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The flow map

(X, t)

- ¥>T//Jj7<;\\;\\

RN,

@ Let O be the reference domain, 2 be the deformed domain at time ¢
with variables X and x, respectively.

» X ~ the Lagrangian coordinate system
» x ~ the Eulerian coordinate system

@ Flow map x(X,7) : Qf —

(%) = uX 0,0, 150,

x(X,0) =X

It links the two coordinate systems: Both sides describe the velocity of a

particle labeled with X at position x and time .
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The deformation tensor F

@ Let F be the Jacobian matrix of the map X — x(X, ¢) defined by

_ 0x(X,1)
)

F(X,?)

@ Push forward to the Eulerian coordinate:

F(x(X,1),t) = F(X,1)

By chain rule,
F[ + u- VxF = quF.

@ The deformation tensor F carries all the information about how the
configuration is deformed with respect to the reference configuration,
including microstructures, patterns etc.
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Kinematic transport of liquid crystal

@ d: orientation director of nematic liquid crystal molecules

@ Kinematic transport relation

Rod-like molecule d(x(X,?),t) = Fdo(X)

General ellipsoidal shapes d(x(X,1),17) = Edy(X)
where E(x(X,t),¢) satisfies

E, +u-V,E = SE + (2a — 1)AE,
A=1(Viu+ Vi) and S = 1 (V,u — V),
20— 1= ﬁ%} with r being the aspect ratio of the ellipsoids.
@ The general transport equation for d:
d,+u-Vd—Sd— (2a — 1)Ad = 0.

It includes the transport of the center of mass and the rotating/stretching
effect of the director d under the flow.
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The incompressible viscoelastic system
Consider the Cauchy problem in for R?, d = 2, 3:
w+u-Vu—pAu+Vp=V- (%}PFT) ,
V-u=0,
F, +u- VF = VuF,
u(t,x)|,=0 = up(x), F( x)|=0 = Fo(x),

@ W(F): the elastic energy functional

° ‘9%’—(:): the Piola—Kirchhoff stress tensor

° 8vg—(FF)FT: the Cauchy—Green tensor

» The latter is the change variable form of the former one (from
Lagrangian to Eulerian coordinates).

@ For simplicity, we confine ourselves to the Hookean linear elasticity

1
W(F) = SIFP.
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Some remarks

@ System (1) is an important model in complex fluids

» It presents the competition between the elastic energy and the
kinetic energy.

» The deformation tensor F carries all the kinematic transport
information of the micro-structures and configurations.

@ Equivalent to the classical Oldroyd-B model for viscoelastic fluids in the
case of infinite Weissenberg number.

@ From mathematical point of view:
a coupling of a “parabolic” system for u with a “hyperbolic” system for F.
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Well-posedness results in the literature
Existence and uniqueness of local classical solutions and global classical
solutions near-equilibrium.
(A) Incompressible case:
@ 2D: Lin-Liu-Zhang 2005 CPAM, Lei-Zhou 2005 SIMA
@ 3D: Chen-Zhang 2006 CPDE, Lei-Liu-Zhou 2008 ARMA

@ Small strain/large rotation in 2D: Lei-Liu-Zhou 2007 CMS, Lei 2010
ARMA

@ Critical space: Qian 2010 NA, Zhang-Fang 2012 SIMA
@ Initial boundary value problem: Lin-Zhang 2008 CPAM
(B) Compressible case:

@ Well-posedness: Hu-Wang 2010/2011/2012 JDE, Qian-Zhang 2010
ARMA, Qian 2011 JDE

@ Decay estimate: Hu-Wu G.C. 2013 SIMA
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Basic energy law

@ Total energy: kinetic + elastic
£(0) = 3u() 2 + 5 IFIE
2 2
@ Basic energy law
)+ vl =0,

— absence of damping mechanism in F.

@ Partial dissipation structure is the Main Difficulty in the study of global
existence of smooth solutions near equilibrium and its long-time
behavior.
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Basic properties |

Lemma (Incompressibility)
Assume that detFo = 1, then

detF(r,x) =1, fort>0, x € RY

which is equivalent to
V-u=0.

Lemma (div-curl structure)
Assume thatV - Fl = 0, then

V-Fl(t,x) =0, fort>0, xecR%
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Basic properties Il

Let I be the d x d identity matrix. Introduce the strain tensor

E—F-1L

Lemma

Assume that
VimEoij — ViEoim = EoViEoim — Eoim ViEoij,
then fort > 0, x € R?

