Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions t the heat equation

Characterizatio of the initial datum Definitions Results

Linear Parl and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for compressible Decay characterization of solutions to dissipative systems

César J. Niche¹ and María E. Schonbek²

¹Depto. Mat. Aplicada. UFRJ, Rio de Janeiro - Brazil

²Math. Department. UC Santa Cruz - USA

Pavia March 2014

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions t the heat equation

Characterizatio of the initial datum Definitions Results

Linear Parl and decay Linear Part Decay

Applications

equations Approximation for

1 Introduction

- Navier-Stokes
- Navier-Stokes: decay questions
- Decay of solutions to the heat equation

2 Characterization of the initial datum

- Definitions
- Results

3 Linear Part and decay

- Linear Part
- Decay

4 Applications

- Quasi-Geostrophic equations
- Approximation for compressible Navier-Stokes
- Comments

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction

Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostroph

Approximation for compressible

1 Introduction

- Navier-Stokes
- Navier-Stokes: decay questions
- Decay of solutions to the heat equation

2 Characterization of the initial datum

- Definitions
- Results

Linear Part and decay

- Linear Part
- Decay

Applications

- Quasi-Geostrophic equations
- Approximation for compressible Navier-Stokes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Comments

Navier-Stokes equations

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes

Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterizatio of the initial datum Definitions Results

Linear Parl and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for compressible

Dissipation

We study dissipative fluid equations such as Navier-Stokes

$$\partial_t u + (u \cdot \nabla) u = -\nabla p + \Delta u$$

 $\nabla \cdot u = 0$
 $u_0(x) = u(x, 0).$

u = velocity of homogeneous incompressible fluid in \mathbb{R}^3 $u_0 \in L^2$, weak solutions exist (Leray 34).

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction

Navier-Stokes

decay questions Decay of solutions t the heat equation

Characterizatio of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for Suppose *u* regular, multiply NS-equation by u + integration \Rightarrow

$$\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^3} |u(x,t)|^2 \, dx = -\int_{\mathbb{R}^3} |\nabla u(x,t)|^2 \, dx < 0.$$

• Original question (Leray, Kato): How does the L²-energy decay for weak solutions..

Answer1: (Masuda '84): if $u_0 \in L^2$, \Rightarrow

 $|u(t)||_{L^2} \xrightarrow{t \to \infty} 0.$

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction

Navier-Stokes: Navier-Stokes:

decay questions Decay of solutions the heat equation

Characterizatic of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for Suppose *u* regular, multiply NS-equation by u + integration \Rightarrow

$$\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^3} |u(x,t)|^2 \, dx = -\int_{\mathbb{R}^3} |\nabla u(x,t)|^2 \, dx < 0.$$

■ *Original question (Leray, Kato):* How does the *L*²-energy decay for weak solutions..

Answer1: (Masuda '84): if $u_0 \in L^2$, \Rightarrow

$$\|u(t)\|_{L^2} \xrightarrow{t\to\infty} 0.$$

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction

Navier-Stokes Navier-Stokes: decay questions

Decay of solutions the heat equation

Characterizatio of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for Suppose *u* regular, multiply NS-equation by u + integration \Rightarrow

$$\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^3} |u(x,t)|^2 \, dx = -\int_{\mathbb{R}^3} |\nabla u(x,t)|^2 \, dx < 0.$$

- *Original question (Leray, Kato):* How does the *L*²-energy decay for weak solutions..
- Answer1: (Masuda '84): if $u_0 \in L^2$, \Rightarrow

$$|u(t)||_{L^2} \xrightarrow{t \to \infty} 0.$$

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction

Navier-Stokes

decay questions Decay of solutions t the heat equation

Characterizatic of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

More decay results

• (M.E. S. '85-86) If $u_0 \in L^1 \cap L^2$, \Rightarrow

$$||u(t)||_{L^2} \le C(1+t)^{-\frac{3}{4}}.$$

(M.E. S '86) Decay without a rate : given $r, T, \epsilon > 0, \exists u_0$, with $||u_0||_{L^2} = r$ satisfying

 $\frac{\|u(T)\|_{L^2}}{\|u_0\|_{L^2}} \ge 1 - \epsilon.$

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction

Navier-Stokes

decay questions Decay of solutions the heat equation

Characterizatic of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

More decay results

• (M.E. S. '85-86) If
$$u_0 \in L^1 \cap L^2$$
, \Rightarrow

$$||u(t)||_{L^2} \le C(1+t)^{-\frac{3}{4}}.$$

• (M.E. S '86) Decay without a rate : given $r, T, \epsilon > 0, \exists u_0$, with $||u_0||_{L^2} = r$ satisfying

$$\frac{\|u(T)\|_{L^2}}{\|u_0\|_{L^2}} \ge 1 - \epsilon.$$

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction

Navier-Stokes Navier-Stokes: decay questions

Decay of solutions to the heat equation

Characterizatic of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for Wiegner '87) If ||e^{tΔ}u₀||_{L²} ≤ C(1 + t)^{-1/2}α₀, ⇒
 ||u(t)||_{L²} ≤ C(1 + t)^{-1/2}min{α₀, 5/2}.
 (M.E. Schonbek y Wiegner '96) If ||e^{tΔ}u₀||_{L²} ≤ C(1 + t)^{-μ} + more hypothesis and m ∈ N

 $|D^m u(t)||_{L^2} \le C(1+t)^{-(\frac{1}{2}m+\mu)}.$

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction

Navier-Stokes: Navier-Stokes: decay questions

Decay of solutions to the heat equation

Characterizatio of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

(Wiegner '87) If
$$||e^{t\Delta}u_0||_{L^2} \le C(1+t)^{-\frac{1}{2}\alpha_0}$$
, \Rightarrow
 $||u(t)||_{L^2} \le C(1+t)^{-\frac{1}{2}\min\{\alpha_0,\frac{5}{2}\}}$.
(M.E. Schonbek y Wiegner '96) If $||e^{t\Delta}u_0||_{L^2} \le C(1+t)^{-\mu}$

■ (M.E. Schonbek y Wiegner '96) If $||e^{t\Delta}u_0||_{L^2} \le C(1+t)^{-\mu}$ + more hypothesis and $m \in \mathbb{N}$

$$|D^m u(t)||_{L^2} \le C(1+t)^{-\left(\frac{1}{2}m+\mu\right)}.$$

æ.

