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ORIENTATIONAL ORDER PARAMETERS (UNIAXIAL - D∞h)

Spherical expansion (multi-pole expansion):

f (m) =
+∞∑
l=0

l∑
k=−l

flk Ylk(m) ,

Cartesian 2nd-rank moments (l = 2):

Q =
〈

m⊗ m− 1

3
I
〉
= S

(
`z ⊗ `z − 1

3
I
)
+p(`x ⊗ `x −`y ⊗ `y) .

Link: S =
√

4π
5 〈Y20〉 , p =

√
4π
15 〈Y22 +Y2−2〉 .

Q: How to extend the Cartesian definition to higher-rank tensors?
A: S. Turzi, J. Math. Phys., 52, 053517 (2011).

S. Turzi (Polimi) Low-symmetry liquid crystals 25/03/2014 5 / 36



PROTOTYPICAL LOW-SYMMETRY

D2h molecule D2h phase
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ORIENTATIONAL ORDER PARAMETERS (D2h INCLUDED)

Spherical expansion

f (R) =
+∞∑
j=0

j∑
k′,k=−j

2j+1

8π2 f j
k′k D

(j)
k′k(R) .

where D (j)(R) (Wigner matrices) are (2j+1)× (2j+1) irreducible matrix
representations of SO(3). Then, Peter-Weyl Theorem says

Theorem
The functions defined by the matrix entries√

2j+1D
(j)
k′k(R), j ≥ 0, |k|, |k′| ≤ j ,

form a complete orthonormal system in L2(SO(3)) (with respect to the normalised
invariant measure).

Via orthogonality, f j
k′k = 〈D (j)(R)∗〉. These are, by definition, the orientational order

parameters.
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ORIENTATIONAL ORDER PARAMETERS (CARTESIAN)

By contrast, the traditional Cartesian definition employs the Saupe ordering
super-matrix:

SAB
ab = `A · 3

2

〈
ma ⊗ mb −

1

3
δabI

〉
`B ,

(m1,m2,m3) is the orthonormal frame set in the molecule, (`1,`2,`3) is the
orthonormal frame set in the phase.

However, in general this is not compatible with the 2nd-rank spherical definition: it
must be symmetriseda:

Qab =
〈1

2
(ma ⊗ mb +mb ⊗ ma)− 1

3
δabI

〉
aS. Turzi, J. Math. Phys., 52, 053517 (2011)
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KEY EXAMPLE (D2h)

When the D2h symmetry for both the molecules and the phase is exploited:

order parameter measures the alignment of limiting
value

S = SZZ
zz major mol. w.r.t. major lab 1

D = SZZ
xx −SZZ

yy minor mol. w.r.t. major lab 0

P = SXX
zz −SYY

zz major mol. w.r.t. minor lab 0

C = (
SXX

xx − SXX
yy

) − (
SYY

xx −
SYY

yy
) minor mol. w.r.t. minor lab 3

Isotropic phase: S = D = P = C = 0
uniaxial nematic phase: usually S,D; non-zero, P = C = 0
Biaxial nematic phase: usually S,D,P,C non-zero
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zz major mol. w.r.t. major lab 1

D = SZZ
xx −SZZ

yy minor mol. w.r.t. major lab 0

P = SXX
zz −SYY

zz major mol. w.r.t. minor lab 0

C = (
SXX

xx − SXX
yy

) − (
SYY

xx −
SYY

yy
) minor mol. w.r.t. minor lab 3

In terms of Wigner functions:

S = 〈D (2)
00 〉 = 1

2
〈3cos2β−1〉 , D =p

6〈ReD (2)
02 〉 ,

P =p
6〈ReD (2)

20 〉 , C = 3〈Re{D (2)
22 +D (2)

2−2}〉 .
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A CARTESIAN GENERAL ROUTE TO OPS

In the standard construction of the SO(3)-irreps, D (j)(R) ∈ L(V (j)), where V (j) is the
(2j+1)-dimensional vector space spanned by the spherical harmonics Yjm,
m =−j, . . . ,+j, of order j.

