left.\mathbf{u}(t, x)\right|_{t=0}=\mathbf{u}_{0}(x),\left.\quad \mathrm{E}(t, x)\right|_{t=0}=\mathrm{E}_{0}(x)=\mathrm{F}_{0}(x)-\mathbb{I}
\end{array}\right.
$$

with following structural assumptions on the initial data: $\operatorname{det}\left(\mathrm{E}_{0}+\mathbb{I}\right)=1, \quad \nabla \cdot \mathbf{u}_{0}=0$,
(A2) $\quad \nabla \cdot \mathrm{E}_{0}^{T}=0$,
(A3) $\quad \nabla_{m} \mathrm{E}_{0 i j}-\nabla_{j} \mathrm{E}_{0 i m}=\mathrm{E}_{0 l j} \nabla_{l} \mathrm{E}_{0 i m}-\mathrm{E}_{0 l m} \nabla_{l} \mathrm{E}_{0 i j}$.

Main result 1: Part I - Global existence

Theorem

Suppose that $d=3$ and the initial data $\mathbf{u}_{0}, \mathrm{E}_{0} \in H^{k}\left(\mathbb{R}^{3}\right)(k \geq 2$ being an integer) fulfill the assumptions (A1)-(A3).
If the initial data satisfy

$$
\left\|\mathbf{u}_{0}\right\|_{H^{2}}+\left\|\mathrm{E}_{0}\right\|_{H^{2}} \leq \delta
$$

for certain sufficiently small $\delta>0$, then the Cauchy problem (2) admits a unique global classical solution (\mathbf{u}, E) such that

$$
\left\{\begin{array}{l}
\partial_{t}^{j} \nabla^{\alpha} \mathbf{u} \in L^{\infty}\left(0, T ; H^{k-2 j-|\alpha|}\left(\mathbb{R}^{3}\right)\right) \cap L^{2}\left(0, T ; H^{k-2 j-|\alpha|+1}\left(\mathbb{R}^{3}\right)\right) \\
\partial_{t}^{j} \nabla^{\alpha} \mathbf{E} \in L^{\infty}\left(0, T ; H^{k-2 j-|\alpha|}\left(\mathbb{R}^{3}\right)\right)
\end{array}\right.
$$

for all integer j and multi-index α satisfying $2 j+|\alpha| \leq k$. Moreover,

$$
\|\mathbf{u}(t)\|_{H^{2}}+\|\mathrm{E}(t)\|_{H^{2}} \leq 4 \delta, \quad \forall t \geq 0, \quad \int_{0}^{+\infty}\|\nabla \Delta \mathbf{u}(t)\|_{L^{2}}^{2} d t \leq C
$$

where the constant C depends on δ.

Main result 1: Part II - Optimal decay in L^{2}

Theorem (Continued)

If the initial data also satisfy $\mathbf{u}_{0}, \mathrm{E}_{0} \in L^{1}\left(\mathbb{R}^{3}\right)$, then for the above unique global classical solution (\mathbf{u}, E) to (2), the following decay estimates hold for all $t \geq 0$,

$$
\begin{aligned}
\|\mathbf{u}(t)\|_{L^{2}}+\|\mathrm{E}(t)\|_{L^{2}} & \leq C M(1+t)^{-\frac{3}{4}}, \\
\|\nabla \mathbf{u}(t)\|_{H^{1}}+\|\nabla \mathrm{E}(t)\|_{H^{1}} & \leq C M(1+t)^{-\frac{5}{4}},
\end{aligned}
$$

where $M=\left\|\mathbf{u}_{0}\right\|_{L^{1} \cap H^{2}}+\left\|\mathrm{E}_{0}\right\|_{L^{1} \cap H^{2}}$.
Moreover, if the Fourier transforms of $\left(\mathbf{u}_{0}, \mathbf{n}_{0}\right)$ (where $\mathbf{n}_{0}=\Lambda^{-1} \nabla \cdot \mathrm{E}_{0}$) also satisfy $\left|\widehat{u_{i 0}}\right| \geq c_{0},\left|\widehat{n_{i 0}}\right| \geq c_{0}$ for $0 \leq|\xi| \ll 1$, where $c_{0}>0$ satisfies $c_{0} \sim O\left(\delta^{\zeta}\right)$ with $\zeta \in(0,1)$, then there exists $t_{0} \gg 1$ such that

$$
\|\mathbf{u}(t)\|_{L^{2}}+\|\mathrm{E}(t)\|_{L^{2}} \geq C(1+t)^{-\frac{3}{4}}, \quad \forall t \geq t_{0}
$$

i.e., the L^{2} decay rate is optimal.