Ideas for the proof

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction

Navier-Stokes Navier-Stokes: decay questions

Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for "Behavior of solutions for large time is determined by low frequencies of the solutions".

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Ideas for the proof

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introductior

Navier-Stokes Navier-Stokes: decay questions

Decay of solutions to the heat equation

Characterizatior of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for "Behavior of solutions for large time is determined by low frequencies of the solutions".

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Use a time depending filter to study the low frequencies.

Ideas for the proof

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction

Navier-Stokes Navier-Stokes: decay questions

Decay of solutions t the heat equation

Characterizatio of the initial datum Definitions Results

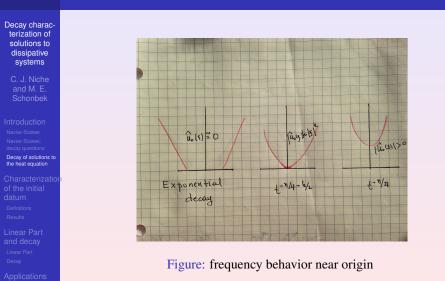
Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for "Behavior of solutions for large time is determined by low frequencies of the solutions".

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Use a time depending filter to study the low frequencies.
- This is the Fourier Splitting method (S '80s).

L^2 decay and frequencies at origin



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Heat equation

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction

Navier-Stokes Navier-Stokes: decay questions Decay of solutions to

the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

Heat equation in \mathbb{R}^n

$$u_t - \Delta u = 0$$

$$u_0(x) = u(x, 0),$$

well known solution

$$u(x,t) = G_t * u_0(x) = \frac{1}{(4\pi t)^{\frac{n}{2}}} e^{-\frac{|x|^2}{4t}} * u_0(x).$$

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへで

Heat equation: exponential decay

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for • Let $u_0 \in L^2(\mathbb{R}^n)$ and $\widehat{u_0}(\xi) = 0$, when $|\xi| < \delta$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Heat equation: exponential decay

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to

the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

Let
$$u_0 \in L^2(\mathbb{R}^n)$$
 and $\widehat{u}_0(\xi) = 0$, when $|\xi| < \delta$.
 \Rightarrow

$$\begin{aligned} \|\widehat{u}(t)\|_{L^{2}}^{2} &= \int_{|\xi| > \delta} e^{-8\pi |\xi|^{2} t} |\widehat{u}_{0}(\xi)|^{2} d\xi \\ &= C e^{-8\pi \delta^{2} t}. \end{aligned}$$

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへで

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterizati of the initial datum Definitions Results

Linear Parl and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

Recall

$$\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^n}|u(x,t)|^2\,dx=-\int_{\mathbb{R}^n}|\nabla u(x,t)|^2\,dx<0,$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

if $\|\nabla u(t)\|_{L^2} \ll 1 \Rightarrow$ decay rate becomes slower with smaller L^2 gradients.

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for • Let $\mathcal{B} = \{v : \|v\|_2 = 1\}.$

Frequencies and L^2 norms of gradients

 $\widehat{u_0}(\xi) = \left(\frac{2}{\lambda}\right)^{\frac{3}{2}} e^{-\frac{2\pi}{\lambda^2}|\xi|^2} \qquad ||\nabla u_0^\lambda||_{L^2} = \pi\lambda ||\nabla u_0||_{L^2}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

Let
$$\mathcal{B} = \{v : \|v\|_2 = 1\}.$$

Let $u_0^{\lambda}(x) = \lambda^{\frac{n}{2}} e^{-\pi \frac{|\lambda x|^2}{2}}$, then $u_0^{\lambda}(x) \in \mathcal{B}$,

A B > A B > A B >

æ

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

Let
$$\mathcal{B} = \{v : ||v||_2 = 1\}.$$

Let $u_0^{\lambda}(x) = \lambda^{\frac{n}{2}} e^{-\pi \frac{|\lambda x|^2}{2}}$, then $u_0^{\lambda}(x) \in \mathcal{B}$,
Frequencies and L^2 norms of gradients

$$\widehat{u_0^{\lambda}}(\xi) = \left(\frac{2}{\lambda}\right)^{\frac{n}{2}} e^{-\frac{2\pi}{\lambda^2}|\xi|^2} \qquad \|\nabla u_0^{\lambda}\|_{L^2} = \pi\lambda \|\nabla u_0\|_{L^2}$$

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへで

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions

Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for compressible ■ For some fixed t > 0 decay for solutions with data u₀^λ ∈ B will not be uniform :

$$\frac{\|\widehat{u^{\lambda}}(t)\|_{L^2}^2}{\|\widehat{u^{\lambda}_0}\|_{L^2}^2} = \frac{1}{1+4\lambda^2 t} \xrightarrow{\lambda \to 0} 1.$$

There exist solution to the heat equation with data in $L^2(\mathbb{R}^n)$ decaying arbitrarily slowly.

Given $r,T,\epsilon>0 \;\Rightarrow\; \exists u_0$ with $\|u_0\|_{L^2}=r$ so that

 $\frac{\|\boldsymbol{\mu}(T)\|_{L^2}}{\|\boldsymbol{\mu}_0\|_{L^2}} \ge 1 - \epsilon.$

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes:

Decay of solutions to the heat equation

Characterizati of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for For some fixed t > 0 decay for solutions with data $u_0^{\lambda} \in \mathcal{B}$ will not be uniform :

■ There exist solution to the heat equation with data in *L*²(ℝⁿ) decaying arbitrarily slowly.

Theorem

Given $r, T, \epsilon > 0 \Rightarrow \exists u_0 \text{ with } \|u_0\|_{L^2} = r \text{ so that }$

$$\frac{\|u(T)\|_{L^2}}{\|u_0\|_{L^2}} \ge 1 - \epsilon.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Heat equation: Fourier Splitting

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterizatio of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

• The behavior of large times is determined by the low frequencies of the solution.

Filter: " $e^{t\Delta} \leq C''$ yields " $t|\xi|^2 \leq C'' \Rightarrow$

$$B(t) = \left\{ \xi : |\xi|^2 \le \frac{C}{t+1} \right\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Heat equation: Fourier Splitting

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to

the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for • The behavior of large times is determined by the low frequencies of the solution.

