A Quadratic Elastic Theory for Helical Nematic Phases

Epifanio G. Virga
SMMM
Soft Matter Mathematical Modelling
Department of Mathematics
University of Pavia, Italy

Summary

Twist-Bend Nematic Phases
Symmetries
Helical Nematic Phases
Merging Opposite Helicities
Closing Questions

Twist-Bend Nematic Phases

The discovery of a new liquid crystal phase is a rare event and need to be supported by concurring experimental methods.

Twist-Bend Nematic Phases

The discovery of a new liquid crystal phase is a rare event and need to be supported by concurring experimental methods.

Early Experimental Evidence
A subtle nematic-to-nematic transition was suspected to occur upon further decreasing the temperature below the isotropic-to-nematic transition in a number of recent experimental studies:

Twist-Bend Nematic Phases

The discovery of a new liquid crystal phase is a rare event and need to be supported by concurring experimental methods.

Early Experimental Evidence

A subtle nematic-to-nematic transition was suspected to occur upon further decreasing the temperature below the isotropic-to-nematic transition in a number of recent experimental studies:

- P. J. Barnes, A. G. Douglass, S. K. Heeks \& G. R. Luckhurst (1993)
- M. Sepelj, A. Lesac, U. Baumeister, S. Diele, H. L. Nguyen \& D. W. Bruce (2007)
- C. T. Imrie \& P. A. Henderson (2007)
- V. P. Panov, M. Nagaraj, J. K. Vij, Y. P. Panarin, A. Kohlmeier, M. G. Tamba, R. A. Lewis \& G. H. Mehl (2010)

molecular flexibility

Up to 2011, the new (suspected) phase was known as the N_{X} phase and it was invariably associated with bent and flexible molecules.

molecular flexibility

Up to 2011, the new (suspected) phase was known as the N_{X} phase and it was invariably associated with bent and flexible molecules. Simple bent-core molecules do not exhibit two nematic phases, they instead go from nematics into smectics directly.

molecular flexibility

Up to 2011, the new (suspected) phase was known as the N_{X} phase and it was invariably associated with bent and flexible molecules.

Simple bent-core molecules do not exhibit two nematic phases, they instead go from nematics into smectics directly.

first characterization

Perhaps, the first complete experimental characterization of this new phase was achieved by

- M. Cestari, S. Diez-Berart, D. A. Dunmur, A. Ferrarini, M. R. de la Fuente, D. J. B. Jackson, D. O. Lopez, G. R. Luckhurst, M. A. Perez-Jubindo, R. M. Richardson, J. Salud, B. A. Timimi \& H. Zimmermann (2011)
who employed a number of different methods.

See also

- P. A. Henderson \& C. T. Imrie (2011)
- M. Cestari, E. Frezza, A. Ferrarini \& G. R. Luckhurst (2011)
- V. P. Panov, R. Balachandran, M. Nagaraj, J. K. Vij, M. G. Tamba, A. Kohlmeier \& G. H. Mehl (2011)
- V. P. Panov, R. Balachandran, J. K. Vij, M. G. Tamba, A. Kohlmeier \& G. H. Mehl (2012)
- L. Beguin, J. W. Emsley, M. Lelli, A. Lesage, G. R. Luckhurst, B. A. Timimi \& H. Zimmermann (2012)
for further, independent experimental confirmations.

material: $C B 7 C B$

The simplest molecular structure having core flexibility is a dimer structure in which two semirigid mesogenic groups are connected by a flexible chain.

material: $C B 7 C B$

The simplest molecular structure having core flexibility is a dimer structure in which two semirigid mesogenic groups are connected by a flexible chain.

A CB7CB molecule can be viewed as having three parts, each $\approx 1 \mathrm{~nm}$ in length: two rigid end groups connected by a flexible spacer.

transition temperatures

First transition, on cooling, at $T_{\mathrm{NI}}=116 \pm 1^{\circ} \mathrm{C}$, with transitional entropy $\Delta S_{\mathrm{NI}} / R=0.34$, where $R \approx 8.31 \mathrm{~J}(\mathrm{~mol} \mathrm{~K})^{-1}$ is the gas constant.

transition temperatures

First transition, on cooling, at $T_{\mathrm{NI}}=116 \pm 1^{\circ} \mathrm{C}$, with transitional entropy $\Delta S_{\mathrm{NI}} / R=0.34$, where $R \approx 8.31 \mathrm{~J}(\mathrm{~mol} \mathrm{~K})^{-1}$ is the gas constant.

