Initial-Boundary Value Problem of a Coupled Navier-Stokes/Q-Tensor System

Yuning Liu

Two days Workshop on LC-flows, Pavia
March 24~25, 2014
in collaboration with
Helmut Abels and Georg Dolzmann

Table of contents

(1) Introduction
(2) Existence of Weak Solutions
(3) Regularity in Time

- Linearization
- Solvability of the linearized system

4. Regularity In Space Variables (Under Construction)

Schlieren Texture

The 'Banana'-Shaped Molecule

Uniaxial and Biaxial

- In the uniaxial phase, the rod-like molecule self-align to have long-range directional order with their long axis roughly parallel.
- In the biaxial phase, in addition to orient their long axis, they also orient along a secondary axis.

Continumm Theories: ‘Vector Models’

- Ossen-Frank theory: for any unit vector field $n: \Omega \rightarrow \mathbb{S}^{2}$, the free energy is given by

$$
\begin{aligned}
\mathcal{I}_{O F}[n]= & \int_{\Omega} K_{1}(\operatorname{div} n)^{2}+K_{2}|n \cdot(\nabla \times n)|^{2}+K_{3}|n \times(\nabla \times n)|^{2} \\
& +\int_{\Omega}\left(K_{2}+K_{4}\right)\left(\operatorname{tr}(\nabla n)^{2}-(\operatorname{div} n)^{2}\right),
\end{aligned}
$$

- Ericksen's theory: for $s: \Omega \rightarrow\left[-\frac{1}{2}, 1\right]$ and $n: \Omega \rightarrow \mathbb{S}^{2}$, the free energy is defined by

$$
\mathcal{I}_{e}(s, n):=\int_{\Omega} k|\nabla s|^{2}+s^{2}|\nabla n|^{2}+\Psi(s)
$$

where $\Psi(s)$ is a potential function: positive C^{2}-function defined on $\left(-\frac{1}{2}, 1\right)$ and $\lim _{s \rightarrow 1} \Psi(s)=\lim _{s \rightarrow-\frac{1}{2}} \Psi(s)=+\infty$.
F-H.Lin, Proceeding ICM, 1990, Tokyo.

Landau-De Gennes Theory of Nematic Liquid Crystals

In the Landau-De Gennes framework, the state of a nematic liquid crystal is modeled by a symmetric, traceless 3×3 matrix (denoted by \mathbb{S}_{0}), known as the Q-tensor. A nematic liquid crystal is said to be:

- Isotropic when $Q=0$.
- uniaxial when Q has two equal non-zero eigenvalues:

$$
Q=s\left(n \otimes n-\frac{1}{3} I_{d}\right) ; \quad s \in \mathbb{R} \backslash\{0\}, \quad n \in \mathbb{S}^{2} .
$$

- biaxial when Q has three distinct eigenvalues:

$$
Q=s\left(n \otimes n-\frac{1}{3} I_{d}\right)+r\left(m \otimes m-\frac{1}{3} I_{d}\right) ; \quad s, r \in \mathbb{R} \backslash\{0\}, \quad n, m \in \mathbb{S}^{2}
$$

A. Majumdar and A. Zarnescu'2010, J.M. Ball and A. Zarnescu, 2011.

Free Energy of Nematic Liquid Crystals

Free energy of nematic liquid crystals:

$$
\mathcal{F}[Q]:=\int_{U} \frac{L}{2} \underbrace{|\nabla Q|^{2}(x)}_{\text {elastic energy density }}+\underbrace{f_{B}(Q(x))}_{\text {bulk energy density }} \mathrm{d} x .
$$

Non-singular potential f_{B} :

$$
f_{B}(Q):=\frac{1}{\epsilon}\left(a \operatorname{tr}\left(Q^{2}\right)-b \operatorname{tr}\left(Q^{3}\right)+c\left(\operatorname{tr}\left(Q^{2}\right)\right)^{2}\right) .
$$

The elastic constant is typically very small compared with the coefficients in the bulk energy.
The boundary condition:

- Strong anchoring: $\left.Q\right|_{\partial U}=s_{+}\left(n \otimes n-\frac{1}{3} I_{d}\right), \quad n \in C^{\infty}\left(\partial U ; \mathbb{S}^{2}\right)$.
- Neumann: $\left.\partial_{n} Q\right|_{\partial u}=0$.

De Gennes, P.G. '1974, A. Majumdar and A. Zarnescu'2010.

The Dynamical System

The system we shall study was proposed by Beris, A.N., Edwards, B.J.:

$$
\left\{\begin{aligned}
u_{t}+u \cdot \nabla u-\Delta u+\nabla p & =\nabla \cdot(\tau(Q)+\sigma(Q, H(Q))), \\
\nabla \cdot u & =0, \\
Q_{t}+u \cdot \nabla Q & =S(\nabla u, Q)+H(Q),
\end{aligned}\right.
$$

with the following boundary conditions

$$
\left\{\begin{array}{lll}
u=0, & (t, x) \in(0, T) \times \partial U \\
Q & =Q_{D}(x), & (t, x) \in(0, T) \times \partial U
\end{array}\right.
$$

We only consider time-independent boundary conditions.