• Filter: " $e^{t\Delta} \leq C$ " yields " $t|\xi|^2 \leq C$ " \Rightarrow

$$B(t) = \left\{ \xi : |\xi|^2 \le \frac{C}{t+1} \right\}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Fourier Splitting : old idea (86)

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterizatio of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for $\frac{d}{dt} \|u(t)\|_{L^2}^2 \le -C \|\nabla u(t)\|_{L^2}^2$ $knowledge of bounds for <math>\hat{u}_0(\xi), \ |\xi| \ll 1$

 $\begin{aligned} u(t)\|_{L^{2}}^{2} &= -2\|\nabla u(t)\|_{L^{2}}^{2} \\ &= -2\int_{B(t)\cup B(t)^{c}}|\xi|^{2}|\widehat{u}(t)|^{2}\,d\xi \\ &\leq -2\int_{B(t)}|\xi|^{2}|\widehat{u}(t)|^{2}\,d\xi - \frac{C}{1+t}\int_{B(t)^{c}}|\widehat{u}(t)|^{2}\,d\xi \\ &\leq \frac{C}{1+t}\int_{B(t)}|\widehat{u}(t)|^{2}\,d\xi - \frac{C}{1+t}\int_{\mathbb{R}^{n}}|\widehat{u}(t)|^{2}\,d\xi. \end{aligned}$

Fourier Splitting : old idea (86)

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation $\frac{d}{dt}$

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for $\frac{d}{dt} \|u(t)\|_{L^2}^2 \leq -C \|\nabla u(t)\|_{L^2}^2$ knowledge of bounds for $\hat{u}_0(\xi), \ |\xi| \ll 1$

$$\begin{split} u(t)\|_{L^{2}}^{2} &= -2\|\nabla u(t)\|_{L^{2}}^{2} \\ &= -2\int_{B(t)\cup B(t)^{c}}|\xi|^{2}|\widehat{u}(t)|^{2}\,d\xi \\ &\leq -2\int_{B(t)}|\xi|^{2}|\widehat{u}(t)|^{2}\,d\xi - \frac{C}{1+t}\int_{B(t)^{c}}|\widehat{u}(t)|^{2}\,d\xi \\ &\leq \frac{C}{1+t}\int_{B(t)}|\widehat{u}(t)|^{2}\,d\xi - \frac{C}{1+t}\int_{\mathbb{R}^{n}}|\widehat{u}(t)|^{2}\,d\xi. \end{split}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to

the heat equation Characterizati

datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

$$\frac{d}{dt}\left((t+1)^n \|u(t)\|_{L^2}^2\right) \le C(t+1)^{n-1} \int_{B(t)} |\widehat{u}(\xi,t)|^2 \, d\xi.$$

If $u_0 \in L^1(\mathbb{R}^n)$, and $|\widehat{u_0}(\xi)| \leq C$, for $|\xi| \ll 1 \Rightarrow$

 $||u(t)||_{L^2(\mathbb{R}^n)} \le C(t+1)^{-\frac{n}{4}}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

$$\frac{d}{dt}\left((t+1)^n \|u(t)\|_{L^2}^2\right) \le C(t+1)^{n-1} \int_{B(t)} |\widehat{u}(\xi,t)|^2 \, d\xi.$$

If $u_0 \in L^1(\mathbb{R}^n)$, and $|\widehat{u}_0(\xi)| \leq C$, for $|\xi| \ll 1 \Rightarrow$

 $\|u(t)\|_{L^2(\mathbb{R}^n)} \leq C(t+1)^{-\frac{n}{4}}.$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

$$\frac{d}{dt}\left((t+1)^n \|u(t)\|_{L^2}^2\right) \le C(t+1)^{n-1} \int_{B(t)} |\widehat{u}(\xi,t)|^2 \, d\xi.$$

If $u_0 \in L^1(\mathbb{R}^n)$, and $|\widehat{u_0}(\xi)| \leq C$, for $|\xi| \ll 1 \Rightarrow$

$$||u(t)||_{L^2(\mathbb{R}^n)} \le C(t+1)^{-\frac{n}{4}}.$$

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

INTFOCUCTION Navier-Stokes Navier-Stokes: decay questions Decay of solutions to

the heat equation Characterizati

of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for compressible Fourier Splitting also works given info on FT near origin + $\frac{d}{dt} \|u(t)\|_{L^2(\mathbb{R}^n)}^2 \leq -C \int_{\mathbb{R}^n} |\xi|^{2\alpha} |\widehat{u}(\xi, t)|^2 d\xi.$

 Works for Parabolic conservation laws, Navier-Stokes, MHD, sistemas KdV-Burgers, dissipative QG, dissipative Camassa-Holm, · · · .

 If solution stay in L¹ can use Cordoba-Cordoba methods. (generally not good for derivatives)

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterizatio of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for compressible

- Fourier Splitting also works given info on FT near origin + $\frac{d}{dt} \|u(t)\|_{L^2(\mathbb{R}^n)}^2 \leq -C \int_{\mathbb{R}^n} |\xi|^{2\alpha} |\widehat{u}(\xi, t)|^2 d\xi.$
- Works for Parabolic conservation laws, Navier-Stokes, MHD, sistemas KdV-Burgers, dissipative QG, dissipative Camassa-Holm, · · · .

 If solution stay in L¹ can use Cordoba-Cordoba methods. (generally not good for derivatives)

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

INTFODUCTION Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterizatio of the initial datum Definitions

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

- Fourier Splitting also works given info on FT near origin + $\frac{d}{dt} \|u(t)\|_{L^2(\mathbb{R}^n)}^2 \leq -C \int_{\mathbb{R}^n} |\xi|^{2\alpha} |\widehat{u}(\xi, t)|^2 d\xi.$
- Works for Parabolic conservation laws, Navier-Stokes, MHD, sistemas KdV-Burgers, dissipative QG, dissipative Camassa-Holm, · · · .
- If solution stay in L¹ can use Cordoba-Cordoba methods. (generally not good for derivatives)

Ingredients of ideas for Lower and Upper bounds of decay

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

• Knowledge of behavior of low frequencies of the solutions.

(日)

Behavior of solution to the linear underlying equation.