Idea of proof - decomposed system

- Let Λ^{s} be the pseudo differential operator defined by

$$
\Lambda^{s} f=\mathcal{F}^{-1}(|\xi| \widehat{\widehat{f}}(\xi)), \quad s \in \mathbb{R}, \quad \text { e.g., } \quad \Lambda^{2}=-\Delta
$$

- Introduce new variables

$$
\left\{\begin{array}{l}
\mathbf{n}=\Lambda^{-1}(\nabla \cdot \mathbb{E}), \\
\Omega=\Lambda^{-1}\left(\nabla \mathbf{u}-\nabla^{T} \mathbf{u}\right), \\
\mathbb{E}=\mathrm{E}^{T}-\mathrm{E} .
\end{array}\right.
$$

- The "decomposed systems"

$$
\begin{gather*}
\left\{\begin{array}{c}
\mathbf{u}_{t}-\mu \Delta \mathbf{u}-\Lambda \mathbf{n}=\mathbf{g}, \\
\mathbf{n}_{t}+\Lambda \mathbf{u}=\Lambda^{-1} \nabla \cdot \mathbf{h},
\end{array}\right. \tag{3}\\
\left\{\begin{array}{l}
\Omega_{t}-\mu \Delta \Omega-\Lambda \mathbb{E}=\Lambda^{-1}\left(\nabla \mathbf{g}-\nabla^{T} \mathbf{g}\right)+\Lambda^{-1} S, \\
\mathbb{E}_{t}+\Lambda \Omega=\mathbf{h}^{T}-\mathbf{h},
\end{array}\right. \tag{4}
\end{gather*}
$$

The decomposed system

- The nonlinearities \mathbf{g} and \mathbf{h} are given by

$$
\begin{aligned}
& \mathbf{g}=-\mathbb{P}(\mathbf{u} \cdot \nabla \mathbf{u})+\mathbb{P}\left(\nabla \cdot\left(\mathrm{EE}^{T}\right)\right), \\
& \mathbf{h}=-\mathbf{u} \cdot \nabla \mathrm{E}+\nabla \mathbf{u} \mathrm{E}
\end{aligned}
$$

where

$$
\mathbb{P}=\mathbb{I}-\Delta^{-1}(\nabla \otimes \nabla)
$$

is the Leray projection operator.

- The higher-order anti-symmetric matrix S is given by

$$
\mathrm{S}_{i j}=\nabla_{k}\left(\mathrm{E}_{l k} \nabla_{l} \mathrm{E}_{i j}-\mathrm{E}_{l j} \nabla_{l} E_{i k}\right)-\nabla_{k}\left(E_{l k} \nabla_{l} \mathrm{E}_{j i}-\mathrm{E}_{l i} \nabla_{l} \mathrm{E}_{j k}\right) .
$$

Some remarks

- Inspired by the decomposition in Danchin 2000 Invent. Math. for compressible Navier-Stokes equations.
The linearized system for the density ρ and the "compressible part" of the velocity $c=\Lambda^{-1} \nabla \cdot \mathbf{u}$ has a parabolic smoothing effect on c, and on ρ in the low frequencies; a damping effect on ρ in the high frequencies.
\Longrightarrow global existence of strong solutions near equilibrium (in critical spaces).
- The linearized systems (3)-(4) for (\mathbf{u}, \mathbf{n}) and (Ω, \mathbb{E}) have a structure similar to the linearized system for (ρ, c) of the compressible $\mathrm{N}-\mathrm{S}$ equations.

$$
u_{i} \sim c, \quad n_{i} \sim \rho .
$$

- System (4) provides some extra dissipation on \mathbb{E}, which helps us to prove the existence of global smooth solutions near equilibrium.