However, any (2j+1)-dimensional vector space should work

V (j) = vector space of totally symmetric and traceless tensors of order j on W =R3.
dimV (j) = 2j+1

Now define the group action on v1 ⊗ ·· ·⊗ vj ∈ W⊗ j as

D(R)(v1 ⊗ ·· ·⊗ vj) = Rv1 ⊗ ·· ·⊗ Rvj,

and extend by linearity to W⊗ j and then to V (j). R is the standard rotation matrix in
R3

Theorem

For all j, D(R) : V (j) → V (j) is irreducible, therefore it is equivalent to D (j)(R).
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A CARTESIAN GENERAL ROUTE TO OPS

The Peter-Weyl Theorem holds also for D(j)(R): the orthonormal basis is now
expressed in terms of the unit vectors defining the molecular frame. For example,
when j = 2,

E
(2)
−2 = 1p

2

(
m2 ⊗ m3 +m3 ⊗ m2

)
, E

(2)
−1 = 1p

2

(
m1 ⊗ m3 +m3 ⊗ m1

)
,

E
(2)
0 =

√
3

2

(
m3 ⊗ m3 − 1

3
I
)

, E
(2)
1 = 1p

2
(m1 ⊗ m1 −m2 ⊗ m2) ,

E
(2)
2 = 1p

2
(m1 ⊗ m2 +m2 ⊗ m1) .

f (R) =∑
f (j)
ab D(j)

ab(R) , D(j)
ab(R) = E(j)

a ·D(R)E(j)
b

And the jth-rank OPs are defined in terms of the averages 〈D(j)
ab(R)〉.

Advantages: (1) purely real OPs (in contrast to Wigner’s), (2) easier account for
molecular and phase symmetries, (3) easier to determine from simulation
numerical results.
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SAUPE ORDERING SUPER-MATRIX

From these construction, after some algebra, we can also prove the following
expansion of the probability function

f (R) =
+∞∑
j=0

∑
a,A

(j)SA
a Ra1,A1 Ra2,A2 · · ·Raj ,Aj

where the (j)SA
a are the “ordering super-matrices” and are (non-trivially) related to

the 〈Dab(R)〉 of the same rank.

Property
(j)SA

a are totally symmetric and traceless separately in the lower and upper indices.

The standard Saupe super-matrix, to be purely second-rank, should be
symmetrised:

(2)SAB
ab = `A ·

〈1

2
(ma ⊗ mb +mb ⊗ ma)− 1

3
δabI

〉
`B
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MF THEORY FOR UNIAXIAL MOLECULES (MAIER-SAUPE)

One of the first and well-established theories.

It is based on the definition of a potential of mean torque (mean field
potential)

Umf (ϑ) =−u200S(3cos2ϑ−1)/2.

Derivation: (a) truncation of the pair potential; (b) variational analysis using
dominant order parameter

δF = 0 w.r.t f (ϑ) ⇒ f (ϑ) = 1
Z exp

(
− Umf (ϑ)

kBT

)

The OPs are found by solving numerically the self-consistency equation

S =
∫ π

0

3cos2ϑ−1

2
f (ϑ) sinϑdϑ .
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MF THEORY - EXTENSION TO BIAXIAL NEMATICS

Potential of mean torque

Umf (R) =− ∑
m,n

u2mn
∑
p
〈D (2)

pm〉D (2)
−pn(R) .

Probability distribution function

δF = 0 w.r.t f (R) ⇒ f (R) = 1

Z
exp

(
− Umf (R)

kBT

)

The OPs are found by solving numerically the self-consistency equations

〈D (2)
pm〉 =

∫
SO(3)

D (2)
pm(R)f (R)dµ(R) .
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MF THEORY - INTERNAL ENERGY

Considering the D2h symmetry for the molecule and the phase:

Internal energy

U =−1

2

[
u200

(
S2 + 1

3
P2

)
+u220

√
8

3

(
SD+ 1

3
PC

)
+u222

2

3

(
D2 + 1

3
C2

)]
.