Influence of the non linear part.

Ingredients of ideas for Lower and Upper bounds of decay

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for Knowledge of behavior of low frequencies of the solutions.
Behavior of solution to the linear underlying equation.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Ingredients of ideas for Lower and Upper bounds of decay

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterizatio of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for Knowledge of behavior of low frequencies of the solutions.Behavior of solution to the linear underlying equation.Influence of the non linear part.

(日)

> C. J. Niche and M. E. Schonbek

ntroduction Navier-Stokes Navier-Stokes: decay questions

Decay of solutions to the heat equation

Characterizatio of the initial datum ^{Definitions} Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

Objetive: give a good characterization of the $(L^2, \text{Sobolev})$ decay of solutions to dissipative equations

- characterization of the initial datum,
- study of the linear part,
- **study of the nonlinear part.**
- study of difference of linear and nonlinear solutions

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions t

Characterizatior of the initial datum

Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophi

equations Approximation for

Introduction

- Navier-Stokes
- Navier-Stokes: decay questions
- Decay of solutions to the heat equation

2 Characterization of the initial datum

- Definitions
- Results

Linear Part and decay

- Linear Part
- Decay

Applications

- Quasi-Geostrophic equations
- Approximation for compressible Navier-Stokes

(日)

Comments

Decay indicator

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

Definition (Bjorland - MES '09, Niche - MES '13)

Let $u_0 \in L^2(\mathbb{R}^n)$, $r \in \left(-\frac{n}{2}, \infty\right)$. The *decay indicator* of u_0 is defined by

$$P_r(u_0) = \lim_{\rho \to 0} \rho^{-2r-n} \int_{B(\rho)} |\widehat{u_0}(\xi)|^2 d\xi$$

where $B(\rho) = \{\xi : |\xi| \le \rho\}.$

• The decay indicator compares $|\hat{u_0}|$ with $f(\xi) = |\xi|^r$ at $\xi = 0$.

(日)

Decay character

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions t the heat equation

Characterization of the initial datum

Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

Definition (Bjorland - MES '09, Niche - MES '13)

Let $u_0 \in L^2(\mathbb{R}^n)$. The decay character of u_0 is $r^* = r^*(u_0)$, is the unique $r \in \left(-\frac{n}{2}, \infty\right)$ so that $0 < P_r(u_0) < \infty$, if this number exists. If it does not exist then

$$r^*(u_0) = \begin{cases} -\frac{n}{2}, & \text{if } P_r(u_0) = \infty, \text{ for all } r \in \left(-\frac{n}{2}, \infty\right) \\ \infty, & \text{if } P_r(u_0) = 0, \text{ for all } r \in \left(-\frac{n}{2}, \infty\right). \end{cases}$$

s-decay indicator

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterizatio of the initial datum Definitions

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

Definition (CJN - MES '13)

Let $u_0 \in L^2(\mathbb{R}^n)$, s > 0, $r \in \left(-\frac{n}{2} + s, \infty\right)$. The *s*-decay indicator de $\Lambda^s u_0$ is defined as

$$P_r^s(u_0) = \lim_{\rho \to 0} \rho^{-2r-n} \int_{B(\rho)} |\xi|^{2s} |\hat{u_0}(\xi)|^2 d\xi$$

where $B(\rho) = \{\xi : |\xi| \le \rho\}.$

The s-decay indicator compares $|\Lambda^s u_0|$ with $f(\xi) = |\xi|^r$ at $\xi = 0$.

(日)

s-decay character

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions

Results

Linear Part and decay ^{Linear Part} Decay

Applications Quasi-Geostrophic equations Approximation for

Definition (CJN - MES '13)

The s-decay character of $\Lambda^{s}u_{0}$, is the unique $r_{s}^{*} = r_{s}^{*}(u_{0})$, with $r \in \left(-\frac{n}{2} + s, \infty\right)$ tso that $0 < P_{r}^{s}(u_{0}) < \infty$, provided this number exists. If it does not exist the

 $r_s^*(u_0) = \begin{cases} \infty, & \text{if } P_r(u_0) = 0, \text{ for all } q \in \left(-\frac{n}{2} + s, \infty\right) \\ -\frac{n}{2} + s, & \text{if } P_r(u_0) = \infty, \text{ for all } q \in \left(-\frac{n}{2} + s, \infty\right). \end{cases}$

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions

Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

Remark

If $u_0 \in L^p(\mathbb{R}^n) \cap L^2(\mathbb{R}^n), 1 \le p \le 2$

The definition of decay character $\Rightarrow r^*(u_0) = -n\left(1 - \frac{1}{p}\right)$.

(日)

If $u_0 \in L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n) \Rightarrow r^*(u_0) = 0$ If $u_0 \in L^2(\mathbb{R}^n)$ but $u_0 \notin L^p(\mathbb{R}^n)$, for any $1 \le p < 2 \Rightarrow r^*(u_0) = -\frac{n}{2}.$

> C. J. Niche and M. E. Schonbek

ntroduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions t the heat equation

Characterizatior of the initial datum Definitions

Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

Remark

If $u_0 \in L^p(\mathbb{R}^n) \cap L^2(\mathbb{R}^n), 1 \le p \le 2$

The definition of decay character $\Rightarrow r^*(u_0) = -n\left(1 - \frac{1}{p}\right)$.

If $u_0 \in L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n) \Rightarrow r^*(u_0) = 0$

If $u_0 \in L^2(\mathbb{R}^n)$ but $u_0 \notin L^p(\mathbb{R}^n)$, for any $1 \le p < 2 \implies r^*(u_0) = -\frac{n}{2}.$

> C. J. Niche and M. E. Schonbek

ntroduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions t the heat equation

Characterization of the initial datum

Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

Remark

If $u_0 \in L^p(\mathbb{R}^n) \cap L^2(\mathbb{R}^n), 1 \le p \le 2$

The definition of decay character $\Rightarrow r^*(u_0) = -n\left(1 - \frac{1}{p}\right)$.

(日)

• If $u_0 \in L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n) \Rightarrow r^*(u_0) = 0$

If
$$u_0 \in L^2(\mathbb{R}^n)$$
 but $u_0 \notin L^p(\mathbb{R}^n)$, for any $1 \le p < 2 \implies r^*(u_0) = -\frac{n}{2}$.