VuEij(t,x) — VEin(2,x) = Ejj(2, x)V|Ein (2, x) — Ep(r, x) VIE;(2, x).

= V x Eis indeed a higher-order nonlinearity.
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Key to global existence near equilibrium

@ 2D: Lin-Liu-Zhang 2005 CPAM
There exists a vector ¢ = (¢1, ¢,) such that

F=V'¢= ( ~0201 —02n ) :

011 01
Find damping effect for
w=u— " (6(x) —x).

@ 3D: Lei-Liu-Zhou 2008 ARMA
For the strain tensor E = F — 1, introducing

w=—-Au+u'V-E,

which has a damping effect, then using the fact that V x E is indeed a

higher-order nonlinear term.
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The Cauchy problem

Consider
u+u-Vu—pAu+Vp=V-E+ V- (EET),
V-u=0, @)
E, +u-VE = Vu+ VuE,
u(t, x)|=o = wo(x), E(t,x)|=0 = Eo(x) = Fo(x) — 1,

with following structural assumptions on the initial data:

(A1) det(E0+]I) =1, V-.-u =0,

(A2) V-El'=0,

(A3) VmEoij — ViEoim = EoiViEoim — Eoim ViEoj-
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Main result 1: Part | - Global existence

Theorem

Suppose that d = 3 and the initial data wy, Ey € H*(R?) (k > 2 being an
integer) fulfill the assumptions (A1)—(A3).
If the initial data satisfy

ol + [[Bolle <6

for certain sufficiently small 6 > 0, then the Cauchy problem (2) admits a
unique global classical solution (u, E) such that

AVeu e L°(0, T; H=%~1el(R3)) N L2(0, T; H*~%~l2I+1(R3))
AVE e L™(0, T; H—¥~1o(R3))

for all integer j and multi-index « satisfying 2j + |«| < k. Moreover,
+oo
[u(@®)lzz + |E@) [ < 46, Vi>0, / IVAu(0)||dr < C,
0

where the constant C depends on 6.
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Main result 1: Part Il - Optimal decay in L?

Theorem (Continued)

If the initial data also satisfy uy, Eq, € L'(R?), then for the above unique global
classical solution (u, E) to (2), the following decay estimates hold for all t > 0,

@)l + |1E@)]2

<
IVu@)la + [IVE@ <

Whel’eM = ||u0||LlﬁH2 —|— ||EO||L10H2'

Moreover, if the Fourier transforms of (uy,ng) (whereny = A~'V - E) also
satisfy |io| > co, || > co for0 < [£] << 1, where ¢ > 0 satisfies ¢y ~ O(5°)
with ¢ € (0, 1), then there exists ty >> 1 such that

la(@)lz + [E@)llz = CA+0)7F, Vi,

i.e., the L* decay rate is optimal.
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Idea of proof - decomposed system
@ Let A® be the pseudo differential operator defined by
Nf =FHE1F©), seR, eg, AT=-A
@ Introduce new variables

AV -E),
A=Y (Vu - VTu),
ET —E.

n=
Q
E

@ The “decomposed systems”

u — pAu—An=g,
n,+Au=A"'V.h,

Q, — pAQ — AE = A~ (Vg — Vg) + A~'S,
E, + AQ =h’ —h,
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The decomposed system

@ The nonlinearities g and h are given by

g=—P(u-Vu) +P(V-(EE")),
h = —u- VE + VuE,

where
P=I-A"'(VaV)

is the Leray projection operator.

@ The higher-order anti-symmetric matrix S is given by

S; = Vi(ExVIE; — E;jViEik) — Vi(ExVE;i — EiViEj).
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Some remarks

@ Inspired by the decomposition in Danchin 2000 Invent. Math. for
compressible Navier—Stokes equations.
The linearized system for the density p and the “compressible part” of
the velocity c = A~!'V - u has a parabolic smoothing effect on ¢, and on p
in the low frequencies; a damping effect on p in the high frequencies.
— global existence of strong solutions near equilibrium (in critical
spaces).

@ The linearized systems (3)—(4) for (u,n) and (2, E) have a structure
similar to the linearized system for (p, ¢) of the compressible N-S
equations.

u~c, ni~p.

@ System (4) provides some extra dissipation on E, which helps us to
prove the existence of global smooth solutions near equilibrium.
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Useful estimates

Lemma
Let assumptions (A1)—(A3) be satisfied. The solution E to (2) satisfy:

Bl < C(|Inllz2 + |E[lz2[1E[l2) ,
IVEl < C(IVale + [[Elm2IVElL),
|AE: < C(IAE[ + ClE[lmx|AE]lL) .

where C is a constant that does not depend on E.