Expansion coefficients u2mn

Form a super-tensor

Represent the anisotropic interactions

Are reduced by molecular symmetry

D2h: only two measures of biaxiality survive, u220/u200 and u222/u200.
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MOLECULAR FIELD THEORY PREDICTIONS

N. Boccara, R. Medjani, and L. de Seze, J. Phys., 38, 149–151 (1977).

Geometric mean approximation

(u220)2 = u222u200 ,

ε=p
6

u222

u200
,

τ∝ T

Features:

N±
U − I First order

NB − I Second order
(Landau point)

N±
U −NB Second order
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MOLECULAR FIELD THEORY PREDICTIONS

A.M. Sonnet, E.G. Virga, and G.E. Durand, Phys. Rev. E, 67, 061701 (2003).

Sonnet, Virga, Durand limit

u220 = 0.

Features:

NU − I First order

NB − I Either first or second
order (tricritical point)

NU −NB Either first or
second order (tricritical
point)
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LANDAU THEORY OF PHASE TRANSITIONS

Landau (or Landau-de Gennes...) theory

It’s a polynomial expansion of F in terms of the system invariants;

Expansion coefficients are phenomenological scalars and temperature
independent (n > 2);

Usually it gives a clearer insight into the phase sequences;

Can be incorporated into a continuum theory.

However, despite some interesting works
[Allender, Lee 1984, Allender et al. 1985, Virga et al. 2008], standard Landau free
energies seem not to provide us with phase diagrams in qualitative agreement with
MF predictions. Contrariwise, Landau-de Gennes potential is standard for uniaxial
nematics.

S. Turzi (Polimi) Low-symmetry liquid crystals 25/03/2014 19 / 36



LANDAU THEORY OF PHASE TRANSITIONS

Landau (or Landau-de Gennes...) theory

It’s a polynomial expansion of F in terms of the system invariants;

Expansion coefficients are phenomenological scalars and temperature
independent (n > 2);

Usually it gives a clearer insight into the phase sequences;

Can be incorporated into a continuum theory.

However, despite some interesting works
[Allender, Lee 1984, Allender et al. 1985, Virga et al. 2008], standard Landau free
energies seem not to provide us with phase diagrams in qualitative agreement with
MF predictions. Contrariwise, Landau-de Gennes potential is standard for uniaxial
nematics.

S. Turzi (Polimi) Low-symmetry liquid crystals 25/03/2014 19 / 36



LANDAU THEORY OF PHASE TRANSITIONS

Landau (or Landau-de Gennes...) theory

It’s a polynomial expansion of F in terms of the system invariants;

Expansion coefficients are phenomenological scalars and temperature
independent (n > 2);

Usually it gives a clearer insight into the phase sequences;

Can be incorporated into a continuum theory.

However, despite some interesting works
[Allender, Lee 1984, Allender et al. 1985, Virga et al. 2008], standard Landau free
energies seem not to provide us with phase diagrams in qualitative agreement with
MF predictions. Contrariwise, Landau-de Gennes potential is standard for uniaxial
nematics.

Possible reasons
(technical problem): too many phenomenological coefficients (up to 14
[Virga et al. 2008])

(more fundamental issue): the tensorial nature of the coefficients is neglected
and, as a consequence, some invariants are omitted.
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LANDAU THEORY OF PHASE TRANSITIONS

Landau (or Landau-de Gennes...) theory

It’s a polynomial expansion of F in terms of the system invariants;

Expansion coefficients are phenomenological scalars and temperature
independent (n > 2);

Usually it gives a clearer insight into the phase sequences;

Can be incorporated into a continuum theory.

However, despite some interesting works
[Allender, Lee 1984, Allender et al. 1985, Virga et al. 2008], standard Landau free
energies seem not to provide us with phase diagrams in qualitative agreement with
MF predictions. Contrariwise, Landau-de Gennes potential is standard for uniaxial
nematics.