> C. J. Niche and M. E. Schonbek

ntroduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions t the heat equation

Characterization of the initial datum

Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

Remark

If $u_0 \in L^p(\mathbb{R}^n) \cap L^2(\mathbb{R}^n), 1 \le p \le 2$

The definition of decay character $\Rightarrow r^*(u_0) = -n\left(1 - \frac{1}{p}\right)$.

(日)

• If $u_0 \in L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n) \Rightarrow r^*(u_0) = 0$

If
$$u_0 \in L^2(\mathbb{R}^n)$$
 but $u_0 \notin L^p(\mathbb{R}^n)$, for any $1 \le p < 2 \implies r^*(u_0) = -\frac{n}{2}$.

Relation between the decay character and the s-decay character

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions t the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

Theorem (CJN - MES '13)

Let $u_0 \in H^s(\mathbb{R}^n)$, s > 0.

1 If
$$-\frac{n}{2} < r^*(u_0) < \infty$$
 then $-\frac{n}{2} + s < r^*_s(u_0) < \infty$ and $r^*_s(u_0) = s + r^*(u_0)$.
2 $r^*_s(u_0) = \infty$ if an only if $r^*(u_0) = \infty$.

3
$$r^*(u_0) = -\frac{n}{2}$$
 if and only if $r^*(u_0) = r^*(u_0) + s = -\frac{n}{2} + s$.

(日)

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterizatio of the initial datum Definitions Results

Linear Part and decay

Linear Par Decay

Applications Quasi-Geostrophic

Approximation for compressible

Introduction

- Navier-Stokes
- Navier-Stokes: decay questions
- Decay of solutions to the heat equation

2 Characterization of the initial datum

- Definitions
- Results

3 Linear Part and decay

- Linear Part
- Decay

Applications

- Quasi-Geostrophic equations
- Approximation for compressible Navier-Stokes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Comments

How does the linear part need to behave ?

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction

Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Parl and decay Linear Part

Decay

Applications Quasi-Geostrophi equations

Approximation for compressible

Recall Fourier Splitting works if we have info of frequencies near the origin and

$$\frac{d}{dt}\|u(t)\|_{L^2(\mathbb{R}^n)}^2 \leq -C\int_{\mathbb{R}^n}|\xi|^{2\alpha}|\widehat{u}(\xi,t)|^2\,d\xi.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Parl and decay Linear Part

Applications Quasi-Geostrophic equations Approximation for Let $\mathcal{L}: X^n \to (L^2(\mathbb{R}^n))^n$ be a pseudodifferential operator , on *X* a Hilbert space, so that:

• The symbol $\mathcal{M}(\xi)$ of \mathcal{L} is such that

$$\mathcal{M}(\xi) = P^{-1}(\xi)D(\xi)P(\xi), \qquad \xi - a.e.$$

■ $P(\xi) \in O(n)$ and $D(\xi) = -c_i |\xi|^{2\alpha} \delta_{ij}$, for $c_i > c > 0$ and $0 < \alpha \le 1$. for constants a, b > 0, with $0 < \alpha \le 1$.

 \Rightarrow linear equation

$$v_t = \mathcal{L}v. \tag{1}$$

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part

Applications Quasi-Geostrophic equations Approximation for Let $\mathcal{L}: X^n \to (L^2(\mathbb{R}^n))^n$ be a pseudodifferential operator , on *X* a Hilbert space, so that:

• The symbol $\mathcal{M}(\xi)$ of \mathcal{L} is such that

$$\mathcal{M}(\xi) = P^{-1}(\xi)D(\xi)P(\xi), \qquad \xi - a.e.$$

• $P(\xi) \in O(n)$ and $D(\xi) = -c_i |\xi|^{2\alpha} \delta_{ij}$, for $c_i > c > 0$ and $0 < \alpha \le 1$. for constants a, b > 0, with $0 < \alpha \le 1$.

 \Rightarrow linear equation

$$v_t = \mathcal{L}v. \tag{1}$$

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Parl and decay Linear Part

Applications Quasi-Geostrophic equations Approximation for Let $\mathcal{L}: X^n \to (L^2(\mathbb{R}^n))^n$ be a pseudodifferential operator , on *X* a Hilbert space, so that:

• The symbol $\mathcal{M}(\xi)$ of \mathcal{L} is such that

$$\mathcal{M}(\xi) = P^{-1}(\xi)D(\xi)P(\xi), \qquad \xi - a.e$$

■ $P(\xi) \in O(n)$ and $D(\xi) = -c_i |\xi|^{2\alpha} \delta_{ij}$, for $c_i > c > 0$ and $0 < \alpha \le 1$. for constants a, b > 0, with $0 < \alpha \le 1$.

 \Rightarrow linear equation

$$v_t = \mathcal{L}v. \tag{1}$$

(日)

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterizatic of the initial datum Definitions Results

Linear Parl and decay Linear Part

Applications Quasi-Geostrophic equations Approximation for Given the linear equation

$$\partial_t v = \mathcal{L} v$$

haciendo el producto en L^2 con v y usando las propiedades de \mathcal{L} llegamos a que podemos usar Fourier Splitting, i.e.

$$\frac{d}{dt}\|v(t)\|_{L^2(\mathbb{R}^n)}^2 \leq -C\int_{\mathbb{R}^n}|\xi|^{2\alpha}|\widehat{v}(\xi,t)|^2\,d\xi.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Example: Compressible approximation to Stokes

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterizatic of the initial datum Definitions Results

Linear Pari and decay Linear Part

Decay

Applications Quasi-Geostrophic equations Approximation for compressible

Example

Compressible approximation to the Stokes system in \mathbb{R}^3 (Temam)

$$u_t = \mathcal{L}u = \Delta u + \frac{1}{\epsilon} \nabla div \, u, \qquad \epsilon > 0.$$
 (2)

ymbol $(\mathcal{M}(\xi))_{ij} = -|\xi|^2 \delta_{ij} - \frac{1}{\epsilon} \xi_i \xi_j$, with $\mathcal{D}(\xi) = diag(-|\xi|^2, -|\xi|^2, -(1 + \frac{1}{\epsilon}) |\xi|^2)$ and

$$= \begin{pmatrix} \frac{-\xi_2}{\sqrt{\xi_1^2 + \xi_2^2}} & \frac{-\xi_1\xi_3}{\sqrt{1 - \xi_3^2}} & \xi_1\\ \frac{\xi_1}{\sqrt{\xi_1^2 + \xi_2^2}} & \frac{-\xi_2\xi_3}{\sqrt{1 - \xi_3^2}} & \xi_2\\ 0 & \frac{1 - \xi_3^2}{\sqrt{1 - \xi_3^2}} & \xi_3 \end{pmatrix},$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�?