The Tensors

$$
\begin{aligned}
& H_{\alpha \beta}=L \Delta Q_{\alpha \beta}+\frac{1}{\epsilon}\left(-a Q_{\alpha \beta}+b\left[Q_{\alpha \gamma} Q_{\gamma \beta}-\frac{\delta_{\alpha \beta}}{d} \operatorname{tr} Q^{2}\right]-c Q_{\alpha \beta} \operatorname{tr} Q^{2}\right), \\
& \tau_{\alpha \beta}=-L\left(Q_{\gamma \delta, \beta} Q_{\gamma \delta, \alpha}+\frac{\delta_{\alpha \beta}}{d} \operatorname{tr} Q^{2}\right), \\
& \quad-\xi\left(Q_{\alpha \gamma}+\frac{\delta_{\alpha \gamma}}{d}\right) H_{\gamma \beta}-\xi H_{\alpha \gamma}\left(Q_{\gamma \beta}+\frac{\delta_{\gamma \beta}}{d}\right)+2 \xi\left(Q_{\alpha \beta}+\frac{\delta_{\alpha \beta}}{d}\right) Q_{\gamma \delta} H_{\gamma \delta}, \\
& \sigma_{\alpha \beta}=Q_{\alpha \gamma} H_{\gamma \beta}-H_{\alpha \gamma} Q_{\gamma \beta}=Q_{\alpha \gamma} \Delta Q_{\gamma \beta}-\Delta Q_{\alpha \gamma} Q_{\gamma \beta}, \\
& (D u)_{\alpha \beta}=\frac{1}{2}\left(u_{\alpha, \beta}+u_{\beta, \alpha}\right), \\
& \Omega_{\alpha \beta}=\frac{1}{2}\left(u_{\alpha, \beta}-u_{\beta, \alpha}\right), \\
& S(\nabla u, Q)=(\xi D u+\Omega)\left(Q+\frac{1}{d} I_{d}\right)+\left(Q+\frac{1}{d} I_{d}\right)(\xi D u-\Omega)-2 \xi\left(Q+\frac{1}{d} I_{d}\right) \operatorname{tr}(Q \nabla u) .
\end{aligned}
$$

Relation to Ericksen-Leslie theory

In a recent work by Wang, Zhang and Zhang, preprint, the rigious derivation from Q-tensor system to Ericksen-Leslie system is accomplished by using the Hilbert expansion.
Formally, if we assume

$$
u=u_{0}+\sum_{i \geqslant 1} \epsilon u_{i}, Q=Q_{0}+\sum_{i \geqslant 1} \epsilon Q_{i}
$$

and plugin them in the Q-tensor system, by matching the order of ϵ :

- The order $O\left(\epsilon^{-1}\right)$ system implies that Q_{0} is uniaxial:

$$
\begin{equation*}
\frac{\delta f_{B}(Q)}{\delta Q}\left(Q_{0}\right) \equiv 0 \Leftrightarrow Q_{0}=s_{0}\left(d_{0} \otimes d_{0}-\frac{1}{3} I_{d}\right) \tag{1}
\end{equation*}
$$

where $\left|d_{0}\right|=1$ and $s_{0}=0$ or it is the solution of $2 c s_{0}^{2}-b s_{0}-3 a=0$. The assertion (1) is due to A.Majumdar, 2008..

- The order $O(1)$ system implies that $\left(u_{0}, d_{0}\right)$ satisfies the Ericksen-Leslie system.

The case when $\xi=0$

Without loss of generality, we shall focus on the case when $L=a=b=c=\epsilon=1$ and $\xi=0$:

$$
\begin{gathered}
u_{t}+u \cdot \nabla u-\Delta u+\nabla p=\nabla \cdot(\overbrace{\tau(Q)+\sigma(Q, H(Q))}^{\text {additional stress tensor }}), \\
\nabla \cdot u=0, \\
Q_{t}+u \cdot \nabla Q=S(\nabla u, Q)+H(Q) . \\
\left\{\begin{aligned}
& H(Q)=\Delta Q-Q+\left[Q Q-\frac{1}{d} \mathbb{I} \operatorname{tr} Q^{2}\right]-Q \operatorname{tr} Q^{2}, \\
& \tau(Q)=-\nabla Q \cdot \nabla Q-\frac{1}{d} \mathbb{I} \operatorname{tr} Q^{2}, \\
& \sigma(Q, H(Q))=Q \cdot \Delta Q-\Delta Q \cdot Q, \\
& 2 S(\nabla u, Q)=\left(\nabla u-(\nabla u)^{T}\right) Q-Q\left(\nabla u-(\nabla u)^{T}\right) .
\end{aligned}\right.
\end{gathered}
$$