Second transition, on further cooling, at $T_{\mathrm{NX}}=103 \pm 1^{\circ} \mathrm{C}$, with $\Delta S_{\mathrm{NI}} / R=0.31$.

transition temperatures

First transition, on cooling, at $T_{\mathrm{NI}}=116 \pm 1^{\circ} \mathrm{C}$, with transitional entropy $\Delta S_{\mathrm{NI}} / R=0.34$, where $R \approx 8.31 \mathrm{~J}(\mathrm{~mol} \mathrm{~K})^{-1}$ is the gas constant.

Second transition, on further cooling, at $T_{\mathrm{NX}}=103 \pm 1^{\circ} \mathrm{C}$, with $\Delta S_{\mathrm{NI}} / R=0.31$.

Both transitions are weakly first-order, with at two-phase coexistence at each transition of approximately $0.1^{\circ} \mathrm{C}$.

transition temperatures

First transition, on cooling, at $T_{\mathrm{NI}}=116 \pm 1^{\circ} \mathrm{C}$, with transitional entropy $\Delta S_{\mathrm{NI}} / R=0.34$, where $R \approx 8.31 \mathrm{~J}(\mathrm{~mol} \mathrm{~K})^{-1}$ is the gas constant.

Second transition, on further cooling, at $T_{\mathrm{NX}}=103 \pm 1^{\circ} \mathrm{C}$, with $\Delta S_{\mathrm{NI}} / R=0.31$.

Both transitions are weakly first-order, with at two-phase coexistence at each transition of approximately $0.1^{\circ} \mathrm{C}$.

The X phase supercools extensively. On heating, the crystal form of CB7CB melts at $T=102{ }^{\circ} \mathrm{C}$

Theoretical Predictions

- R. B. Meyer (1973), inspired by the symmetry of polar interactions, envisaged a twist-bend spontaneous equilibrium molecular arrangement, occurring in two variants with opposite helicities.

Theoretical Predictions

- R. B. Meyer (1973), inspired by the symmetry of polar interactions, envisaged a twist-bend spontaneous equilibrium molecular arrangement, occurring in two variants with opposite helicities.
- I. Dozov (2001) arrived independently to the same picture starting from purely static (and steric) considerations.

$\boldsymbol{b}=\boldsymbol{n} \times \operatorname{curl} \boldsymbol{n}$

computer simulation

Memmer (2002) performed (Monte Carlo) molecular simulations which reproduced the heliconical equilibrium organizations predicted by Dozov (2001).

computer simulation

Memmer (2002) performed (Monte Carlo) molecular simulations which reproduced the heliconical equilibrium organizations predicted by Dozov (2001).

Bent-core Gay-Berne molecules with no polar interactions.
naming the phase
Luckhurst et al (2011) suggested to call this phase twist-bend nematic (TBN)
recognizing its ground states as those envisaged by MEYER and DoZOV.
naming the phase
Luckhurst ET AL (2011) suggested to call this phase twist-bend nematic (TBN)
recognizing its ground states as those envisaged by MEYER and DoZOV.

heliconical natural states

The TBN natural states are conical twists, in which the average molecular orientation n performs uniform precessions, making the angle ϑ with the twist axis t.
naming the phase
LUCKHURST ET AL (2011) suggested to call this phase twist-bend nematic (TBN)
recognizing its ground states as those envisaged by MEYER and DoZOV.