Useful estimates

Lemma

Let assumptions (A1)-(A3) be satisfied. The solution E to (2) satisfy:

$$
\begin{aligned}
\|\mathrm{E}\|_{L^{2}} & \leq C\left(\|\mathbf{n}\|_{L^{2}}+\|\mathrm{E}\|_{H^{2}}\|\mathrm{E}\|_{L^{2}}\right) \\
\|\nabla \mathrm{E}\|_{L^{2}} & \leq C\left(\|\nabla \mathbf{n}\|_{L^{2}}+\|\mathrm{E}\|_{H^{2}}\|\nabla \mathrm{E}\|_{L^{2}}\right) \\
\|\Delta \mathrm{E}\|_{L^{2}} & \leq C\left(\|\Delta \mathbb{E}\|_{L^{2}}+C\|\mathrm{E}\|_{H^{2}}\|\Delta \mathrm{E}\|_{L^{2}}\right) .
\end{aligned}
$$

where C is a constant that does not depend on E .

- If $\|\mathrm{E}\|_{H^{2}}$ is sufficiently small, then the norm of E can be controlled by the norms of \mathbf{n} and \mathbb{E}.

Global existence near equilibrium revisited

Lemma

Let (\mathbf{u}, E) be a smooth solution to problem (2), the following inequalities hold:

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left(\|\Delta \mathbf{u}\|_{L^{2}}^{2}+\|\Delta \mathrm{E}\|_{L^{2}}^{2}\right)+\mu\|\nabla \Delta \mathbf{u}\|_{L^{2}}^{2} \\
\leq & C\left(\|\mathbf{u}\|_{H^{2}}+\|\mathrm{E}\|_{H^{2}}\right)\left(\|\Delta \mathrm{E}\|_{L^{2}}^{2}+\|\nabla \mathbf{u}\|_{L^{2}}^{2}+\|\nabla \Delta \mathbf{u}\|_{L^{2}}^{2}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{d}{d t}(\Lambda \Omega, \Delta \mathbb{E})+\frac{1}{2}\|\Delta \mathbb{E}\|_{L^{2}}^{2} \\
\leq & C\left(\|\nabla \mathbf{u}\|_{L^{2}}^{2}+\|\nabla \Delta \mathbf{u}\|_{L^{2}}^{2}\right)+C\left(\|\mathbf{u}\|_{H^{2}}^{2}+\|\mathrm{E}\|_{H^{2}}^{2}\right)\left(\|\Delta \mathbf{u}\|_{L^{2}}^{2}+\|\Delta \mathrm{E}\|_{L^{2}}^{2}\right) .
\end{aligned}
$$

The constant C is independent of the variables $\mathbf{u}, \mathrm{E}, \Omega$ and \mathbb{E}.

Global existence near equilibrium revisited

Denote

$$
G(t)=\frac{1}{2}\left(\|\mathbf{u}\|_{L^{2}}^{2}+\|\mathbb{E}\|_{L^{2}}^{2}+\|\Delta \mathbf{u}\|_{L^{2}}^{2}+\|\Delta \mathrm{E}\|_{L^{2}}^{2}\right)+\kappa(\Lambda \Omega, \Delta \mathbb{E}),
$$

where $0<\kappa \ll 1$. Then

$$
G(t) \approx\|\mathbf{u}\|_{H^{2}}^{2}+\|\mathrm{E}\|_{H^{2}}^{2}
$$

and

$$
\frac{d}{d t} G(t)+\left[C_{1}-C_{2}\left(G(t)+G^{\frac{1}{2}}(t)\right)\right]\left(\|\Delta \mathrm{E}\|_{L^{2}}^{2}+\|\nabla \mathbf{u}\|_{L^{2}}^{2}+\|\nabla \Delta \mathbf{u}\|_{L^{2}}^{2}\right) \leq 0
$$

C_{1}, C_{2} are independent of $\mathbf{u}, \mathrm{E}, \Omega$ and \mathbb{E}.

- $G(0)$ is small $\Longrightarrow G(t)$ is uniformly bounded for all $t \geq 0$.

Long-time behavior

- Optimal decay rates for weak solutions of incompressible Navier-Stokes equations
~"the Fourier splitting method" due to Prof. M. Schonbek (series work in 1980's-1990's)
- Application to the liquid crystal system (Dai-Qing-Schonbek 2012 CPDE):
Decay for the director filed $\mathbf{d}+$ the Fourier splitting technique \Longrightarrow decay for the velocity \mathbf{u} in L^{2}.
- In the current case: lack of dissipation for F (or E) !
- Basic strategy:
- Spectral analysis of the linearized problem of the decomposed system (3) for (\mathbf{u}, \mathbf{n}) in terms of the decomposition of wave modes at both lower and higher frequencies
- Duhamel's principle + the fact of small global solution
\Longrightarrow Decay of the nonlinear system.