Known Results

Here we list part of the analytic result for this system:
(1) M. Paicu and A. Zarnescu, 2011, The system on $\mathbb{R}^{d},|\xi| \ll 1$
(2) M. Wilkinson: singular potential, periodic boundary condition: \mathbb{T}^{d}.
(3) E. Feireisl, E.Rocca, G.Schimperna, A.Zarnescu: singular potential and non-isothermal, periodic boundary condition: \mathbb{T}^{d}.
(4) H.Abels, G.Dolzmann and Y.Liu, F. Guillén-González and M. A. Rodríguez-Bellido: initial-boundary-value problems

Table of contents

1) Introduction

2. Existence of Weak Solutions

3 Regularity in Time

- Linearization
- Solvability of the linearized system

4 Regularity In Space Variables (Under Construction)

Energy Dissipation Law

The total energy of the system is composed of two parts:

$$
E(t):=\frac{1}{2} \int_{U}|u(t, x)|^{2} \mathrm{~d} x+\mathcal{F}[Q(t)]
$$

Testing $(u,-H(Q))$ and integrating over U gives

$$
\begin{aligned}
& \frac{d}{d t} E(t)+\int_{U}|D u|^{2} \mathrm{~d} x+\int_{U}|H(Q)|^{2} \mathrm{~d} x \\
= & \underbrace{\int_{U} \nabla \cdot \sigma(Q, H(Q)) \cdot u-S(\nabla u, Q) H(Q)}_{\text {algebra structure: } \sigma(Q, H) \nabla u=S(\nabla u, Q) H} \underbrace{\int_{U} \nabla \cdot \tau(Q) \cdot u+u \cdot \nabla Q H(Q)}_{\text {vanishes by divergence-free condition }} .
\end{aligned}
$$

Integrating over $[0, t]$ gives

$$
E(t)+\int_{U_{t}}|D u(\tau, x)|^{2}+|H(\tau, x)|^{2} \mathrm{~d} x \mathrm{~d} \tau=E(0), \quad t \in[0, T]
$$

Global Weak Solutions

Theorem

For any $u_{0} \in L_{\sigma}^{2}(U)$ and $Q_{0} \in H^{1}(U)$, there exists

$$
\begin{aligned}
& u \in L^{\infty}\left(0, T ; L_{\sigma}^{2}(U)\right) \cap L^{2}\left(0, T ; H_{0, \sigma}^{1}(U)\right) \\
& Q \in L^{\infty}\left(0, T ; H^{1}(U)\right) \cap L^{2}\left(0, T ; H^{1}(U) \cap H^{2}(U)\right)
\end{aligned}
$$

satisfying the initial-boundary value problem in the sense of distribution and the energy dissipation law holds.

Similar strategy to Lin and Liu, 1995, CPAM:
(1) finite dimensional approximation which keeps the energy dissipation law.
(2) Aubin-Lions compactness.

The time derivative of (u, Q) are very 'bad':

$$
u_{t} \in L^{2}\left(0, T ; H^{-2}(\Omega)\right), \quad Q \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)
$$

Table of contents

1) Introduction

2. Existence of Weak Solutions

3 Regularity in Time

- Linearization
- Solvability of the linearized system

4 Regularity In Space Variables (Under Construction)

Main Result

Theorem (Differentiability in time)

For any $u_{0} \in H_{0, \sigma}^{1}\left(U ; \mathbb{R}^{3}\right)$ and $Q_{0} \in H^{2}\left(U ; \mathbb{S}_{0}\right)$ satisfying the 'compatibility condition', there exists $T>0$ such that there is a unique solution

$$
\begin{aligned}
& u \in H^{2}\left(0, T ; V^{\prime}(U)\right) \cap H^{1}\left(0, T ; H_{0, \sigma}^{1}(U)\right), \\
& Q \in H^{2}\left(0, T ; L^{2}(U)\right) \cap H^{1}\left(0, T ; H^{2}(U)\right)
\end{aligned}
$$

to the non-homogeneous initial-boundary value problem (in the sense of distribution).

Here and V^{\prime} is the dual space of $H_{0, \sigma}^{1}(U)$. Compared with the existence of global weak solutions

$$
\begin{aligned}
& u \in L^{\infty}\left(0, T ; L_{\sigma}^{2}(U)\right) \cap L^{2}\left(0, T ; H_{0, \sigma}^{1}(U)\right) \\
& Q \in L^{\infty}\left(0, T ; H^{1}(U)\right) \cap L^{2}\left(0, T ; H^{1}(U) \cap H^{2}(U)\right)
\end{aligned}
$$

the regularity in time increases.