heliconical natural states

The TBN natural states are conical twists, in which the average molecular orientation n performs uniform precessions, making the angle ϑ with the twist axis t.
Letting $\boldsymbol{t}=\boldsymbol{e}_{z}$ in a Cartesian frame $\left(\boldsymbol{e}_{x}, \boldsymbol{e}_{y}, \boldsymbol{e}_{z}\right)$,

$$
\begin{gathered}
\boldsymbol{n}_{0}^{ \pm}=\sin \vartheta \cos (\pm q z) \boldsymbol{e}_{x}+\sin \vartheta \sin (\pm q z) \boldsymbol{e}_{y}+\cos \vartheta \boldsymbol{e}_{z} \\
\operatorname{curl} \boldsymbol{n}_{0}^{ \pm} \cdot \boldsymbol{n}_{0}^{ \pm}=\mp q \sin ^{2} \vartheta \\
q>0 \quad \text { twist parameter } \\
p:=\frac{2 \pi}{q} \quad \text { pitch } \quad \vartheta \quad \text { cone angle }
\end{gathered}
$$

Recent (impressive) Experimental Evidence

A visual direct evidence for the TBN phase in $C B 7 C B$ (and allied mixtures) has been provided very recently with accurate measurements of both p and ϑ.

Recent (impressive) Experimental Evidence

A visual direct evidence for the TBN phase in $C B^{7} \boldsymbol{C B}$ (and allied mixtures) has been provided very recently with accurate measurements of both p and ϑ.

- D. Chen, J. H. Porada, J. B. Hooper, A. Klittnick, Y. Shen, M. R. Tuchband, E. Korblova, D. Bedrov, D. M. Walba, M. A. Glaser, J. E. Maclennana \& N. A. Clark (2013)
- V. Borshch, Y.-K. Kim, J. Xiang, M. Gao, A. Jakli, V. P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, \& O. D. Lavrentovich (2013)

Recent (impressive) Experimental Evidence

A visual direct evidence for the TBN phase in $C B^{7} \boldsymbol{C B}$ (and allied mixtures) has been provided very recently with accurate measurements of both p and ϑ.

- D. Chen, J. H. Porada, J. B. Hooper, A. Klittnick, Y. Shen, M. R. Tuchband, E. Korblova, D. Bedrov, D. M. Walba, M. A. Glaser, J. E. Maclennana \& N. A. Clark (2013)
- V. Borshch, Y.-K. Kim, J. Xiang, M. Gao, A. Jakli, V. P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, \& O. D. Lavrentovich (2013)
measured pitch and cone angle

$$
p \approx 10 \mathrm{~nm} \quad \vartheta \approx 20^{\circ}
$$

Freeze-Fracture Transmission Electron Microscopy (FFTEM)

$$
T=95^{\circ} \mathrm{C}, \quad \text { scale bar: } 100 \mathrm{~nm}
$$

Freeze-Fracture Transmission Electron Microscopy (FFTEM)

$T=95^{\circ} \mathrm{C}, \quad$ scale bar: 100 nm

$T=90^{\circ} \mathrm{C}, \quad$ scale bar: 100 nm

Comparisons

Comparisons

atomistic MD simulations

in periodic box of a nominally $5.6 \times 5.6 \times 8.0 \mathrm{~nm}$

Symmetries

The molecular effective curvature, while inducing no microscopic twist, allegedly favors a chiral collective arrangement in which bow-shaped molecules uniformly precess along an ideal cylindrical helix.

Symmetries

The molecular effective curvature, while inducing no microscopic twist, allegedly favors a chiral collective arrangement in which bow-shaped molecules uniformly precess along an ideal cylindrical helix.

Polar and achiral

$$
\text { Point-group } \mathrm{C}_{2 v}
$$

Symmetries

The molecular effective curvature, while inducing no microscopic twist, allegedly favors a chiral collective arrangement in which bow-shaped molecules uniformly precess along an ideal cylindrical helix.

Polar and achiral Point-group $\mathrm{C}_{2 v}$

Two symmetries are broken in the helical arrangement:

- the continuous translations along the twist axis t
- the continuous rotations around t

Two symmetries are broken in the helical arrangement:

- the continuous translations along the twist axis t
- the continuous rotations around t

However, a symmetry is recovered which involves any given translation along \boldsymbol{t}, provided it is accompanied by an appropriately tuned rotation.