Decay of linear system

Lemma

Let $(\mathbf{u}(t), \mathbf{n}(t))$ be the solution to the linear problem

$$
\left\{\begin{array}{l}
\mathbf{u}_{t}-\mu \Delta \mathbf{u}-\Lambda \mathbf{n}=0 \\
\mathbf{n}_{t}+\Lambda \mathbf{u}=0
\end{array}\right.
$$

with initial data $\left(\mathbf{u}_{0}, \mathbf{n}_{0}\right) \in H^{l}\left(\mathbb{R}^{3}\right) \cap L^{1}\left(\mathbb{R}^{3}\right)$.
(i) For $0 \leq|\alpha| \leq l$ and $t \geq 0$,

$$
\left\|\left(\partial_{x}^{\alpha} \mathbf{u}(t), \partial_{x}^{\alpha} \mathbf{n}(t)\right)\right\|_{L^{2}} \leq C(1+t)^{-\frac{3}{4}-\frac{|\alpha|}{2}}\left(\left\|\left(\mathbf{u}_{0}, \mathbf{n}_{0}\right)\right\|_{L^{1}}+\left\|\partial_{x}^{\alpha}\left(\mathbf{u}_{0}, \mathbf{n}_{0}\right)\right\|_{L^{2}}\right) .
$$

(ii) Assume that $\widehat{\mathbf{u}_{0}}$ and $\widehat{\mathbf{n}_{0}}$ satisfy $\left|\widehat{u_{i 0}}\right| \geq c_{0}>0,\left|\widehat{n_{i 0}}\right| \geq c_{0}$ for $0 \leq|\xi| \ll 1$ with c_{0} being a certain positive constant. Then for t sufficiently large,

$$
C c_{0}(1+t)^{-\frac{3}{4}} \leq\|(\mathbf{u}(t), \mathbf{n}(t))\|_{L^{2}} \leq C(1+t)^{-\frac{3}{4}},
$$

i.e., the L^{2}-decay rates are optimal.

Sketch of proof

- Linear operator

$$
\mathcal{B}=\left(\begin{array}{cc}
\mu \Delta & \Lambda \\
-\Lambda & 0
\end{array}\right) \quad \Longrightarrow \quad \mathcal{A}(\xi)=\left(\begin{array}{cc}
-\mu|\xi|^{2} & |\xi| \\
-|\xi| & 0
\end{array}\right) .
$$

- Eigenvalues of $\mathcal{A}(\xi)$

$$
\lambda_{ \pm}(\xi)= \begin{cases}-\frac{\mu}{2}|\xi|^{2} \pm \frac{i}{2} \sqrt{-\mu^{2}|\xi|^{4}+4|\xi|^{2}}, & \text { if }|\xi|<\frac{2}{\mu} \\ -\frac{\mu}{2}|\xi|^{2} \pm \frac{1}{2} \sqrt{\mu^{2}|\xi|^{4}-4|\xi|^{2}}, & \text { if }|\xi| \geq \frac{2}{\mu}\end{cases}
$$

- Green's function for the semigroup
- Investigate the behavior of Green's function for both low frequency and high frequency.

Decay of nonlinear problem 1

- Introduce

$$
\begin{aligned}
& H(t)=\frac{1}{2}\left(\|\Delta \mathbf{u}\|_{L^{2}}^{2}+\|\Delta \mathrm{E}\|_{L^{2}}^{2}\right)+\kappa(\Lambda \Omega, \Delta \mathbb{E}), \\
& \widetilde{H}(t)=\sup _{0 \leq s \leq t}(1+s)^{\frac{5}{2}}\left(H(t)+\frac{1}{2}\|\nabla \mathbf{u}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla \mathrm{E}\|_{L^{2}}^{2}\right),
\end{aligned}
$$

where $\kappa>0$ is a sufficiently small constant such that

$$
H(t)+\frac{1}{2}\|\nabla \mathbf{u}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla \mathrm{E}\|_{L^{2}}^{2} \approx\|\nabla \mathbf{u}\|_{H^{1}}^{2}+\|\nabla \mathrm{E}\|_{H^{1}}^{2}
$$