Linearization around an initial data

Let Q_{0} be the initial data satisfying some compatibility condition which shall be seen later. We then linearize the nonlinear system around Q_{0} by introducing the following linear operators:

$$
\begin{aligned}
& \mathcal{S}\left(Q_{0}\right)\binom{u}{Q}=\binom{P_{\sigma} \Delta u+P_{\sigma} \nabla \cdot\left(Q_{0} \Delta Q-\Delta Q Q_{0}\right)}{\Delta Q+\frac{1}{2}\left(\nabla u-(\nabla u)^{T}\right) Q_{0}-\frac{1}{2} Q_{0}\left(\nabla u-(\nabla u)^{T}\right)}, \\
& \mathcal{L}\left(Q_{0}\right)\binom{u}{Q}=\binom{u_{t}}{Q_{t}}-\mathcal{S}\left(Q_{0}\right)\binom{u}{Q} .
\end{aligned}
$$

$P_{\sigma}: H^{-1}(U)^{3} \rightarrow V^{\prime}$ is the generalized Leray-Projector:
$P_{\sigma} f:=\left.f\right|_{V(U)}, \quad \forall f \in H^{-1}(U)^{3}$.

Nonlinear Terms

Now we define the nonlinear operator \mathcal{N} by

$$
\mathcal{N}\left(Q_{0}\right)\binom{u}{Q}=\binom{P_{\sigma}\left[\nabla \cdot\left(\tau(Q)+\sigma\left(Q-Q_{0}, \Delta Q\right)-u \otimes u\right)\right]}{-u \cdot \nabla Q-S\left(\nabla u, Q-Q_{0}\right)-L(Q)} .
$$

Then we can write the nonlinear system by

$$
\binom{u_{t}}{Q_{t}}=\mathcal{S}\left(Q_{0}\right)\binom{u}{Q}+\mathcal{N}\left(Q_{0}\right)\binom{u}{Q}
$$

Initial Data

Compatibility conditions:

$$
\mathcal{S}\left(Q_{0}\right)\binom{u_{0}}{Q_{0}}+\mathcal{N}\left(Q_{0}\right)\binom{u_{0}}{Q_{0}}:=\mathcal{E}\binom{u_{0}}{Q_{0}}
$$

The functional space for the initial date $\left(u_{0}, Q_{0}\right)$:

$$
Z:=\left\{\left(u_{0}, Q_{0}\right) \in H_{0, \sigma}^{1} \times H^{2}: \mathcal{E}\binom{u_{0}}{Q_{0}} \in L_{\sigma}^{2} \times H_{0}^{1},\left.Q_{0}\right|_{\partial u}=Q_{D}(x)\right\}
$$

Note that the phase space defined above is non-empty. For instance, we can choose $u_{0} \in H^{2}(U) \cap H_{0, \sigma}^{1}(U)$ and then choose $Q_{0} \in H^{3}(U)$ by solving the following elliptic system on U along with boundary condition $\left.Q_{0}\right|_{\partial U}=Q_{D}(x)$:

$$
u_{0} \cdot \nabla Q_{0}+S\left(\nabla u_{0}, Q_{0}\right)+\underbrace{\Delta Q_{0}+L\left(Q_{0}\right)}_{H\left(Q_{0}\right)}=h, \forall h \in H_{0}^{1}\left(\Omega ; \mathbb{S}_{0}\right) .
$$

Functional Spaces

Lemma 1.

$\mathcal{L}\left(Q_{0}\right): X_{0} \rightarrow Y_{0}$ is a bounded linear operator

$$
\begin{aligned}
X_{u} & =H^{2}\left(0, T ; V^{\prime}(U)\right) \cap H^{1}(0, T ; V(U)) \\
X_{Q} & =H^{2}\left(0, T ; L^{2}(U)\right) \cap H^{1}\left(0, T ; H^{2}(U)\right) \\
X_{0} & =\left\{(u, Q) \in X_{u} \times X_{Q}:\left.Q\right|_{\partial U}=0,\left.(u, Q)\right|_{t=0}=(0,0)\right\} \\
Y_{u} & =H^{1}\left(0, T ; V^{\prime}(U)\right), \quad Y_{Q}=H^{1}\left(0, T ; L^{2}\left(U ; \mathbb{S}_{0}\right)\right) \\
Y_{0} & =\left\{(f, g) \in Y_{u} \times Y_{Q}:\left.\binom{f}{g}\right|_{t=0} \in L_{\sigma}^{2}(U) \times H_{0}^{1}\left(U ; \mathbb{S}_{0}\right)\right\},
\end{aligned}
$$

and Y_{0} is equipped with the norm

$$
\|(f, g)\|_{Y_{0}}:=\|(f, g)\|_{Y_{u} \times Y_{Q}}+\left\|\left.(f, g)\right|_{t=0}\right\|_{L_{\sigma}^{2}(U) \times H^{1}(U)} .
$$

The invertibility of the linearized operator

The following result establishes the solvability of the operator equation:

$$
\mathcal{L}\left(Q_{0}\right)\binom{u_{h}}{Q_{h}}=\binom{f}{g} .
$$

Lemma 2.