Lorman \& Mettout $(1999,2004)$

Two symmetries are broken in the helical arrangement:

- the continuous translations along the twist axis t
- the continuous rotations around t

However, a symmetry is recovered which involves any given translation along \boldsymbol{t}, provided it is accompanied by an appropriately tuned rotation.

Lorman \& Mettout $(1999,2004)$
This forbids any smectic modulation in the mass density, rendering the helical phase purely nematic.

Two symmetries are broken in the helical arrangement:

- the continuous translations along the twist axis t
- the continuous rotations around t

However, a symmetry is recovered which involves any given translation along \boldsymbol{t}, provided it is accompanied by an appropriately tuned rotation.

Lorman \& Mettout $(1999,2004)$
This forbids any smectic modulation in the mass density, rendering the helical phase purely nematic.

no polarity

While the nematic director \boldsymbol{n} is defined as the ensemble average

$$
n:=\langle\boldsymbol{m}\rangle
$$

no polar order survives in a helical phase, as

$$
\langle\boldsymbol{p}\rangle=0
$$

Chiral Variants

There are two chiral variant of a helical nematic phase, which have opposite helicities.

Chiral Variants

There are two chiral variant of a helical nematic phase, which have opposite helicities.

There is experimental evidence that a TBN-phase hosts both chiral variants.

Chiral Variants

There are two chiral variant of a helical nematic phase, which have opposite helicities.

There is experimental evidence that a TBN-phase hosts both chiral variants.

Our strategy will be to treat first each variant separately and then to attempt at merging them together in a TBN-phase.

Helical Nematic Phases

Here we take both the natural pitch $p=2 \pi / q$ and the cone angle ϑ as prescribed parameters, constitutive of a certain helical phase.

Helical Nematic Phases

Here we take both the natural pitch $p=2 \pi / q$ and the cone angle ϑ as prescribed parameters, constitutive of a certain helical phase.

(Positive) Natural State

$$
\begin{gathered}
\boldsymbol{n}_{0}^{+}=\sin \vartheta \cos q z \boldsymbol{e}_{x}+\sin \vartheta \sin q z \boldsymbol{e}_{y}+\cos \vartheta \boldsymbol{e}_{z} \quad q>0 \\
\Downarrow \\
\nabla \boldsymbol{n}_{0}^{+}=q\left(\boldsymbol{e}_{z} \times \boldsymbol{n}_{0}^{+}\right) \otimes \boldsymbol{e}_{z} \quad \operatorname{curl} \boldsymbol{n}_{0}^{+} \cdot \boldsymbol{n}_{0}^{+}=-q \sin ^{2} \vartheta<0
\end{gathered}
$$

Helical Nematic Phases

Here we take both the natural pitch $p=2 \pi / q$ and the cone angle ϑ as prescribed parameters, constitutive of a certain helical phase.

(Positive) Natural State

$$
\begin{gathered}
\boldsymbol{n}_{0}^{+}=\sin \vartheta \cos q z \boldsymbol{e}_{x}+\sin \vartheta \sin q z \boldsymbol{e}_{y}+\cos \vartheta \boldsymbol{e}_{z} \quad q>0 \\
\Downarrow \\
\nabla \boldsymbol{n}_{0}^{+}=q\left(\boldsymbol{e}_{z} \times \boldsymbol{n}_{0}^{+}\right) \otimes \boldsymbol{e}_{z} \quad \operatorname{curl} \boldsymbol{n}_{0}^{+} \cdot \boldsymbol{n}_{0}^{+}=-q \sin ^{2} \vartheta<0
\end{gathered}
$$

twist tensor

More generally, for n prescribed at a point in space, the tensor

$$
\mathbf{T}^{+}:=q(\boldsymbol{t} \times \boldsymbol{n}) \otimes \boldsymbol{t}
$$

expresses the natural distortion associated there with the preferred twisted configuration that agrees with the prescribed nematic director n and has t as twist axis.

