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The flow map

Let ΩX
0 be the reference domain, Ωx

t be the deformed domain at time t
with variables X and x, respectively.

I X ∼ the Lagrangian coordinate system
I x ∼ the Eulerian coordinate system

Flow map x(X, t) : ΩX
0 → Ωx

t
∂

∂t
x(X, t) = u(x(X, t), t), t > 0,

x(X, 0) = X.

It links the two coordinate systems: Both sides describe the velocity of a
particle labeled with X at position x and time t.
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The deformation tensor F

Let F̃ be the Jacobian matrix of the map X → x(X, t) defined by

F̃(X, t) =
∂x(X, t)
∂X

.

Push forward to the Eulerian coordinate:

F(x(X, t), t) = F̃(X, t)

By chain rule,
Ft + u · ∇xF = ∇xuF.

The deformation tensor F carries all the information about how the
configuration is deformed with respect to the reference configuration,
including microstructures, patterns etc.
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Kinematic transport of liquid crystal
d: orientation director of nematic liquid crystal molecules

Kinematic transport relation

Rod-like molecule d(x(X, t), t) = Fd0(X)

General ellipsoidal shapes d(x(X, t), t) = Ed0(X)

where E(x(X, t), t) satisfies

Et + u · ∇xE = SE + (2α− 1)AE,

A = 1
2 (∇xu +∇T

x u) and S = 1
2 (∇xu−∇T

x u),
2α− 1 = r2−1

r2+1 with r being the aspect ratio of the ellipsoids.

The general transport equation for d:

dt + u · ∇xd− Sd− (2α− 1)Ad = 0.

It includes the transport of the center of mass and the rotating/stretching
effect of the director d under the flow.
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The incompressible viscoelastic system
Consider the Cauchy problem in for Rd, d = 2, 3:

ut + u · ∇u− µ∆u +∇p = ∇ ·
(
∂W(F)
∂F FT

)
,

∇ · u = 0,
Ft + u · ∇F = ∇uF,
u(t, x)|t=0 = u0(x), F(t, x)|t=0 = F0(x),

(1)

W(F): the elastic energy functional
∂W(F)
∂F : the Piola–Kirchhoff stress tensor

∂W(F)
∂F FT : the Cauchy–Green tensor
I The latter is the change variable form of the former one (from

Lagrangian to Eulerian coordinates).

For simplicity, we confine ourselves to the Hookean linear elasticity

W(F) =
1
2
|F|2.
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Some remarks

System (1) is an important model in complex fluids

I It presents the competition between the elastic energy and the
kinetic energy.

I The deformation tensor F carries all the kinematic transport
information of the micro-structures and configurations.

Equivalent to the classical Oldroyd-B model for viscoelastic fluids in the
case of infinite Weissenberg number.

From mathematical point of view:
a coupling of a “parabolic” system for u with a “hyperbolic” system for F.
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Well-posedness results in the literature
Existence and uniqueness of local classical solutions and global classical
solutions near-equilibrium.

(A) Incompressible case:

2D: Lin-Liu-Zhang 2005 CPAM, Lei-Zhou 2005 SIMA

3D: Chen-Zhang 2006 CPDE, Lei-Liu-Zhou 2008 ARMA

Small strain/large rotation in 2D: Lei-Liu-Zhou 2007 CMS, Lei 2010
ARMA

Critical space: Qian 2010 NA, Zhang-Fang 2012 SIMA

Initial boundary value problem: Lin-Zhang 2008 CPAM

(B) Compressible case:

Well-posedness: Hu-Wang 2010/2011/2012 JDE, Qian-Zhang 2010
ARMA, Qian 2011 JDE

Decay estimate: Hu-Wu G.C. 2013 SIMA
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Basic energy law

Total energy: kinetic + elastic

E(t) =
1
2
‖u(t)‖2

L2 +
1
2
‖F‖2

L2 .

Basic energy law
d
dt
E(t) + µ‖∇u‖2

L2 = 0,

=⇒ absence of damping mechanism in F.

Partial dissipation structure is the Main Difficulty in the study of global
existence of smooth solutions near equilibrium and its long-time
behavior.
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Basic properties I

Lemma (Incompressibility)
Assume that det F0 = 1, then

det F(t, x) = 1, for t ≥ 0, x ∈ Rd,

which is equivalent to
∇ · u = 0.

Lemma (div-curl structure)
Assume that ∇ · FT

0 = 0, then

∇ · FT(t, x) = 0, for t ≥ 0, x ∈ Rd.
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Basic properties II

Let I be the d × d identity matrix. Introduce the strain tensor

E = F− I.