Can we derive a Landau-like theory consistent with MF predictions?
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A LANDAU-LIKE THEORY (KKLS1,2)

We present the method only for the “simple” case (= one order parameter):
S = 〈 1

2 (3cos2ϑ−1)〉 = 〈P2(cosϑ)〉 .
MF free energy:

F =−1

2
u200S2 +kBT

∫ π

0
f (ϑ) log f (ϑ) sinϑdϑ (1)

KKLS method
1 Determine the “most unbiased” probability distribution, given the knowledge of the

order parameters ⇒ max. entropy principle.

f (ϑ) = 1

Z(η)
eηP2(cosϑ) . (2)

η is the Lagrangian multiplier for the constraint: S = 〈P2(cosϑ)〉.
2 Partition function: Z(η) =

∫ π

0
eηP2(cosϑ) sinϑdϑ

1[Katriel, Kventsel, Luckhurst and Sluckin, 1986]
2[Ball and Majumdar, 2010]
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A LANDAU-LIKE THEORY (KKLS)

F =−1

2
u200S2 +kBT

∫ π

0
f (ϑ) log f (ϑ) sinϑdϑ (3)

KKLS method
3 The MF free energy becomes (still a function of S and η):

F =−1

2
u200S2 +kBT Sη−kBT logZ(η) . (4)

4 The order parameter is related to Z(η) by

S = 1

Z

∂Z(η)

∂η
. (5)

5 Expand (5) in terms of η, then invert the series to obtain an expansion of η in terms of S:

η= a1S+a2S2 +a3S3 + . . . . (6)

6 Insert (6) into the MF free energy (4) and expand ⇒ F = F(S).
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BIAXIAL FREE ENERGY (D2h)3

F/u200 = 5

2

(
T̃ − 1

5

) (
S2 + 1

3
P2

)
+ 5

6

(
T̃ − 2

5
λ2

) (
D2 + 1

3
C2

)
−

√
2

3
γ

(
S D+ 1

3
P C

)
− 25

21
T̃ S

(
S2 −P2)

+ 25

21
T̃

(
S D2 − 1

3
S C2 − 2

3
P DC

)
+ 425

196
ϑ

[(
S2 + 1

3
P2

)2

+ 1

9

(
D2 + 1

3
C2

)2

+ 2

3

(
S D+ 1

3
P C

)2]
+ 325

588
T̃ (S C −P D)2 .

T̃ = kBT/u200 , γ= u220/u200 , λ2 = u222/u200 .

3[Luckhurst, Naemura, Sluckin, Thomas and Turzi 2012]
S. Turzi (Polimi) Low-symmetry liquid crystals 25/03/2014 22 / 36



COMPARISON WITH MF TOPOLOGIES

Geometric mean approximation

(u220)2 = u222u200 ,

λ2 = u222/u200 ,

T̃ = kBT/u200 .

Features:
N±

U − I First order

NB − I Second order
(Landau point)

N±
U −NB Second order
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COMPARISON WITH MF TOPOLOGIES

Sonnet, Virga, Durand limit

u220 = 0,

λ2 = u222/u200 ,

T̃ = kBT/u200 .

Features:
NU − I First order

NB − I Either first or second
order (tricritical point)

NU −NB Either first or
second order (tricritical
point)
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DISTINGUISHING FEATURES OF THE KKLS METHOD

No knowledge of the system symmetry or the invariants is required (although
still useful!).

Limited number of unknown coefficients

These are not purely phenomenological, but are related to the molecular
anisotropy via the inter-particle potential.

The tensorial nature of the molecular interactions is taken into account.

The temperature dependence is not limited to 2nd-degree terms.

Results consistent (in a limited range of temperature) with MF predictions.
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OUTLINE

Orientational order parameters

Molecular field (MF) theory vs. Landau theory:
classical results for D2h molecules

Counting the second-rank invariants in absence of
any symmetry
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INVARIANTS

1 Invariant functions: f : V →R, gf (v) = f (D(g−1)v) = f (v), for all g ∈ G and v ∈ V .

2 All C∞ G-invariant functions are C∞ functions of invariant polynomials (G
finite or compact).

3 In LCs, the second-rank OP is a map

Q= 〈D(2)(R)〉 : V (2) → V (2),

where V (2) =vector space of symmetric traceless tensors.