For every $(f, g) \in Y_{0}$, the above operator equation has a unique solution $\left(u_{h}, Q_{h}\right) \in X_{0}$ satisfying

$$
\left\|\left(u_{h}, Q_{h}\right)\right\|_{x_{0}} \leqslant C_{\mathcal{L}}\left(Q_{0}\right)\|(f, g)\|_{\gamma_{0}} .
$$

Nonlinear terms I

Seeking the solution amounts to looking for $(u, Q)=\left(u_{h}, Q_{h}\right)+\left(u_{0}, Q_{0}\right)$ satisfying:

$$
\mathcal{L}\left(Q_{0}\right)\binom{u_{h}+u_{0}}{Q_{h}+Q_{0}}=\mathcal{N}\left(Q_{0}\right)\binom{u_{h}+u_{0}}{Q_{h}+Q_{0}}, \quad\binom{u_{h}}{Q_{h}} \in X_{0}
$$

or equivalently (\mathcal{L} is linear):

$$
\mathcal{L}\left(Q_{0}\right)\binom{u_{h}}{Q_{h}}=\mathcal{N}\left(Q_{0}\right)\binom{u_{h}+u_{0}}{Q_{h}+Q_{0}}-\mathcal{L}\left(Q_{0}\right)\binom{u_{0}}{Q_{0}} \in Y_{0}, \quad\binom{u_{h}}{Q_{h}} \in X_{0}
$$

we define a new nonlinear operator by

$$
\mathcal{N}_{0}\left(Q_{0}\right)\binom{u_{h}}{Q_{h}}=\mathcal{N}\left(Q_{0}\right)\binom{u_{h}+u_{0}}{Q_{h}+Q_{0}}-\mathcal{L}\left(Q_{0}\right)\binom{u_{0}}{Q_{0}} \in Y_{0}
$$

Nonlinear Terms II

Lemma 3.

The operator $\mathcal{N}_{0}\left(Q_{0}\right)$ maps X_{0} to Y_{0} :
$\left\|\mathcal{N}_{0}\left(Q_{0}\right)\left(u_{1}, Q_{1}\right)-\mathcal{N}_{0}\left(Q_{0}\right)\left(u_{2}, Q_{2}\right)\right\|_{\gamma_{0}} \leqslant C_{\mathcal{N}}\left(T, R, u_{0}, Q_{0}\right)\left\|\left(u_{1}-u_{2}, Q_{1}-Q_{2}\right)\right\|_{x_{0}}$ for all $\left(u_{i}, Q_{i}\right) \in \mathcal{B}_{R}:=\left\{(u, Q) \in X_{0} ;\|(u, Q)\|_{x_{0}} \leqslant R\right\}, i=1,2$. Moreover, for each $R>0, \lim _{T \rightarrow 0} C_{\mathcal{N}}\left(T, R, u_{0}, Q_{0}\right)=0$.

Proof of Main Theorem:
Show that the nonlinear mapping has a fixed point:

$$
\mathcal{T}\left(Q_{0}\right):=\mathcal{L}^{-1} \mathcal{N}_{0}: X_{0} \rightarrow X_{0}
$$

For any $\left(u_{i}, Q_{i}\right) \in \mathcal{B}_{R}$:

$$
\begin{aligned}
& \left\|\mathcal{L}^{-1}\left(Q_{0}\right) \mathcal{N}_{0}\left(Q_{0}\right)\binom{u_{1}}{Q_{1}}-\mathcal{L}^{-1}\left(Q_{0}\right) \mathcal{N}_{0}\left(Q_{0}\right)\binom{u_{2}}{Q_{2}}\right\|_{x_{0}} \\
\leqslant & C_{\mathcal{L}^{-1}}\left(Q_{0}\right)\left\|\mathcal{N}_{0}\left(Q_{0}\right)\left(u_{1}, Q_{1}\right)-\mathcal{N}_{0}\left(Q_{0}\right)\left(u_{2}, Q_{2}\right)\right\| y_{0} \\
\leqslant & C_{\mathcal{L}^{-1}}\left(Q_{0}\right) C_{\mathcal{N}}\left(T, R, u_{0}, Q_{0}\right)\left\|\left(u_{1}-u_{2}, Q_{1}-Q_{2}\right)\right\|_{x_{0}}
\end{aligned}
$$

Table of contents

1) Introduction

2. Existence of Weak Solutions
(3) Regularity in Time

- Solvability of the linearized system

4. Regularity In Space Variables (Under Construction)

The Linearized Operator: I

To prove the invertibility of the linearized operator amounts to establishing the wellposedness of the following system:

$$
\left\{\begin{array}{l}
u_{t}-\Delta u+\nabla p-\nabla \cdot \sigma\left(Q_{0}, \Delta Q\right)=f \\
Q_{t}-\Delta Q-S\left(\nabla u, Q_{0}\right)=g \\
u=0, x \in \partial U \tag{2}\\
Q=0, x \in \partial U \\
\left.(u, Q)\right|_{t=0}=(0,0)
\end{array}\right.
$$

with $(f, g) \in Y_{0}$ and $(u, Q) \in X_{0}$.