Lemma

For any $t \geq 0$, the global solution (\mathbf{u}, E) (near equilibrium) satisfies

$$
\begin{gathered}
\|\mathbf{u}(t)\|_{L^{2}}+\|\mathrm{E}(t)\|_{L^{2}} \leq C(1+t)^{-\frac{3}{4}}\left(\left\|\mathbf{u}_{0}\right\|_{L^{1} \cap L^{2}}+\left\|\mathrm{E}_{0}\right\|_{L^{1} \cap L^{2}}+\delta \widetilde{H}^{\frac{1}{2}}(t)\right) \\
\|\nabla \mathbf{u}(t)\|_{L^{2}}+\|\nabla \mathrm{E}(t)\|_{L^{2}} \leq C(1+t)^{-\frac{5}{4}}\left(\left\|\mathbf{u}_{0}\right\|_{L^{1} \cap H^{1}}+\left\|\mathrm{E}_{0}\right\|_{L^{1} \cap H^{1}}+\delta \widetilde{H}^{\frac{1}{2}}(t)\right) .
\end{gathered}
$$

Sketch of proof

- Consider the nonlinear system for $\mathbf{W}_{i}=\left(u_{i}, n_{i}\right)^{T}(i=1,2,3)$

$$
\left\{\begin{array}{l}
\mathbf{W}_{i t}=\mathcal{B} \mathbf{W}_{i}+\mathbf{f}_{i}, \\
\left.\mathbf{W}_{i}(t, x)\right|_{t=0}=\mathbf{W}_{i 0}:=\left(u_{i 0}, \Lambda^{-1}(\nabla \cdot \mathbf{E})_{i 0}\right)^{T}
\end{array}\right.
$$

where

$$
\mathbf{f}_{i}=\left(g_{i}, \Lambda^{-1}(\nabla \cdot \mathbf{h})_{i}\right)^{T}
$$

- From the Duhamel's principle,

$$
\mathbf{W}_{i}(t)=e^{t \mathcal{B}} \mathbf{W}_{i 0}+\int_{0}^{t} e^{(t-s) \mathcal{B}} \mathbf{f}_{i}(s) d s
$$

- Using linear decay estimates and the elementary inequality

$$
\int_{0}^{t}(1+t-s)^{-\gamma}(1+s)^{-\beta} d s \leq C(1+t)^{-\gamma}, \quad \forall t \geq 0
$$

for $\beta>1, \beta \geq \gamma \geq 0$.

Decay of nonlinear problem 2

If $\widetilde{H}(t)$ is uniformly bounded, then we can infer

Lemma

For $t \geq 0$, the small global solution (\mathbf{u}, E) to system (2) satisfies

$$
\begin{aligned}
\|\mathbf{u}(t)\|_{L^{2}}+\|\mathrm{E}(t)\|_{L^{2}} & \leq C M(1+t)^{-\frac{3}{4}} \\
\|\nabla \mathbf{u}(t)\|_{H^{1}}+\|\nabla \mathrm{E}(t)\|_{H^{1}} & \leq C M(1+t)^{-\frac{5}{4}},
\end{aligned}
$$

where

$$
M=\left\|\mathbf{u}_{0}\right\|_{L^{1} \cap H^{2}}+\left\|\mathrm{E}_{0}\right\|_{L^{1} \cap H^{2}} .
$$

Moreover, we have the L^{p}-decay rate

$$
\|\mathbf{u}(t)\|_{L^{p}}+\|\mathrm{E}(t)\|_{L^{p}} \leq \begin{cases}C M(1+t)^{-\frac{3}{2}\left(1-\frac{1}{p}\right)}, & p \in[2,6] \\ C M(1+t)^{-\frac{5}{4}}, & p \in[6, \infty]\end{cases}
$$

Sketch of proof

- From higher-order estimates and the fact of small global solution:

$$
\frac{d}{d t} H(t)+\kappa_{1} H(t) \leq C\|\nabla \mathbf{u}\|_{L^{2}}^{2} .
$$