4 The scalar order parameters are the matrix entries of these map, with respect
to the chosen Lab axes.

5 We are lead to study the homogeneous invariant polynomials wrt to the SO(3)
action on V (2) (still need to identify the correct full group, however).

6 The construction of the full algebra of the invariants is unrealistic (we will see
why), however, thanks to Molien, we can count the number of polynomial
invariants for each degree!
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PROPERTIES OF THE RING R OF INVARIANTS

1 Theorem (Hilbert): R is generated by a finite set of fundamental invariants

2 Theorem (Cohen-Macauley condition): There exist primary invariants Km

with m = 1,2, . . . ,n and secondary invariants Jk with k = 1,2, . . . ,r such that

R =
r⊕

k=0
JkC[K1,K2, . . . ,Kn],

with J0 = 1.

3 An arbitrary invariant can be written as:

I =
r∑

k=0
Jkpk(K1,K2, . . . ,Kn) ,

with pk polynomial in the Km.

4 Primary invariants Km are algebraically independent.

5 Secondary invariants Jk are linearly independent, but are algebraic functions
of the Km.
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MOLIEN THEOREM

Let Pk(V ;R) denote the space of homogeneous polynomials p : V →R of degree k,
we set

dk = dim
{
p ∈ Pk(V ;R) : p is invariant

}
= number of linearly independent invariants of degree k .

Theorem (Molien)
Let G be finite or compact, the generating function is

RV
G (t) =

+∞∑
k=0

dktk =
∫

G

1

det(I− t D(g))
dg.

G finite:

RV
G (t) =

r∑
k=0

tdeg Jk

n∏
m=1

(1− tdegKm )
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EXAMPLE

Given V = V (2) =symmetric traceless matrices, G = SO(3) acting irreducibly on V (2)

via the j = 2 representation D(2)(R), the Molien generating function is

RV (2)

SO(3)(t) = 1

(1− t2)(1− t3)
= 1+ t2 + t3 + t4 +2t6 + t7 + . . .

There are two algebraically independent generators (primary invariants):

tr(Q2) , det(Q) = 1
3 tr(Q3) .

The number of invariant polynomials for each given degree are:

deg 2 3 4 5 6 7 · · ·
Number 1 1 1 0 2 1 · · ·
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KKLS AGAIN

1 Q= 〈D(2)(R)〉 : V (2) → V (2) ⇒ Q ∈M5×5(R)

2 Maximum entropy principle leads to a Maxwell-Boltzmann distribution

f (R) = Z(η)−1 exp(η ·D(2)(g)).

3 η is the Lagrangian multiplier for 〈D(2)(R)〉 =Q, and

Z(η) =
∫

SO(3)
exp(η ·D(2)(g)).

4 Q=∇η logZ(η); define W (η) =∇η logZ(η).

5 The entropy is: S (η) = k
(

logZ(η)−η ·W (η)
)
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SYMMETRY GROUP

Proposition [Chillingworth, 2013]

The partition function Z(η) and the entropy S (η) are invariant under

1 the action of SO(3) on M5×5(R) by left composition

A 7→ D(2)(g)A ;

2 transposition in M5×5(R)

The group G generated by (1) and (2) is G = SO(3)×SO(3)oZ2. Every element of G
can be written in the form: (M ,N)τα, with M ,N ∈ SO(3) and α= 0,1 subject to the
multiplication rules

τ2 = 1, τ(M ,N) = (NT ,MT )τ .