Lemma

Assume that
∇mE0ij −∇jE0im = E0lj∇lE0im − E0lm∇lE0ij,

then for t ≥ 0, x ∈ Rd

∇mEij(t, x)−∇jEim(t, x) = Elj(t, x)∇lEim(t, x)− Elm(t, x)∇lEij(t, x).

=⇒ ∇× E is indeed a higher-order nonlinearity.
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Key to global existence near equilibrium

2D: Lin-Liu-Zhang 2005 CPAM
There exists a vector φ = (φ1, φ2) such that

F = ∇⊥φ =

(
−∂2φ1 −∂2φ2
∂1φ1 ∂1φ2

)
.

Find damping effect for

w = u− µ−1(φ(x)− x).

3D: Lei-Liu-Zhou 2008 ARMA
For the strain tensor E = F− I, introducing

w = −∆u + µ−1∇ · E,

which has a damping effect, then using the fact that ∇× E is indeed a
higher-order nonlinear term.
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The Cauchy problem

Consider 
ut + u · ∇u− µ∆u +∇p = ∇ · E +∇ ·

(
EET

)
,

∇ · u = 0,
Et + u · ∇E = ∇u +∇uE,
u(t, x)|t=0 = u0(x), E(t, x)|t=0 = E0(x) = F0(x)− I,

(2)

with following structural assumptions on the initial data:

(A1) det(E0 + I) = 1, ∇ · u0 = 0,

(A2) ∇ · ET
0 = 0,

(A3) ∇mE0ij −∇jE0im = E0lj∇lE0im − E0lm∇lE0ij.
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Main result 1: Part I - Global existence

Theorem
Suppose that d = 3 and the initial data u0,E0 ∈ Hk(R3) (k ≥ 2 being an
integer) fulfill the assumptions (A1)–(A3).
If the initial data satisfy

‖u0‖H2 + ‖E0‖H2 ≤ δ

for certain sufficiently small δ > 0, then the Cauchy problem (2) admits a
unique global classical solution (u,E) such that{

∂j
t∇αu ∈ L∞(0,T; Hk−2j−|α|(R3)) ∩ L2(0,T; Hk−2j−|α|+1(R3))

∂j
t∇αE ∈ L∞(0,T; Hk−2j−|α|(R3))

for all integer j and multi-index α satisfying 2j + |α| ≤ k. Moreover,

‖u(t)‖H2 + ‖E(t)‖H2 ≤ 4δ, ∀ t ≥ 0,
∫ +∞

0
‖∇∆u(t)‖2

L2 dt ≤ C,

where the constant C depends on δ.
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Main result 1: Part II - Optimal decay in L2

Theorem (Continued)
If the initial data also satisfy u0,E0 ∈ L1(R3), then for the above unique global
classical solution (u,E) to (2), the following decay estimates hold for all t ≥ 0,

‖u(t)‖L2 + ‖E(t)‖L2 ≤ CM(1 + t)−
3
4 ,

‖∇u(t)‖H1 + ‖∇E(t)‖H1 ≤ CM(1 + t)−
5
4 ,

where M = ‖u0‖L1∩H2 + ‖E0‖L1∩H2 .
Moreover, if the Fourier transforms of (u0,n0) (where n0 = Λ−1∇ · E0) also
satisfy |ûi0| ≥ c0, |n̂i0| ≥ c0 for 0 ≤ |ξ| << 1, where c0 > 0 satisfies c0 ∼ O(δζ)
with ζ ∈ (0, 1), then there exists t0 >> 1 such that

‖u(t)‖L2 + ‖E(t)‖L2 ≥ C(1 + t)−
3
4 , ∀ t ≥ t0,

i.e., the L2 decay rate is optimal.
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Idea of proof - decomposed system
Let Λs be the pseudo differential operator defined by

Λsf = F−1(|ξ|s f̂ (ξ)), s ∈ R, e.g., Λ2 = −∆.

Introduce new variables
n = Λ−1(∇ · E),

Ω = Λ−1(∇u−∇Tu),

E = ET − E.

The “decomposed systems”{
ut − µ∆u− Λn = g,
nt + Λu = Λ−1∇ · h,

(3)

{
Ωt − µ∆Ω− ΛE = Λ−1(∇g−∇Tg) + Λ−1S,
Et + ΛΩ = hT − h,

(4)
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The decomposed system

The nonlinearities g and h are given by

g = −P(u · ∇u) + P
(
∇ ·
(
EET)) ,

h = −u · ∇E +∇uE,

where
P = I−∆−1(∇⊗∇)

is the Leray projection operator.