- By Gronwall inequality and definition of the weighted function $\widetilde{H}(t)$,

$$
\widetilde{H}(t) \leq H(0) e^{-\kappa_{1} t}(1+t)^{\frac{5}{2}}+C\left(\left\|\mathbf{u}_{0}\right\|_{L^{1} \cap H^{1}}^{2}+\left\|\mathrm{E}_{0}\right\|_{L^{1} \cap H^{1}}^{2}+\delta^{2} \widetilde{H}(t)\right) .
$$

- Since δ (the H^{2}-bound for global solution (\mathbf{u}, E)) is small,

$$
\widetilde{H}(t) \leq C\left(\left\|\mathbf{u}_{0}\right\|_{L^{1} \cap H^{2}}^{2}+\left\|\mathrm{E}_{0}\right\|_{L^{1} \cap H^{2}}^{2}\right) .
$$

- L^{p}-decay rate follows from the interpolation inequality.

Lower bound for L^{2}-decay rate

Lemma

Suppose the initial data $\left(\mathbf{u}_{0}, \mathbf{n}_{0}\right)$ (with $\mathbf{n}_{0}=\Lambda^{-1} \nabla \cdot \mathrm{E}_{0}$) satisfy

$$
\left|\widehat{u_{i 0}}\right| \geq c_{0}, \quad\left|\widehat{n_{i 0}}\right| \geq c_{0}, \quad \text { for } 0 \leq|\xi| \ll 1,
$$

where $c_{0} \sim O\left(\delta^{\zeta}\right)$ with $\zeta \in(0,1)$. Then

$$
\|\mathbf{u}(t)\|_{L^{2}}+\|\mathrm{E}(t)\|_{L^{2}} \geq C(1+t)^{-\frac{3}{4}}, \quad \forall t \geq t_{0} \gg 1
$$

- By Duhamel's principle and previous decay estimates, for $\delta \ll 1$, it holds

$$
\begin{aligned}
& \|(\mathbf{u}(t), \mathbf{n}(t))\|_{L^{2}} \\
\geq & C \delta^{\eta}(1+t)^{-\frac{3}{4}}-C \delta \widetilde{H}^{\frac{1}{2}}(t) \int_{0}^{t}(1+t-s)^{-\frac{3}{4}}(1+s)^{-\frac{5}{4}} d s \\
\geq & C\left(\delta^{\eta}-C \delta\right)(1+t)^{-\frac{3}{4}} \\
\geq & C(1+t)^{-\frac{3}{4}} .
\end{aligned}
$$

Weak solutions

Definition

The pair (\mathbf{u}, E) is a finite energy weak solution to the system (2) in $(0, T) \times \mathbb{R}^{d}$, if

$$
\mathbf{u} \in L^{\infty}\left(0, T ; L^{2}\left(\mathbb{R}^{d}\right)\right), \quad \nabla \mathbf{u} \in L^{2}\left(0, T ; L^{2}\left(\mathbb{R}^{d}\right)\right), \quad \mathrm{E}=\mathrm{F}-\mathbb{I} \in L^{\infty}\left(0, T ; L^{2}\left(\mathbb{R}^{d}\right)\right) .
$$

(\mathbf{u}, E) satisfies the viscoelastic system (2) in the sense of distributions. Moreover, the following energy inequality holds for a.e. $t \in[0, T]$,

$$
\mathcal{E}(t)+\mu \int_{0}^{t}\|\nabla \mathbf{u}(s)\|_{L^{2}}^{2} d s \leq \mathcal{E}(0)
$$

where

$$
\mathcal{E}(t)=\frac{1}{2}\left(\|\mathbf{u}(t)\|_{L^{2}}^{2}+\|\mathrm{E}(t)\|_{L^{2}}^{2}\right), \quad \mathcal{E}(0)=\frac{1}{2}\left(\left\|\mathbf{u}_{0}\right\|_{L^{2}}^{2}+\left\|\mathrm{E}_{0}\right\|_{L^{2}}^{2}\right) .
$$

Main result 2: Weak-strong uniqueness

Theorem

Let $\mathbf{u}_{0} \in H^{k}\left(\mathbb{R}^{d}\right)$ and $\mathrm{E}_{0}=\mathrm{F}_{0}-\mathbb{I} \in H^{k}\left(\mathbb{R}^{d}\right)(k \geq 3)$, satisfying the assumptions (A1)-(A3).
Suppose that $(\hat{\mathbf{u}}, \hat{\mathrm{E}})$ is a weak solution of system (2) in $(0, T) \times \mathbb{R}^{d}$ and (\mathbf{u}, E) is a strong solution emanating from the same initial data (e.g., the global classical solutions as before). Then we have $\hat{\mathbf{u}} \equiv \mathbf{u}$ and $\hat{\mathrm{E}} \equiv \mathrm{E}$ on the time interval of existence.