The group G acts on M5×5(R) by ρ, where

ρ
(
(M ,N)

)
: A 7→ D(2)(M)AD(2)(NT )

ρ
(
τ
)

: A 7→ AT
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SKETCH OF THE PROOF

Let h ∈ SO(3),

Z(D(2)(h)η) =
∫

SO(3)
exp

(
D(2)(h)η ·D(2)(g)

)
dg =

∫
SO(3)

exp
(
η ·D(2)(h−1g)

)
dg = Z(η)

Z(ηT ) =
∫

SO(3)
exp

(
ηT ·D(2)(g)

)
dg =

∫
SO(3)

exp
(
η ·D(2)(g−1)

)
dg = Z(η)

Therefore, W (η) =∇η logZ(η) is equivariant: W
(
D(2)(h)η

)= D(2)(h)W (η), and the
entropy

S (η) = k
(

logZ(η)−η ·W (η)
)

is invariant: hS (η) =S (D(2)(h)η) =S (η), τS (η) =S (ηT ) =S (η).
Furthermore, let g = τhτ

gS (η) =S
(
(D(2)(h)ηT )T )=S

(
ηD(2)(hT )

)=S (η)hT ,

Therefore, also the action of SO(3) by right composition must be included.
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MOLIEN RATIONAL FUNCTION

The symmetries (1) and (2) for non-symmetric nematic liquid crystals which can
be described by second-rank OPs are therefore captured by the action of the group
G = SO(3)×SO(3)oZ2 on M5×5(R) ∼R25.

Challenge

It is quite a challenge to perform the Molien integral, but we finally did it
[Chillingworth, Lauterbach, Turzi]! However, I omit the terrible computations...
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MOLIEN RATIONAL FUNCTION

The symmetries (1) and (2) for non-symmetric nematic liquid crystals which can
be described by second-rank OPs are therefore captured by the action of the group
G = SO(3)×SO(3)oZ2 on M5×5(R) ∼R25.

RM5×5(R)
G (t) = N(t)

D(t)

N(t) is a polynomial in t of degree 113 with positive integer coefficients, which we
do not report for brevity;

D(t) = (1− t2)(1− t3)(1− t4)3(1− t5)(1− t6)2(1− t7)2(1− t8)2×
× (1− t9)2(1− t10)2(1− t11)(1− t12)(1− t13)

There are 19 primary invariants and 1453926048 secondary invariants
[Chillingworth, Lauterbach, Turzi].
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MOLIEN SERIES

RM5×5(R)
G (t) = 1+ t2 + t3 +4t4 +5t5 +14t6 +20t7 +52t8 +90t9 +201t10 +371t11+

+792t12 +1485t13 +2977t14 +5557t15 +10620t16 +19354t17

+35467t18 +O(t19).
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STUCTURE OF BIAXIAL MESOGENIC MOLECULES
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O
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O
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Lower symmetry biaxial
nematics (C2h)
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ORIENTATIONAL ORDER PARAMETERS

A sketch of the idealised organisation of elongated molecules with C2h point group
symmetry in a biaxial nematic phase with (a) C2h symmetry and (b) D2h symmetry.

C2h D2h
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ORIENTATIONAL ORDER PARAMETERS

phase

D∞h D2h C2h

m
o

le
cu

le D∞h S = SZZ
zz P = (

SXX
zz −SYY

zz
) −

√
2
3 SXY

zz

D2h D = (
SZZ

xx −SZZ
yy

) C = (SXX
xx −SXX

yy )

−(SYY
xx −SYY

yy )
− 2

3

(
SXY

xx −SXY
yy

)
C2h

√
2
3 SZZ

xy
2
3

(
SXX

xy −SYY
xy

)
2
3

(
SXY

xy +SYX
xy

)

C2h phase

Three new OPs.

In the limit of high order 2
3

(
SXY

xy +SYX
xy

)
is large, while the other two tend to

vanish.
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ORIENTATIONAL ORDER PARAMETERS

phase

D∞h D2h C2h

m
o

le
cu

le D∞h S = SZZ
zz P = (

SXX
zz −SYY

zz
) −

√
2
3 SXY

zz

D2h D = (
SZZ

xx −SZZ
yy

) C = (SXX
xx −SXX

yy )

−(SYY
xx −SYY

yy )
− 2

3

(
SXY

xx −SXY
yy

)
C2h

√
2
3 SZZ

xy
2
3

(
SXX

xy −SYY
xy

)
2
3

(
SXY

xy +SYX
xy

)
In terms of (symmetry adapted) Wigner functions:

〈R00〉 = S = 〈D (2)
00 〉 = 1

2
〈3cos2β−1〉

〈Rs
22〉 = C/3 = 〈Re{D (2)

22 +D (2)
2−2}〉

〈Ra
22〉 =

2

3

(
SXY

xy +SYX
xy

)
= 〈Re{D (2)

22 −D (2)
2−2}〉
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SIMPLIFIED MOLECULAR FIELD THEORY

F = U −TS =−1

2

∑
m,n

u2mn
∑
p
〈D (2)

pm〉〈D (2)
−pn〉︸ ︷︷ ︸

internal energy

+kBT
∫

SO(3)
f (R) log f (R)dµ(R)︸ ︷︷ ︸

entropic contribution

.

In principle, C2h symmetry reduces the number of independent expansion
coefficients down to six: u200, u220, u2−20, u222, u2−22 and u2−2−2.

Too complicated! Can we simplify the model?

As in the Sonnet-Virga-Durand limit (u220 = 0), we simplify the MF theory
including only the contributions of the three dominant OPs: 〈R00〉, 〈Rs

22〉 and 〈Ra
22〉.
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SIMPLIFIED MOLECULAR FIELD THEORY

MF internal energy

U =−1

2
u200

(〈R00〉2 +2λs〈Rs
22〉2 +2λa〈Ra

22〉2) .

Two relative biaxial coefficients

λs = Re{u222}+u2−22

2u200
, λa = Re{u222}−u2−22

2u200
.

λs drives the appearance of 〈Rs
22〉 (D2h phase).

λa drives the appearance of 〈Ra
22〉 (C2h phase).

Free energy: F = U −TS

Two competing effects: the internal energy is minimised at high order, the entropic
term −TS is minimised at low order (f =const.).
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MOLECULAR FIELD THEORY PREDICTIONS: λs = 0.4

λs = 0.4

Features:
Phase sequence at λa = 0: I −ND2h(∥);

I −ND2h(∥) first order;

ND2h(∥)−NC2h either first or second
order (tricritical point)

I −NC2h first order;

transition temperature of I −ND2h(∥)
does not change as λa is increased (λa
does not contribute to the orientational
order of the phase involved);

transition temperatures of I −NC2h and
ND2h(∥)−NC2h increase as λa is
increased (the appearance of the NC2h
phase is facilitated).
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MOLECULAR FIELD THEORY PREDICTIONS: λs = 0.3

λs = 0.3

Features:
Phase sequence at λa = 0:
I −NU −ND2h(∥);

I −NU and NU −ND2h(∥) are first order;

ND2h(∥)−NC2h either first or second
order (tricritical point)

I −NC2h first order;

transition temperatures of I −NU and
NU −ND2h(∥) do not change as λa is
increased (λa does not contribute to the
orientational order of the phases
involved);

transition temperature of I −ND2h(∥)
increases as λa is increased (the
appearance of the NC2h phase is
facilitated).
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MOLECULAR FIELD THEORY PREDICTIONS: λs = 0.2

λs = 0.2

Features:
Phase sequence at λa = 0: I −NU −ND2h(∥);

I −NU and NU −ND2h(∥) are first order;

New phase: ND2h(⊥). When λa >λs , 〈Ra
22〉 appears

at a higher temperature than 〈Rs
22〉.

〈R00〉 〈Rs
22〉 〈Ra

22〉
NU 6= 0 0 0

ND2h(∥) 6= 0 6= 0 0

NC2h 6= 0 6= 0 6= 0

ND2h(⊥) 6= 0 0 6= 0

Is ND2h(⊥) a phase with C2h symmetry?
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A NEW BIAXIAL PHASE MAY APPEAR

Still a phase with D2h
symmetry!
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CONCLUSIONS

Even the simplified (=no coupling) theory shows a rich phase behaviour

Transitions are both first and second order and show tricritical points

Our MF theory has more surprises especially as non-trivial phases are
expected.
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