Two Observations

- Testing the equations by u and ΔQ respectively will give an energy dissipation law, which implies the global weak solutions.
- Differentiating (2) in time and testing by $\left(u_{t}, \Delta Q_{t}\right)$ will give the a priori estimate for the time derivatives.

The Linearized Operator: II

The equations for $\left(u_{t}, Q_{t}\right)$ is the following:

$$
\left\{\begin{array}{l}
\left(u_{t}\right)_{t}-\Delta u_{t}+\nabla p_{t}-\nabla \cdot \sigma\left(Q_{0}, \Delta Q_{t}\right)=f_{t} \\
\left(Q_{t}\right)_{t}-\Delta Q_{t}-S\left(\nabla u_{t}, Q_{0}\right)=g_{t} \\
u_{t}=0, x \in \partial U \\
Q_{t}=0, x \in \partial U
\end{array}\right.
$$

The initial date for the above system is given by the linearized system at $t=0$:

$$
\left\{\begin{array}{l}
u_{t}-\overbrace{P_{\sigma}\left[\Delta u+\nabla p-\nabla \cdot \sigma\left(Q_{0}, \Delta Q\right)\right.}^{\text {vanishes at } t=0}=P_{\sigma} f \\
Q_{t} \underbrace{-\Delta Q-S\left(\nabla u, Q_{0}\right)}_{\text {vanishes at } t=0}=g
\end{array}\right.
$$

The Linearized Operator: III

The a priori estimate for $\left(u_{t}, Q_{t}\right)$ are:

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\left\|u_{t}\right\|_{L^{2}(U)}^{2}+\int_{U}\left|D u_{t}\right|^{2}+\left\langle\sigma\left(Q_{0}, \Delta Q_{t}\right), \nabla u_{t}\right\rangle=\left\langle f_{t}, \partial_{t} u\right\rangle, \\
\frac{1}{2} \frac{d}{d t}\left\|\nabla Q_{t}\right\|_{L^{2}(U)}^{2}+\int_{U}\left|\Delta Q_{t}\right|^{2}+\left\langle S\left(\nabla u_{t}, Q_{0}\right), \Delta Q_{t}\right\rangle=\int_{U} g_{t} \Delta Q_{t},
\end{gathered}
$$

Adding up the above estimates and estimating the lower-order terms yields:

$$
\begin{aligned}
& \sup _{t \in[0, T]}\left(\left\|u_{t}\right\|_{L^{2}(U)}^{2}+\left\|\nabla Q_{t}\right\|_{L^{2}(U)}^{2}\right)+\left\|\nabla u_{t}\right\|_{L^{2}\left(U_{T}\right)}^{2}+\left\|\Delta Q_{t}\right\|_{L^{2}\left(U_{T}\right)}^{2} \\
& \leqslant C\left(\xi, Q_{0}\right)\left(\left\|f_{t}\right\|_{L^{2}\left(H^{-1}\right)}^{2}+\left\|g_{t}\right\|_{L^{2}\left(L^{2}\right)}^{2}\right)+\underbrace{\left\|u_{t}(0)\right\|_{L^{2}(U)}^{2}+\left\|\nabla Q_{t}(0)\right\|_{L^{2}(U)}^{2}}_{\mathcal{R}}
\end{aligned}
$$

The Linearized Operator: IV

Since the initial date is zero, we can estimate \mathcal{R} by

$$
\mathcal{R} \lesssim\left\|\left.\left(u_{t}, Q_{t}\right)\right|_{t=0}\right\|_{L_{\sigma}^{2}(U) \times H^{1}(U)} \lesssim \underbrace{\left\|\left.(f, g)\right|_{t=0}\right\|_{L_{\delta}^{2}(U) \times H^{1}(U)}}_{\text {compatibility conditions }} \leqslant\|(f, g)\|_{\gamma_{0}}
$$

As a result:

$$
\begin{aligned}
& \sup _{t \in[0, T]}\left(\left\|u_{t}\right\|_{L^{2}(U)}^{2}+\left\|\nabla Q_{t}\right\|_{L^{2}(U)}^{2}\right)+\left\|\nabla u_{t}\right\|_{L^{2}\left(U_{T}\right)}^{2}+\left\|\Delta Q_{t}\right\|_{L^{2}\left(U_{T}\right)}^{2} \\
& \leqslant C\left(\xi, Q_{0}\right)\|(f, g)\|_{Y_{0}} .
\end{aligned}
$$

Abstract approach: J.Wloka, Partial differential equations, 1987.