natural distortions

We imagine that in the absence of any frustrating cause, given \boldsymbol{n} at a point, the director field would attain in its vicinity a spatial arrangement such that

$$
\nabla \boldsymbol{n}=\mathbf{T}^{+}(\boldsymbol{t})
$$

with any t such that

$$
\boldsymbol{n} \cdot \boldsymbol{t}=\cos \vartheta
$$

natural distortions

We imagine that in the absence of any frustrating cause, given \boldsymbol{n} at a point, the director field would attain in its vicinity a spatial arrangement such that

$$
\nabla \boldsymbol{n}=\mathbf{T}^{+}(\boldsymbol{t})
$$

with any t such that

$$
\begin{gathered}
\boldsymbol{n} \cdot \boldsymbol{t}=\cos \vartheta \\
\text { energy reference }
\end{gathered}
$$

For a generic configuration, the elastic energy that measures locally the distortional cost should be accounted for relative to the whole class of natural distortions, vanishing whenever any of the latter is attained.

Elastic Energy Density

We write the elastic energy f_{e}^{+}per unit volume as

$$
f_{e}^{+}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n})=\frac{1}{2}\left[\nabla \boldsymbol{n}-\mathbf{T}^{+}(\boldsymbol{t})\right] \cdot \mathbb{K}(\boldsymbol{n})\left[\nabla \boldsymbol{n}-\mathbf{T}^{+}(\boldsymbol{t})\right]
$$

Elastic Energy Density

We write the elastic energy f_{e}^{+}per unit volume as

$$
f_{e}^{+}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n})=\frac{1}{2}\left[\nabla \boldsymbol{n}-\mathbf{T}^{+}(\boldsymbol{t})\right] \cdot \mathbb{K}(\boldsymbol{n})\left[\nabla \boldsymbol{n}-\mathbf{T}^{+}(\boldsymbol{t})\right]
$$

$$
\mathbb{K}(\boldsymbol{n})
$$

positive-definite, symmetric forth-order tensor invariant under rotations about n

Elastic Energy Density

We write the elastic energy f_{e}^{+}per unit volume as

$$
f_{e}^{+}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n})=\frac{1}{2}\left[\nabla \boldsymbol{n}-\mathbf{T}^{+}(\boldsymbol{t})\right] \cdot \mathbb{K}(\boldsymbol{n})\left[\nabla \boldsymbol{n}-\mathbf{T}^{+}(\boldsymbol{t})\right]
$$

$$
\mathbb{K}(\boldsymbol{n})
$$

positive-definite, symmetric forth-order tensor invariant under rotations about n

$$
\boldsymbol{n} \cdot \boldsymbol{t}=\cos \vartheta
$$

Elastic Energy Density

We write the elastic energy f_{e}^{+}per unit volume as

$$
f_{e}^{+}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n})=\frac{1}{2}\left[\nabla \boldsymbol{n}-\mathbf{T}^{+}(\boldsymbol{t})\right] \cdot \mathbb{K}(\boldsymbol{n})\left[\nabla \boldsymbol{n}-\mathbf{T}^{+}(\boldsymbol{t})\right]
$$

$$
\mathbb{K}(\boldsymbol{n})
$$

positive-definite, symmetric forth-order tensor invariant under rotations about n

$$
\boldsymbol{n} \cdot \boldsymbol{t}=\cos \vartheta
$$

metric interpretation
If for given \boldsymbol{n} and $\nabla \boldsymbol{n}, \boldsymbol{t}$ can be chosen so that $\nabla \boldsymbol{n}=\mathbf{T}^{+}(\boldsymbol{t}), f_{e}^{+}$ vanishes, attaining its absolute minimum.

Elastic Energy Density

We write the elastic energy f_{e}^{+}per unit volume as

$$
f_{e}^{+}(t, \boldsymbol{n}, \nabla \boldsymbol{n})=\frac{1}{2}\left[\nabla \boldsymbol{n}-\mathbf{T}^{+}(\boldsymbol{t})\right] \cdot \mathbb{K}(\boldsymbol{n})\left[\nabla \boldsymbol{n}-\mathbf{T}^{+}(\boldsymbol{t})\right]
$$

$$
\mathbb{K}(\boldsymbol{n})
$$

positive-definite, symmetric forth-order tensor invariant under rotations about n