The higher-order anti-symmetric matrix S is given by

Sij = ∇k(Elk∇lEij − Elj∇lEik)−∇k(Elk∇lEji − Eli∇lEjk).
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Some remarks

Inspired by the decomposition in Danchin 2000 Invent. Math. for
compressible Navier–Stokes equations.
The linearized system for the density ρ and the “compressible part” of
the velocity c = Λ−1∇ · u has a parabolic smoothing effect on c, and on ρ
in the low frequencies; a damping effect on ρ in the high frequencies.
=⇒ global existence of strong solutions near equilibrium (in critical
spaces).

The linearized systems (3)–(4) for (u,n) and (Ω,E) have a structure
similar to the linearized system for (ρ, c) of the compressible N–S
equations.

ui ∼ c, ni ∼ ρ.

System (4) provides some extra dissipation on E, which helps us to
prove the existence of global smooth solutions near equilibrium.
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Useful estimates

Lemma

Let assumptions (A1)–(A3) be satisfied. The solution E to (2) satisfy:

‖E‖L2 ≤ C (‖n‖L2 + ‖E‖H2‖E‖L2) ,

‖∇E‖L2 ≤ C (‖∇n‖L2 + ‖E‖H2‖∇E‖L2) ,

‖∆E‖L2 ≤ C (‖∆E‖L2 + C‖E‖H2‖∆E‖L2) .

where C is a constant that does not depend on E.

If ‖E‖H2 is sufficiently small, then the norm of E can be controlled by the
norms of n and E.
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Global existence near equilibrium revisited

Lemma

Let (u,E) be a smooth solution to problem (2), the following inequalities hold:

1
2

d
dt

(
‖∆u‖2

L2 + ‖∆E‖2
L2

)
+ µ‖∇∆u‖2

L2

≤ C (‖u‖H2 + ‖E‖H2)
(
‖∆E‖2

L2 + ‖∇u‖2
L2 + ‖∇∆u‖2

L2

)
,

and

d
dt

(ΛΩ,∆E) +
1
2
‖∆E‖2

L2

≤ C
(
‖∇u‖2

L2 + ‖∇∆u‖2
L2

)
+ C

(
‖u‖2

H2 + ‖E‖2
H2

) (
‖∆u‖2

L2 + ‖∆E‖2
L2

)
.

The constant C is independent of the variables u, E, Ω and E.
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Global existence near equilibrium revisited

Denote

G(t) =
1
2
(
‖u‖2

L2 + ‖E‖2
L2 + ‖∆u‖2

L2 + ‖∆E‖2
L2

)
+ κ(ΛΩ,∆E),

where 0 < κ << 1. Then

G(t) ≈ ‖u‖2
H2 + ‖E‖2

H2

and

d
dt

G(t) +
[
C1 − C2

(
G(t) + G

1
2 (t)
) ] (
‖∆E‖2

L2 + ‖∇u‖2
L2 + ‖∇∆u‖2

L2

)
≤ 0,

C1,C2 are independent of u, E, Ω and E.

G(0) is small =⇒ G(t) is uniformly bounded for all t ≥ 0.
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Long-time behavior

Optimal decay rates for weak solutions of incompressible Navier–Stokes
equations
∼ ”the Fourier splitting method” due to Prof. M. Schonbek (series work in
1980’s-1990’s)

I Application to the liquid crystal system (Dai-Qing-Schonbek 2012
CPDE):
Decay for the director filed d + the Fourier splitting technique
=⇒ decay for the velocity u in L2.

In the current case: lack of dissipation for F (or E) !

Basic strategy:

I Spectral analysis of the linearized problem of the decomposed
system (3) for (u,n) in terms of the decomposition of wave modes
at both lower and higher frequencies

I Duhamel’s principle + the fact of small global solution

=⇒ Decay of the nonlinear system.
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Decay of linear system

Lemma

Let (u(t),n(t)) be the solution to the linear problem{
ut − µ∆u− Λn = 0,
nt + Λu = 0.

with initial data (u0,n0) ∈ Hl(R3) ∩ L1(R3).
(i) For 0 ≤ |α| ≤ l and t ≥ 0,

‖(∂αx u(t), ∂αx n(t))‖L2 ≤ C(1 + t)−
3
4−
|α|

2 (‖(u0,n0)‖L1 + ‖∂αx (u0,n0)‖L2) .