Table of contents

1 Introduction

2. Existence of Weak Solutions

(3) Regularity in Time

- Linearization
- Solvability of the linearized system

4. Regularity In Space Variables (Under Construction)

From Dynamical System to the Stationary System

Our previous time-regularity motivates us to consider, for almost every $t \in[0, T]$, the regularity problem of the following nonlinear elliptic system on Ω

$$
\left\{\begin{align*}
u \cdot \nabla u-\Delta u+\nabla p & =\nabla \cdot(\tau(Q)+\sigma(Q, H(Q)))+f \tag{3}\\
\nabla \cdot u & =0 \\
u \cdot \nabla Q & =S(\nabla u, Q)+H(Q)+g
\end{align*}\right.
$$

with the following boundary conditions

$$
\left\{\begin{align*}
u & =0, & & x \in \partial U \tag{4}\\
Q & =Q_{D}(x), & & x \in \partial U
\end{align*}\right.
$$

where $(u, Q) \in H_{0, \sigma}^{1}(\Omega) \times H^{2}\left(\Omega ; \mathbb{S}_{0}\right)$ is a ' weak' solution to (3) and (4) for almost every $t \in[0, T]$ and $(f, g) \in H_{\sigma}^{1}(\Omega) \times H^{2}\left(\Omega ; \mathbb{S}_{0}\right)$.

System in Two Dimension: I

In 2-d, we still assume that $Q: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{S}_{0}$ and $u: \Omega \rightarrow \mathbb{R}^{2}$:

$$
\left\{\begin{align*}
u \cdot \nabla u-\Delta u+\nabla p & =\nabla \cdot(\tau(\widetilde{Q})+\sigma(\widetilde{Q}, H(\widetilde{Q})))+f, \tag{5}\\
\nabla \cdot u & =0, \\
u \cdot \nabla Q & =S(\widehat{\nabla u}, \hat{Q})+H(Q)+g,
\end{align*}\right.
$$

where $\hat{u}=\left(u_{1}, u_{2}, 0\right)$ and for any $d \times d$-matrix $M(d \geqslant 2)$, we define

$$
\hat{M}=\left(\begin{array}{ccc}
M_{11} & M_{12} & 0 \\
M_{21} & M_{22} & 0 \\
0 & 0 & 0
\end{array}\right), \quad \widetilde{M}=\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right)
$$

In this case, we can see from the last equations of (5) that, the equations for Q_{13}, Q_{23}, Q_{33} are essentially decoupled and can be solved independently. Consequently, the L^{p}-estimate for linear elliptic equations implies that

$$
Q_{13}, Q_{23}, Q_{33} \in W^{3, \frac{3}{2}}(\Omega)
$$

System in Two Dimension: II

It remains to solve the following system:

$$
\left\{\begin{aligned}
u \cdot \nabla u-\Delta u+\nabla p & =\nabla \cdot \sigma(\widetilde{Q}, H(\widetilde{Q}))+f+\nabla \cdot \tau(\widetilde{Q}), \\
\nabla \cdot u & =0, \\
u \cdot \nabla \widetilde{Q} & =S(\nabla u, \widetilde{Q})+\Delta \widetilde{Q}+L(Q)+\widetilde{g},
\end{aligned}\right.
$$

In this case, we have the following cancellation law

$$
S\left(\nabla u, \widetilde{Q_{1}}\right): \widetilde{Q_{2}}+\sigma\left(\widetilde{Q_{1}}, \widetilde{Q_{2}}\right): \nabla u=0
$$

As a result, the time-regularity results that we obtained previously are also valid for the 2-d system.

Elimination of the Highest Order Terms

Now we perform the following elimination process:

$$
u \cdot \nabla u-\Delta u+\nabla p=\nabla \cdot \tau(\widetilde{Q})+\nabla \cdot \sigma(\widetilde{Q}, \underbrace{u \cdot \nabla \widetilde{Q}-S(\nabla u, \widetilde{Q})-\widetilde{g}}_{=H(\widetilde{Q})})+f
$$

Since σ-tensor is bilinear

$$
\begin{aligned}
& \sigma(\widetilde{Q}, u \cdot \nabla \widetilde{Q}-S(\nabla u, \widetilde{Q})-\widetilde{g}) \\
= & -\sigma(\widetilde{Q}, S(\nabla u, \widetilde{Q}))+\underbrace{\sigma(\widetilde{Q}, u \cdot \nabla \widetilde{Q})-\sigma(\widetilde{Q}, \widetilde{g})}_{\text {lower order terms }}
\end{aligned}
$$

A New System

The above step leads to the following system about u :

$$
\begin{equation*}
\operatorname{div} \sigma(\widetilde{Q}, S(\nabla u, \widetilde{Q}))-\Delta u+\nabla p=\widetilde{f} \in L^{\frac{3}{2}}(\Omega) \tag{6}
\end{equation*}
$$