$$
\boldsymbol{n} \cdot \boldsymbol{t}=\cos \vartheta
$$

metric interpretation
If for given \boldsymbol{n} and $\nabla \boldsymbol{n}, \boldsymbol{t}$ can be chosen so that $\nabla \boldsymbol{n}=\mathrm{T}^{+}(\boldsymbol{t}), f_{e}^{+}$ vanishes, attaining its absolute minimum.
If there is no such \boldsymbol{t}, then minimizing f_{e}^{+}in \boldsymbol{t} would identify the natural state closest to the nematic distortion represented by $\nabla \boldsymbol{n}$ in the metric induced by $\mathbb{K}(\boldsymbol{n})$.

two-director theory

Here both n and t are to be considered as unknown fields, though constrained: at equilibrium, the free-energy functional that we shall construct is to be minimized in both these fields.

two-director theory

Here both n and t are to be considered as unknown fields, though constrained: at equilibrium, the free-energy functional that we shall construct is to be minimized in both these fields.

identities

$$
(\nabla \boldsymbol{n})^{\top} \boldsymbol{n}=\mathbf{0} \quad\left(\mathbf{T}^{+}\right)^{\top} \boldsymbol{n}=\mathbf{0} \quad \operatorname{tr} \mathbf{T}^{+}=0
$$

two-director theory

Here both n and t are to be considered as unknown fields, though constrained: at equilibrium, the free-energy functional that we shall construct is to be minimized in both these fields.

identities

$$
\begin{gathered}
(\nabla \boldsymbol{n})^{\top} \boldsymbol{n}=\mathbf{0} \quad\left(\mathbf{T}^{+}\right)^{\top} \boldsymbol{n}=\mathbf{0} \quad \operatorname{tr} \mathbf{T}^{+}=0 \\
\text { reduced } \mathbb{K}(\boldsymbol{n}) \\
\mathbb{K}_{i j h k}=k_{1} \delta_{i h} \delta_{j k}+k_{2} \delta_{i j} \delta_{h k}+k_{3} \delta_{i h} n_{j} n_{k}+k_{4} \delta_{i k} \delta_{j h} \\
k_{i} \quad \text { elastic moduli }
\end{gathered}
$$

representation formula

$$
\begin{aligned}
f_{e}^{+}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n}) & =\frac{1}{2}\left\{K_{11}(\operatorname{div} \boldsymbol{n})^{2}+K_{22}\left(\boldsymbol{n} \cdot \operatorname{curl} \boldsymbol{n}+q|\boldsymbol{t} \times \boldsymbol{n}|^{2}\right)^{2}\right. \\
& +K_{33}|\boldsymbol{n} \times \operatorname{curl} \boldsymbol{n}+q(\boldsymbol{t} \cdot \boldsymbol{n}) \boldsymbol{t} \times \boldsymbol{n}|^{2} \\
& \left.+K_{24}\left[\operatorname{tr}(\nabla \boldsymbol{n})^{2}-(\operatorname{div} \boldsymbol{n})^{2}\right]\right\}-K_{24} q \boldsymbol{t} \times \boldsymbol{n} \cdot(\nabla \boldsymbol{n})^{\top} \boldsymbol{t}
\end{aligned}
$$

representation formula

$$
\begin{aligned}
f_{e}^{+}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n})= & \frac{1}{2}\left\{K_{11}(\operatorname{div} \boldsymbol{n})^{2}+K_{22}\left(\boldsymbol{n} \cdot \operatorname{curl} \boldsymbol{n}+q|\boldsymbol{t} \times \boldsymbol{n}|^{2}\right)^{2}\right. \\
+ & K_{33}|\boldsymbol{n} \times \operatorname{curl} \boldsymbol{n}+q(\boldsymbol{t} \cdot \boldsymbol{n}) \boldsymbol{t} \times \boldsymbol{n}|^{2} \\
+ & \left.K_{24}\left[\operatorname{tr}(\nabla \boldsymbol{n})^{2}-(\operatorname{div} \boldsymbol{n})^{2}\right]\right\}-K_{24} q \boldsymbol{t} \times \boldsymbol{n} \cdot(\nabla \boldsymbol{n})^{\top} \boldsymbol{t} \\
& K_{11}=k_{1}+k_{2}+k_{4} \quad K_{22}=k_{1} \\
& K_{33}=k_{1}+k_{3} \quad K_{24}=k_{1}+k_{4}
\end{aligned}
$$