(ii) Assume that û0 and n̂0 satisfy |ûi0| ≥ c0 > 0, |n̂i0| ≥ c0 for 0 ≤ |ξ| << 1 with
c0 being a certain positive constant. Then for t sufficiently large,

Cc0(1 + t)−
3
4 ≤ ‖(u(t),n(t))‖L2 ≤ C(1 + t)−

3
4 ,

i.e., the L2-decay rates are optimal.
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Sketch of proof
Linear operator

B =

(
µ∆ Λ
−Λ 0

)
=⇒ A(ξ) =

(
−µ|ξ|2 |ξ|
−|ξ| 0

)
.

Eigenvalues of A(ξ)

λ±(ξ) =

{
−µ2 |ξ|

2 ± i
2

√
−µ2|ξ|4 + 4|ξ|2, if |ξ| < 2

µ ,

−µ2 |ξ|
2 ± 1

2

√
µ2|ξ|4 − 4|ξ|2, if |ξ| ≥ 2

µ .

Green’s function for the semigroup

Ĝ(t, ξ) := etA(ξ) =

 −µ|ξ|2 (eλ+ t−eλ− t)
λ+−λ− − λ−eλ+ t−λ+eλ− t

λ+−λ− |ξ| (eλ+ t−eλ− t)
λ+−λ−

−|ξ| (eλ+ t−eλ− t)
λ+−λ− −λ−eλ+ t−λ+eλ− t

λ+−λ−

 .

Investigate the behavior of Green’s function for both low frequency and
high frequency.
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Decay of nonlinear problem 1
Introduce

H(t) =
1
2

(‖∆u‖2
L2 + ‖∆E‖2

L2) + κ(ΛΩ,∆E),

H̃(t) = sup
0≤s≤t

(1 + s)
5
2

(
H(t) +

1
2
‖∇u‖2

L2 +
1
2
‖∇E‖2

L2

)
,

where κ > 0 is a sufficiently small constant such that

H(t) +
1
2
‖∇u‖2

L2 +
1
2
‖∇E‖2

L2 ≈ ‖∇u‖2
H1 + ‖∇E‖2

H1 .

Lemma

For any t ≥ 0, the global solution (u,E) (near equilibrium) satisfies

‖u(t)‖L2 + ‖E(t)‖L2 ≤ C(1 + t)−
3
4

(
‖u0‖L1∩L2 + ‖E0‖L1∩L2 + δH̃

1
2 (t)
)
,

‖∇u(t)‖L2 + ‖∇E(t)‖L2 ≤ C(1 + t)−
5
4

(
‖u0‖L1∩H1 + ‖E0‖L1∩H1 + δH̃

1
2 (t)
)
.
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Sketch of proof
Consider the nonlinear system for Wi = (ui, ni)

T (i = 1, 2, 3){
Wit = BWi + fi,

Wi(t, x)|t=0 = Wi0 := (ui0,Λ
−1(∇ · E)i0)T ,

where
fi = (gi,Λ

−1(∇ · h)i)
T .

From the Duhamel’s principle,

Wi(t) = etBWi0 +

∫ t

0
e(t−s)Bfi(s)ds.

Using linear decay estimates and the elementary inequality∫ t

0
(1 + t − s)−γ(1 + s)−βds ≤ C(1 + t)−γ , ∀ t ≥ 0,

for β > 1, β ≥ γ ≥ 0.
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Decay of nonlinear problem 2

If H̃(t) is uniformly bounded, then we can infer

Lemma
For t ≥ 0, the small global solution (u,E) to system (2) satisfies

‖u(t)‖L2 + ‖E(t)‖L2 ≤ CM(1 + t)−
3
4 ,

‖∇u(t)‖H1 + ‖∇E(t)‖H1 ≤ CM(1 + t)−
5
4 ,

where
M = ‖u0‖L1∩H2 + ‖E0‖L1∩H2 .

Moreover, we have the Lp-decay rate

‖u(t)‖Lp + ‖E(t)‖Lp ≤

{
CM(1 + t)−

3
2

(
1− 1

p

)
, p ∈ [2, 6],

CM(1 + t)−
5
4 , p ∈ [6,∞],

Hao Wu (Fudan University) March 24, 2014 27 / 34



Sketch of proof

From higher-order estimates and the fact of small global solution:

d
dt

H(t) + κ1H(t) ≤ C‖∇u‖2
L2 .

By Gronwall inequality and definition of the weighted function H̃(t),

H̃(t) ≤ H(0)e−κ1t(1 + t)
5
2 + C

(
‖u0‖2

L1∩H1 + ‖E0‖2
L1∩H1 + δ2H̃(t)

)
.