Example: Compressible approximation to Stokes

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterizatic of the initial datum Definitions Results

Linear Pari and decay Linear Part

Decay

Applications Quasi-Geostrophic equations Approximation for compressible

Example

Compressible approximation to the Stokes system in \mathbb{R}^3 (Temam)

$$u_t = \mathcal{L}u = \Delta u + \frac{1}{\epsilon} \nabla div \, u, \qquad \epsilon > 0.$$
 (2)

Symbol $(\mathcal{M}(\xi))_{ij} = -|\xi|^2 \delta_{ij} - \frac{1}{\epsilon} \xi_i \xi_j$, with $D(\xi) = diag(-|\xi|^2, -|\xi|^2, -(1+\frac{1}{\epsilon})|\xi|^2)$ and

$$P(\xi) = egin{pmatrix} rac{-\xi_2}{\sqrt{\xi_1^2 + \xi_2^2}} & rac{-\xi_1\xi_3}{\sqrt{1 - \xi_3^2}} & \xi_1 \ rac{\xi_1}{\sqrt{\xi_1^2 + \xi_2^2}} & rac{-\xi_2\xi_3}{\sqrt{1 - \xi_3^2}} & \xi_2 \ 0 & rac{1 - \xi_3^2}{\sqrt{1 - \xi_3^2}} & \xi_3 \end{pmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Example continuation

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Parl and decay Linear Part

Decay

Applications Quasi-Geostrophi

equations

Approximation for compressible

decay Kernel

$$\left(e^{t\mathcal{M}(\xi)}\right)_{ij} = e^{-t|\xi|^2} \delta_{ij} - \frac{\xi_i \xi_j}{|\xi|^2} \left(e^{-t|\xi|^2} - e^{-\left(1 + \frac{1}{\epsilon}\right)t|\xi|^2}\right), \quad (3)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Results

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions t the heat equation

Characterizati of the initial datum Definitions Results

Linear Par and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

Theorem (CJN - MES '13)

Let $v_0 \in L^2(\mathbb{R}^n)$ have decay character $r^*(v_0) = r^*$. Let v(t) be a solution to the linear equation with data v_0 . Then:

■ *if* $-\frac{n}{2} < r^* < \infty$, *there exist constants* $C_1, C_2 > 0$ *such that*

$$C_1(1+t)^{-\frac{1}{\alpha}\left(\frac{n}{2}+r^*\right)} \le \|v(t)\|_{L^2}^2 \le C_2(1+t)^{-\frac{1}{\alpha}\left(\frac{n}{2}+r^*\right)};$$

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Parl and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

Theorem

Ē

if
$$r^* = -\frac{n}{2}$$
, there exists $C > 0$ such that

 $\|v(t)\|_{L^2}^2 \ge C(1+t)^{-\epsilon}, \qquad \forall \epsilon > 0,$

i.e. the decay of $||v(t)||_{L^2}^2$ is slower than any uniform algebraic rate;

• *if* $r^* = \infty$, *there exists* C > 0 *such that*

$$\|v(t)\|_{L^2}^2 \le C(1+t)^{-m}, \qquad \forall m > 0,$$

(日)

i.e. the decay of $||v(t)||_{L^2}$ is faster than any algebraic rate.

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Parl and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for

Theorem (CJN - MES '13)

Let $v_0 \in H^s(\mathbb{R}^n)$, s > 0 have decay character $r_s^* = r_s^*(v_0)$. Then 1 if $-\frac{n}{2} \le r^* < \infty$, there exist constants $C_1, C_2 > 0$ such that

$$C_1(1+t)^{-\frac{1}{\alpha}\left(\frac{n}{2}+r^*+s\right)} \le \|v(t)\|_{\dot{H}^s}^2 \le C_2(1+t)^{-\frac{1}{\alpha}\left(\frac{n}{2}+r^*+s\right)};$$

2 if $r^* = \infty$, then

 $\|v(t)\|_{\dot{H}^{s}}^{2} \leq C(1+t)^{-r}, \qquad \forall r > 0,$ *i.e. the decay of* $\|v(t)\|_{\dot{H}^{s}}$ *is faster than any algebraic rate.*

(日)

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterizatio of the initial datum Definitions Results

Linear Parl and decay Linear Part Decay

Applications

Quasi-Geostrophic equations

Approximation for compressible

Introduction

- Navier-Stokes
- Navier-Stokes: decay questions
- Decay of solutions to the heat equation

2 Characterization of the initial datum

- Definitions
- Results

Linear Part and decay

- Linear Part
- Decay

4 Applications

- Quasi-Geostrophic equations
- Approximation for compressible Navier-Stokes
- Comments

Quasi-Geostrophic equations

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions t the heat equation

Characterizatic of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic

equations Approximation for Dissipative Quasi-Geostrophic equations

$$\theta_t + u \cdot \nabla \theta + (-\Delta)^{\frac{\alpha}{2}} \theta = 0, \qquad 0 < \alpha \le 2$$

where θ is the temperature of a fluid in \mathbb{R}^2 , and

$$u = R^{\perp}\theta = (-R_2\theta, R_1\theta)$$

(日)

where R_i is the Riesz transform in x_i .