- Existence of weak solutions to the viscoelastic system (2) for arbitrary initial data is Open.
- Key difficulty: to show the weak convergence of the nonlinear term EE^{T} for suitable approximating solutions at least in the sense of distributions, which is NOT available from the basic energy law.
- In 2D, Hu-Lin 2013, existence of weak solutions provided that

$$
\begin{aligned}
& \mathbf{u}_{0} \in L^{p}\left(\mathbb{R}^{2}\right), \quad p>2 \\
& \left\|\mathrm{E}_{0}\right\|_{L^{\infty}}+\int_{\mathbb{R}^{2}}\left(\left|\mathrm{E}_{0}\right|^{2}+\left|\mathbf{u}_{0}\right|^{2}\right)\left(1+|x|^{2}\right) d x \ll 1
\end{aligned}
$$

Sketch of proof

- The weak solution ($\hat{\mathbf{u}}, \hat{E}$) satisfies the energy inequality and the strong solution (\mathbf{u}, E) satisfies the energy equality
- The strong solution (\mathbf{u}, E) is regular enough to serve as the test functions in the weak formulation
\Longrightarrow For the differences of solutions

$$
\mathfrak{U}=\hat{\mathbf{u}}-\mathbf{u} \quad \text { and } \quad \mathfrak{E}=\hat{E}-\mathbb{E}
$$

it holds

$$
\begin{aligned}
& \|\mathfrak{U}\|_{L^{2}}^{2}+\|\mathfrak{E}\|_{L^{2}}^{2}+\mu \int_{0}^{t}\|\nabla \mathfrak{U}\|_{L^{2}}^{2} d \tau \\
\leq & \left\|\mathfrak{U}_{0}\right\|_{L^{2}}^{2}+\left\|\mathfrak{E}_{0}\right\|_{L^{2}}^{2}+C \int_{0}^{t} h(\tau)\left(\|\mathfrak{U}\|_{L^{2}}^{2}+\|\mathfrak{E}\|_{L^{2}}^{2}\right) d \tau,
\end{aligned}
$$

where

$$
h(t)=\|\nabla \mathbf{u}\|_{L^{\infty}}+\|\nabla \mathrm{E}\|_{L^{\infty}}+\|\mathrm{E}\|_{L^{\infty}}^{2} .
$$

- $h(t) \in L^{1}(0, T) \Longrightarrow$ conclusion by the Gronwall lemma.

Open problems

- Decay estimate for incompressible Magnetohydrodynamic (MHD) system with zero magnetic diffusivity

$$
\left\{\begin{array}{l}
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla \mathbf{u}-\mu \Delta \mathbf{u}+\nabla p=\mathbf{B} \cdot \nabla \mathbf{B}, \\
\mathbf{B}_{t}-\nabla \times(\mathbf{u} \times \mathbf{B})=0, \\
\nabla \cdot \mathbf{u}=\nabla \cdot \mathbf{B}=0
\end{array}\right.
$$

Remark In 2D, there exists a scalar function ϕ such that $\mathbf{B}=\nabla^{\perp} \phi$, while for F , there exists a vector $\phi=\left(\phi_{1}, \phi_{2}\right)$ such that $\mathrm{F}=\nabla^{\perp} \phi$. For both cases, the system can be converted to

$$
\left\{\begin{array}{l}
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla \mathbf{u}-\mu \Delta \mathbf{u}+\nabla p=-\nabla \cdot(\nabla \phi \otimes \nabla \phi) \\
\phi_{t}+\mathbf{u} \cdot \nabla \phi=0 \\
\nabla \cdot \mathbf{u}=0
\end{array}\right.
$$

- Global weak solutions with finite energy to viscoelastic system in 2D and 3D

The End

Thank You !