Since δ (the H2-bound for global solution (u,E)) is small,

H̃(t) ≤ C
(
‖u0‖2

L1∩H2 + ‖E0‖2
L1∩H2

)
.

Lp-decay rate follows from the interpolation inequality.
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Lower bound for L2-decay rate
Lemma
Suppose the initial data (u0,n0) (with n0 = Λ−1∇ · E0) satisfy

|ûi0| ≥ c0, |n̂i0| ≥ c0, for 0 ≤ |ξ| << 1,

where c0 ∼ O(δζ) with ζ ∈ (0, 1). Then

‖u(t)‖L2 + ‖E(t)‖L2 ≥ C(1 + t)−
3
4 , ∀ t ≥ t0 >> 1.

By Duhamel’s principle and previous decay estimates, for δ << 1, it
holds

‖(u(t),n(t))‖L2

≥ Cδη(1 + t)−
3
4 − CδH̃

1
2 (t)

∫ t

0
(1 + t − s)−

3
4 (1 + s)−

5
4 ds

≥ C(δη − Cδ)(1 + t)−
3
4

≥ C(1 + t)−
3
4 .
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Weak solutions

Definition
The pair (u,E) is a finite energy weak solution to the system (2) in (0,T)×Rd,
if

u ∈ L∞(0,T; L2(Rd)), ∇u ∈ L2(0,T; L2(Rd)), E = F− I ∈ L∞(0,T; L2(Rd)).

(u,E) satisfies the viscoelastic system (2) in the sense of distributions.
Moreover, the following energy inequality holds for a.e. t ∈ [0,T],

E(t) + µ

∫ t

0
‖∇u(s)‖2

L2 ds ≤ E(0),

where

E(t) =
1
2
(
‖u(t)‖2

L2 + ‖E(t)‖2
L2

)
, E(0) =

1
2
(
‖u0‖2

L2 + ‖E0‖2
L2

)
.
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Main result 2: Weak-strong uniqueness
Theorem
Let u0 ∈ Hk(Rd) and E0 = F0 − I ∈ Hk(Rd) (k ≥ 3), satisfying the assumptions
(A1)–(A3).
Suppose that (û, Ê) is a weak solution of system (2) in (0,T)× Rd and (u,E)
is a strong solution emanating from the same initial data (e.g., the global
classical solutions as before). Then we have û ≡ u and Ê ≡ E on the time
interval of existence.

Existence of weak solutions to the viscoelastic system (2) for arbitrary
initial data is Open.

Key difficulty: to show the weak convergence of the nonlinear term EET

for suitable approximating solutions at least in the sense of distributions,
which is NOT available from the basic energy law.

In 2D, Hu-Lin 2013, existence of weak solutions provided that

u0 ∈ Lp(R2), p > 2,

‖E0‖L∞ +

∫
R2

(|E0|2 + |u0|2)(1 + |x|2)dx << 1.
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Sketch of proof
The weak solution (û, Ê) satisfies the energy inequality and the strong
solution (u,E) satisfies the energy equality

The strong solution (u,E) is regular enough to serve as the test
functions in the weak formulation

=⇒ For the differences of solutions

U = û− u and E = Ê− E,

it holds

‖U‖2
L2 + ‖E‖2

L2 + µ

∫ t

0
‖∇U‖2

L2 dτ

≤ ‖U0‖2
L2 + ‖E0‖2

L2 + C
∫ t

0
h(τ)

(
‖U‖2

L2 + ‖E‖2
L2

)
dτ,

where
h(t) = ‖∇u‖L∞ + ‖∇E‖L∞ + ‖E‖2

L∞ .

h(t) ∈ L1(0,T) =⇒ conclusion by the Gronwall lemma.
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Open problems
Decay estimate for incompressible Magnetohydrodynamic (MHD)
system with zero magnetic diffusivity

ut + u · ∇u− µ∆u +∇p = B · ∇B,
Bt −∇× (u× B) = 0,
∇ · u = ∇ · B = 0.

Remark In 2D, there exists a scalar function φ such that B = ∇⊥φ,
while for F, there exists a vector φ = (φ1, φ2) such that F = ∇⊥φ.
For both cases, the system can be converted to

ut + u · ∇u− µ∆u +∇p = −∇ · (∇φ⊗∇φ),

φt + u · ∇φ = 0,
∇ · u = 0.

Global weak solutions with finite energy to viscoelastic system in 2D and
3D
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The End

Thank You !
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