Results for QG

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations

Approximation for compressible

Theorem (CJN - MES '13)

Let $\theta_0 \in L^2(\mathbb{R}^2)$, let $r^* = r^*(\theta_0), -1 < r^* < \infty$, and $0 < \alpha \le 1$. Let θ be a weak solution to QGE with data θ_0 . Then:

1 If $r^* \leq 1 - \alpha$, then

$$\|\theta(t)\|_{L^2}^2 \le C(t+1)^{-\frac{1}{\alpha}(1+r^*)}$$

2 if $r^* \ge 1 - \alpha$, then

$$\|\theta(t)\|_{L^2}^2 \le C(t+1)^{-\frac{1}{\alpha}(2-\alpha)}$$

(日)

Results QG

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations

Approximation for compressible

Theorem (CJN - MES '13)

Let $\frac{1}{2} < \alpha \leq 1$, $\alpha \leq s$ and $\theta_0 \in H^s(\mathbb{R}^2)$. For $r^* = r^*(\theta_0)$ the solutions to QGE satisfy

1 if $r^* \leq 1 - \alpha$, then

$$\|\theta(t)\|_{\dot{H}^{s}}^{2} \leq C(t+1)^{-\frac{1}{\alpha}(s+1+r^{*})};$$

2 if $r^* \ge 1 - \alpha$, then

$$\|\theta(t)\|_{\dot{H}^s}^2 \le C(t+1)^{-\frac{1}{\alpha}(s+2-\alpha)}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Nonlinear minus Linear QG

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterizati of the initial datum Definitions Results

Linear Par and decay Linear Part Decay

Applications Quasi-Geostrophic equations

Approximation for compressible Decay of the nonlinear part of QGE $w(t) = \theta(t) - \Theta(t)$.

1 U P 1 E P 1 = P 1 = P 14 (P

Nonlinear minus Linear QG

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Par and decay Linear Part Decay

Applications Quasi-Geostrophic equations

Approximation for compressible

Decay of the nonlinear part of QGE $w(t) = \theta(t) - \Theta(t)$. Theorem (CJN - MES '13) Let $0 < \alpha \leq 1$, $\theta_0 \in L^2(\mathbb{R}^2)$, $r^* = r^*(\theta_0)$. Then 1 if $-1 < r^* \le 1 - \alpha$ and $\frac{1+r^*}{\alpha} \ge 1$, we have $\|\theta(t) - \Theta(t)\|_{L^2}^2 \leq C(1+t)^{-\frac{1}{\alpha}\min\{2,2-\alpha+r^*\}};$ 2 if $-1 < r^* < 1 - \alpha$ and $\frac{1+r^*}{2} < 1$, we have $\|\theta(t) - \Theta(t)\|_{L^2}^2 \le C(1+t)^{-\frac{1}{\alpha}(2-\alpha+r^*)};$ 3 *if* $r^* > 1 - \alpha$, *then* $\|\theta(t) - \Theta(t)\|_{L^2}^2 \le C(1+t)^{-\frac{1}{\alpha}\min\{3-2\alpha,2\}}.$

Lower Bounds QG

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations

Approximation for compressible

Theorem (CJN - MES '13)

Let
$$0 < \alpha \le 1$$
, $\theta_0 \in L^2(\mathbb{R}^2)$, $r^* = r^*(\theta_0)$. Then:

1 *if* $r^* \ge 1 - \alpha$, we have

$$\|\theta(t)\|_{L^2}^2 \ge C(1+t)^{-\frac{1}{\alpha}(2-\alpha)}$$

2 if $r^* \leq 1 - \alpha$, we have

 $\|\theta(t)\|_{L^2}^2 \ge C(1+t)^{-\frac{1}{\alpha}(1+r^*)}$

・ロト・日本・日本・日本・日本

Lower Bounds QG

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations

Approximation for compressible

Theorem (CJN - MES '13)

Let
$$0 < \alpha \le 1$$
, $\theta_0 \in L^2(\mathbb{R}^2)$, $r^* = r^*(\theta_0)$. Then:

1 *if* $r^* \ge 1 - \alpha$, we have

$$\|\theta(t)\|_{L^2}^2 \ge C(1+t)^{-\frac{1}{\alpha}(2-\alpha)}$$

2 if $r^* \leq 1 - \alpha$, we have

$$\|\theta(t)\|_{L^2}^2 \ge C(1+t)^{-\frac{1}{\alpha}(1+r^*)}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Approximation for compressible Navier-Stokes

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions t the heat equation

Characterizatio of the initial datum Definitions Results

Linear Parl and decay Linear Part Decay

Applications Quasi-Geostrophic equations

Approximation for compressible

For Navier-Stokes, the presión p is a non local function of u, \Rightarrow problems for numerical studies

(Temam '68) Penalization method:

 $\nabla \cdot u = -\epsilon p$

stabilize with a term of the form $\frac{1}{2}(div u) u$.

Approximation for compressible Navier-Stokes

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterizatio of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations

Approximation for compressible

- For Navier-Stokes, the presión p is a non local function of u, ⇒ problems for numerical studies
- (Temam '68) Penalization method:

$$\nabla \cdot u = -\epsilon p$$

(日)

stabilize with a term of the form $\frac{1}{2}(div u) u$.

Compressible Approximation

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions ! the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations

Approximation for compressible

We have

$$\begin{aligned} u_t^{\epsilon} + \left(u^{\epsilon} \cdot \nabla \right) u^{\epsilon} &+ \quad \frac{1}{2} \left(div \, u^{\epsilon} \right) \, u^{\epsilon} = \Delta u^{\epsilon} + \frac{1}{\epsilon} \nabla div \, u^{\epsilon}, \\ u_0^{\epsilon}(x) &= \quad u^{\epsilon}(x, 0). \end{aligned}$$

(日)

 Results: Temam '68, Brefort '88, Plecháč and Šverák '03, Rusin '12, + Numerical results.

Compressible Approximation

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions t the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations

Approximation for compressible

We have

$$\begin{aligned} u_t^{\epsilon} + \left(u^{\epsilon} \cdot \nabla \right) u^{\epsilon} &+ \quad \frac{1}{2} \left(div \, u^{\epsilon} \right) \, u^{\epsilon} = \Delta u^{\epsilon} + \frac{1}{\epsilon} \nabla div \, u^{\epsilon}, \\ u_0^{\epsilon}(x) &= \quad u^{\epsilon}(x, 0). \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 Results: Temam '68, Brefort '88, Plecháč and Šverák '03, Rusin '12, + Numerical results.