@ If ||E|| 4 is sufficiently small, then the norm of E can be controlled by the
norms of n and E.
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Global existence near equilibrium revisited

Lemma
Let (u, E) be a smooth solution to problem (2), the following inequalities hold:

1d
57 (1AulZ: + [ AE|Z) + | VAulZ
< C(lulle + [Ellwe) (JAEI: + [Vull3 + [VAu]R),

and

d 1 )
= (AQ, AE) + - || AEZ,
< c(IvVulz: +IVAu]E) + € (7 + [ElZ) (1Aul + 1AE]Z) -

The constant C is independent of the variables u, E, Q2 and E.
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Global existence near equilibrium revisited

Denote
G(1) = % (IlullZ> + IEIZ + | AulZ + [AE]Z:) + £(AQ, AE),
where 0 < k << 1. Then
G(1) = |[ulz + Ellz
and

d 1
LG+ [cl ~-C (G(t) +G? (t)) ] (IAE[Z + [ Vul7: + | VAulfZ:) <0,
Cy, C, are independent of u, E, Q and E.

@ G(0) is small = G(¢) is uniformly bounded for all ¢ > 0.
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Long-time behavior

@ Optimal decay rates for weak solutions of incompressible Navier—Stokes
equations
~ "the Fourier splitting method” due to Prof. M. Schonbek (series work in
1980’s-1990’s)

» Application to the liquid crystal system (Dai-Qing-Schonbek 2012
CPDE):
Decay for the director filed d + the Fourier splitting technique
= decay for the velocity u in L.

@ In the current case: lack of dissipation for F (or E) !
@ Basic strategy:

» Spectral analysis of the linearized problem of the decomposed
system (3) for (u,n) in terms of the decomposition of wave modes
at both lower and higher frequencies

» Duhamel’s principle + the fact of small global solution

= Decay of the nonlinear system.
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Decay of linear system

Lemma

Let (u(t),n(z)) be the solution to the linear problem

u, — pAu— An =0,
n, + Au=0.

with initial data (ug,mng) € H'(R*) N L'(R?).
(i) ForO0 < |a| <landt >0,

[

10 u(r), dgm(0) |2 < C(1+ 1)+ % ([ (wo, mo)llzs + 15 (wo, mo)z2)

(i) Assume that uy and ny satisfy |u| > co > 0, |ng| > co for0 < |€| << 1 with
co being a certain positive constant. Then for t sufficiently large,

Ceo(1+1)7F < [l(u(e),m(n) 12 < €L+ )%,

i.e., the L*-decay rates are optimal.

v
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Sketch of proof

@ Linear operator
( pA A _ —I~L|§|2 iy
B_<—A o) - A(g)_( —ler 0 )
@ Eigenvalues of A(¢)

N B N e S O SR
~4IeP & LV AP, i lel > 2.

@ Green’s function for the semigroup

2 >\+r_ ,) )\76>\+17>\ e)\_l (>\+r_ek,r)
G(1,€) = A — ( —pl€] 5= f\, S i €1 =5

L (eM'—er-") A_e M A et
_|£| )\+ A o A=A

@ Investigate the behavior of Green’s function for both low frequency and
high frequency.
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Decay of nonlinear problem 1

@ Introduce

1
H(r) = 3 (| Aulf; + [|AE]) + £(AQ, AR),

~ 5 1 1

H() = sup (1+5)F (H() + S IVulf + S IVEI2),
0<s<t 2 2

where k > 0is a sufficiently small constant such that

H(r) + HVUIIL2+ IIVEIILz~|IVUIIH1+||VE||H1

Lemma

For any t > 0, the global solution (u, E) (near equilibrium) satisfies

(@)l + NE@z < €0 +07F (ol + [Eolluess + 0FH (1))

IVa(0)llz + IVE@z < €1 +07F (I0olsnen + ol + 6H? (1)

v
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Sketch of proof

@ Consider the nonlinear system for W; = (u;,n;)" (i = 1,2,3)

W, = BW, +f;,
W, (1,x) =0 = Wi := (uio, A= (V - E)io)”,

where
fi = (gl', A_I(V . h)l')T.