Direct computation shows that

$$
\sigma(\widetilde{Q}, S(\nabla u, \widetilde{Q}))=\omega\left(2 Q_{12}^{2}+\frac{1}{2}\left(Q_{22}-Q_{11}\right)^{2}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

where ω denotes the vorticity (scalar) $\omega:=u_{1,2}-u_{2,1}$. Consequently, we can write (6) by

$$
\left(\begin{array}{ccc}
-\Delta-\Theta \partial_{2}^{2} & \Theta \partial_{1} \partial_{2} & \partial_{1} \\
\Theta \partial_{1} \partial_{2} & -\Theta \partial_{1}^{2}-\Delta & \partial_{2} \\
-\partial_{1} & -\partial_{2} & 0
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
p
\end{array}\right)=\left(\begin{array}{c}
\mathscr{F}_{1} \\
\mathscr{F}_{2} \\
0
\end{array}\right)
$$

where $\Theta(x, t)=2 Q_{12}^{2}+\frac{1}{2}\left(Q_{22}-Q_{11}\right)^{2}$, which is non-negative.

Strong-Elliptic System

One can easily obtain the symbol (of its leading 2×2 sub-matrix) and calculate its determinant :

$$
\operatorname{det}\left(\begin{array}{cc}
|\xi|^{2}+q \xi_{2}^{2} & -q \xi_{1} \xi_{2} \\
-q \xi_{1} \xi_{2} & q \xi_{1}^{2}+|\xi|^{2}
\end{array}\right)=(q+1)|\xi|^{4}
$$

and this shows that the above operator is strong-elliptic.
Questions: Does the weak solution $u \in H_{0, \sigma}^{1}(\Omega)$ of the 2-d stationary Beris-Edwards system belongs to $W^{2, \frac{3}{2}}(\Omega)$ such that one can get $Q \in W^{3, \frac{3}{2}}(\Omega)$ through a 'bootstrap' arguments?

Proof of $W^{2, \frac{3}{2}}$-Regularity for u

I shall end my talk by proving the $W^{2, \frac{3}{2}}$ regularity of the following system

$$
\left(\begin{array}{ccc}
-\Delta-\Theta \partial_{2}^{2} & \Theta \partial_{1} \partial_{2} & \partial_{1} \\
\Theta \partial_{1} \partial_{2} & -\Theta \partial_{1}^{2}-\Delta & \partial_{2} \\
-\partial_{1} & -\partial_{2} & 0
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
p
\end{array}\right)=\left(\begin{array}{c}
\mathfrak{F}_{1} \\
\tilde{c}_{2} \\
0
\end{array}\right)
$$

We shall mollify Θ and \widetilde{f} in the above system by the standard mollifier operator and denote the corresponding solutions by $\left(u^{\epsilon}, p^{\epsilon}\right)$:

$$
\left(\begin{array}{ccc}
-\Delta-\Theta_{\epsilon} \partial_{2}^{2} & \Theta_{\epsilon} \partial_{1} \partial_{2} & \partial_{1} \tag{7}\\
\Theta_{\epsilon} \partial_{1} \partial_{2} & -\Theta_{\epsilon} \partial_{1}^{2}-\Delta & \partial_{2} \\
-\partial_{1} & -\partial_{2} & 0
\end{array}\right)\left(\begin{array}{l}
u_{1}^{\epsilon} \\
u_{2}^{\epsilon} \\
p
\end{array}\right)=\left(\begin{array}{c}
\tilde{f}_{1}^{\epsilon} \\
\tilde{f}_{2}^{\epsilon} \\
0
\end{array}\right)
$$

(1) System (7) has a solution $\left(u^{\epsilon}, p^{\epsilon}\right) \in H^{2}(\Omega) \times \dot{H}^{1}(\Omega)$. See 'Constantin and Foias, Navier-Stokes Equations, Chapter 3'.
(2) System (7) is elliptic in the sense of Agmon, Douglis and Nirenberg:

$$
\left\|u^{\epsilon}\right\|_{W^{2}, p(\Omega)}+\left\|\nabla p^{\epsilon}\right\|_{L \rho}(\Omega) \leqslant C\left\|\mid \tilde{f}^{\epsilon}\right\|_{L^{p}(\Omega)} \leqslant C\|\widetilde{f}\|_{L^{\rho}(\Omega)}
$$

where $p=\frac{3}{2}$ and C depends on $\left\|\Theta_{\epsilon}\right\|_{C(\bar{\Omega})}$ and thus on
$\Theta \in H^{2}(\Omega) \hookrightarrow C(\bar{\Omega})$ but not ϵ.
(3) Pass to the limit $\epsilon \rightarrow 0$ and use weak compactness.

Future Works

Future Works

- What is the situation for $\xi \neq 0$?
- What about $d=3$?

Thank you for your attention!