Linear part, non linear term

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions t the heat equation

Characterization of the initial datum Definitions Results

Linear Par and decay Linear Part Decay

Applications Quasi-Geostrophic equations

Approximation for compressible

• Linear part \mathcal{L} works with our methods

$$u_t = \mathcal{L}u = \Delta u + \frac{1}{\epsilon} \nabla \cdot div \, u = 0,$$

$$\mathcal{M}_{\epsilon}(\xi, t))_{kl} = e^{-t|\xi|^2} \delta_{kl} - \frac{\xi_k \xi_l}{|\xi|^2} \left(e^{-t|\xi|^2} - e^{-\left(1 + \frac{1}{\epsilon}\right)t|\xi|^2} \right).$$

Non linear part similar to NS

$$(u \cdot \nabla) u + \frac{1}{2} (div u) u = \nabla (u \otimes u) - \frac{1}{2} (div u) u.$$

Compressible part no problem since

$$\int_{\mathbb{R}^3} u(u \cdot \nabla) u \, dx = -\frac{1}{2} \int_{\mathbb{R}^3} |u|^2 div \, u \, dx.$$

Linear part, non linear term

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterizatio of the initial datum Definitions Results

Linear Par and decay Linear Part Decay

Applications Quasi-Geostrophic equations

Approximation for compressible • Linear part \mathcal{L} works with our methods

$$u_t = \mathcal{L}u = \Delta u + \frac{1}{\epsilon} \nabla \cdot div \, u = 0,$$

$$\mathcal{M}_{\epsilon}(\xi, t))_{kl} = e^{-t|\xi|^2} \delta_{kl} - \frac{\xi_k \xi_l}{|\xi|^2} \left(e^{-t|\xi|^2} - e^{-\left(1 + \frac{1}{\epsilon}\right)t|\xi|^2} \right).$$

Non linear part similar to NS

$$(u \cdot \nabla) u + \frac{1}{2} (div u) u = \nabla (u \otimes u) - \frac{1}{2} (div u) u.$$

Compressible part no problem since

$$\int_{\mathbb{R}^3} u(u \cdot \nabla) u \, dx = -\frac{1}{2} \int_{\mathbb{R}^3} |u|^2 div \, u \, dx.$$

Linear part, non linear term

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterizatio of the initial datum Definitions Results

Linear Par and decay Linear Part Decay

Applications Quasi-Geostrophic equations

Approximation for compressible • Linear part \mathcal{L} works with our methods

$$u_t = \mathcal{L}u = \Delta u + \frac{1}{\epsilon} \nabla \cdot div \, u = 0,$$

$$\mathcal{M}_{\epsilon}(\xi, t))_{kl} = e^{-t|\xi|^2} \delta_{kl} - \frac{\xi_k \xi_l}{|\xi|^2} \left(e^{-t|\xi|^2} - e^{-\left(1 + \frac{1}{\epsilon}\right)t|\xi|^2} \right).$$

Non linear part similar to NS

$$(u \cdot \nabla) u + \frac{1}{2} (div u) u = \nabla (u \otimes u) - \frac{1}{2} (div u) u.$$

Compressible part no problem since

$$\int_{\mathbb{R}^3} u(u \cdot \nabla) u \, dx = -\frac{1}{2} \int_{\mathbb{R}^3} |u|^2 div \, u \, dx.$$

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

э

Results

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations

Approximation for compressible

Theorem (C.J.N. - M.E.S. '13)

Let $u_0^{\epsilon} \in L^2(\mathbb{R}^3)$, $r^* = r^*(u_0^{\epsilon})$, $\epsilon > 0$. Then for a weak solution u^{ϵ} to the compressible approximation to NS we have that:

(日)

1 $if -\frac{3}{2} < r^* \le \frac{1}{4}$, then $\|u^{\epsilon}(t)\|_{L^2}^2 \le C(1+t)^{-(r^*+\frac{3}{2})};$ 2 $if r^* > \frac{1}{4}$, then $\|u^{\epsilon}(t)\|_{L^2}^2 \le C(1+t)^{-\frac{7}{4}};$

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions t the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations

Approximation for compressible

Theorem (C.J.N. - M.E.S. '13)

Let $u_0 \in H^r(\mathbb{R}^3)$, $r \ge 1$, $r^* = r^*(u_0)$. Then, for $1 \le s \le r$ we have that

$$\|u(t)\|_{\dot{H}^s} \le C(1+t)^{-\frac{1}{2}\left(s+\min\{\frac{3}{2},r^*+\frac{3}{2}\}\right)}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Linear minus nonlinear

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterizatio of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations

Approximation for compressible

Theorem (C.J.N. - M.E.S. '13)

Let $u_0^{\epsilon} \in L^2(\mathbb{R}^3)$, $r^* = r^*(u_0)$. Then for compressible NS

$$||u^{\epsilon}(t) - \bar{u}(t)||_{L^2}^2 \le C(1+t)^{-\frac{7}{4}}.$$

lower bounds

Will follow by a triangle inequality and estimates of linear part and difference between linear and non linear.

Linear minus nonlinear

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions to the heat equation

Characterization of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations

Approximation for compressible

Theorem (C.J.N. - M.E.S. '13)

Let $u_0^{\epsilon} \in L^2(\mathbb{R}^3)$, $r^* = r^*(u_0)$. Then for compressible NS

$$||u^{\epsilon}(t) - \bar{u}(t)||_{L^2}^2 \le C(1+t)^{-\frac{7}{4}}.$$

lower bounds

Will follow by a triangle inequality and estimates of linear part and difference between linear and non linear.

Comments

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions t the heat equation

Characterizatio of the initial datum Definitions Results

Linear Part and decay Linear Part Decay

Applications Quasi-Geostrophic equations Approximation for Decay character classifies data for which decay is given by the linear part and those where the nonlinear part has a fundamental role.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Gives a sharp division for upper and lower decay

Comments

Decay characterization of solutions to dissipative systems

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions t the heat equation

Characterizatio of the initial datum Definitions Results

Linear Part and decay ^{Linear Part Decay}

Applications Quasi-Geostrophic equations Approximation for Decay character classifies data for which decay is given by the linear part and those where the nonlinear part has a fundamental role.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Gives a sharp division for upper and lower decay

> C. J. Niche and M. E. Schonbek

Introduction Navier-Stokes Navier-Stokes: decay questions Decay of solutions the heat equation

Characterization of the initial datum Definitions Results

Linear Parl and decay Linear Part Decay

Applications Quasi-Geostrophi equations Approximation for

Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