@ From the Duhamel’s principle,
Wi(r) = eBWj + /Ote(ts)Bfi(s)ds.
@ Using linear decay estimates and the elementary inequality
/Ot(l +t—95)(1+s)Pds<C(1+1)77, V>0,

forg>1,8>~>0.
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Decay of nonlinear problem 2

If H() is uniformly bounded, then we can infer

Lemma

Fort > 0, the small global solution (u, E) to system (2) satisfies

3
[u(@)llez + IE@]2 < .
IVa@)le + [VE@) s < CM(1+0)75
where
M = |luo|pinee + [|Eollzinge-
Moreover, we have the L[”-decay rate

la(®)lr + [E@)|r < { CM(1 + f)_f(l‘i), p€[2,6],
CM(I—I—I)_Z’ p€[6,oo],
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Sketch of proof

@ From higher-order estimates and the fact of small global solution:

d
EH(f) + k1 H(f) < C||Vul[7..

@ By Gronwall inequality and definition of the weighted function H(r),

@ Since ¢ (the H*-bound for global solution (u, E)) is small,
H(1) < C ([[woll7i e + [ EolFirge) -

@ [P-decay rate follows from the interpolation inequality.
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Lower bound for L2-decay rate

Lemma

Suppose the initial data (ug, ng) (withng = A=V - E,) satisfy
ltio| > co, |mio] > co, for 0 <|E| << 1,

where ¢y ~ 0(6¢) with ¢ € (0,1). Then

la(@)llzz + IE@z = CL+0)7F, Viz1>> 1.

@ By Duhamel’s principle and previous decay estimates, for § << 1, it

holds
[[(u(t), n(2))]|.2

t

> CO"(141)73 —Céﬁ%(t)/(1+z—s)—%(1+s)—%ds
0

> (6" — CO)(1+1)"3

> C(1+1)75.
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Weak solutions

Definition

The pair (u, E) is a finite energy weak solution to the system (2) in (0, T) x R,
if

ue L®(0,T;LX(RY), Vue L20,T;L1*(RY), E=F—1eL>(0,T;L*(R%).

(u, E) satisfies the viscoelastic system (2) in the sense of distributions.
Moreover, the following energy inequality holds for a.e. 7 € [0, 71,

0+ / |Vu(s)|2.ds < £(0),

where

(1) = 5 (ln@Ilz + IE@IZ) . £0) =5 (lwollz: + IEollZ) -

l\)l'—‘
NI>—‘
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Main result 2: Weak-strong uniqueness

Theorem

Letuy € H*(RY) and Ey = Fy — I € H*(R?) (k > 3), satisfying the assumptions
(A1)—(A3). X

Suppose that (i, E) is a weak solution of system (2) in (0,T) x R? and (u, E)
is a strong solution emanating from the same initial data (e.g., the global
classical solutions as before). Then we have & = u and E = E on the time
interval of existence.

@ Existence of weak solutions to the viscoelastic system (2) for arbitrary
initial data is Open.

@ Key difficulty: to show the weak convergence of the nonlinear term EE”
for suitable approximating solutions at least in the sense of distributions,
which is NOT available from the basic energy law.

@ In 2D, Hu-Lin 2013, existence of weak solutions provided that
w € P(R?), p>2,

IIEo||L= + /2(|EO|2 + \u0|2)(1 + |x|2)dx << 1.
R
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Sketch of proof

@ The weak solution (a, E) satisfies the energy inequality and the strong

solution (u, E) satisfies the energy equality

@ The strong solution (u, E) is regular enough to serve as the test
functions in the weak formulation

— For the differences of solutions

y{=u—u and ¢=E-E,
it holds

t
2 + (€2 + / IV4U|.dr

t
< [lthllz + lI€ollz: +C/0 h(r) (142 + [l€lZ) dr,

where
h(t) = |Vl + [VE[ + [|E[[7-

@ Ai(t) € L'(0,T) = conclusion by the Gronwall lemma.
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Open problems

@ Decay estimate for incompressible Magnetohydrodynamic (MHD)
system with zero magnetic diffusivity

u,+u-Vu—puAu+ Vp =B VB,
B;—Vx(uxB)=0,
V-u=V -B=0.

Remark In 2D, there exists a scalar function ¢ such that B = V¢,
while for F, there exists a vector ¢ = (¢1, ¢») such that F = V1.
For both cases, the system can be converted to

u+u-Vu—pAu+Vp=-V- (Vo Vo),
¢t+u’v¢:0,
V-u=0.

@ Global weak solutions with finite energy to viscoelastic system in 2D and
3D
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The End

Thank You !
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