representation formula

$$
\begin{aligned}
f_{e}^{+}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n})= & \frac{1}{2}\left\{K_{11}(\operatorname{div} \boldsymbol{n})^{2}+K_{22}\left(\boldsymbol{n} \cdot \operatorname{curl} \boldsymbol{n}+q|\boldsymbol{t} \times \boldsymbol{n}|^{2}\right)^{2}\right. \\
+ & K_{33}|\boldsymbol{n} \times \operatorname{curl} \boldsymbol{n}+q(\boldsymbol{t} \cdot \boldsymbol{n}) \boldsymbol{t} \times \boldsymbol{n}|^{2} \\
+ & \left.K_{24}\left[\operatorname{tr}(\nabla \boldsymbol{n})^{2}-(\operatorname{div} \boldsymbol{n})^{2}\right]\right\}-K_{24} q \boldsymbol{t} \times \boldsymbol{n} \cdot(\nabla \boldsymbol{n})^{\top} \boldsymbol{t} \\
& K_{11}=k_{1}+k_{2}+k_{4} \quad K_{22}=k_{1} \\
& K_{33}=k_{1}+k_{3} \quad K_{24}=k_{1}+k_{4}
\end{aligned}
$$

Ericksen's inequalities

$$
2 K_{11} \geqq K_{24} \quad 2 K_{22} \geqq K_{24} \quad K_{33} \geqq 0 \quad K_{24} \geqq 0
$$

Typical Variational Problem

In the absence of other distorting causes, the free-energy functional to be minimized is

$$
\mathscr{F}_{e}^{+}[\boldsymbol{t}, \boldsymbol{n}]:=\int_{\mathscr{B}} f_{e}^{+}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n}) d V
$$

Typical Variational Problem

In the absence of other distorting causes, the free-energy functional to be minimized is

$$
\mathscr{F}_{e}^{+}[\boldsymbol{t}, \boldsymbol{n}]:=\int_{\mathscr{B}} f_{e}^{+}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n}) d V
$$

\mathscr{B} region in space
V volume measure

Typical Variational Problem

In the absence of other distorting causes, the free-energy functional to be minimized is

$$
\mathscr{F}_{e}^{+}[\boldsymbol{t}, \boldsymbol{n}]:=\int_{\mathscr{B}} f_{e}^{+}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n}) d V \quad \begin{array}{cc}
\mathscr{B} & \text { region in space } \\
V & \text { volume measure }
\end{array}
$$

subject to

$$
\boldsymbol{n} \cdot \boldsymbol{t}=\vartheta \quad \text { in } \quad \mathscr{B}
$$

and to appropriate boundary conditions for both n and t on $\partial \mathscr{B}$.

Typical Variational Problem

In the absence of other distorting causes, the free-energy functional to be minimized is

$$
\mathscr{F}_{e}^{+}[\boldsymbol{t}, \boldsymbol{n}]:=\int_{\mathscr{B}} f_{e}^{+}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n}) d V \quad \begin{array}{cc}
\mathscr{B} & \text { region in space } \\
V & \text { volume measure }
\end{array}
$$

subject to

$$
\boldsymbol{n} \cdot \boldsymbol{t}=\vartheta \quad \text { in } \quad \mathscr{B}
$$

and to appropriate boundary conditions for both n and t on $\partial \mathscr{B}$.
Remarks

- This theory features two constrained fields, \boldsymbol{n} and \boldsymbol{t}.

Typical Variational Problem

In the absence of other distorting causes, the free-energy functional to be minimized is

$$
\mathscr{F}_{e}^{+}[\boldsymbol{t}, \boldsymbol{n}]:=\int_{\mathscr{B}} f_{e}^{+}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n}) d V \quad \begin{array}{cc}
\mathscr{B} & \text { region in space } \\
V & \text { volume measure }
\end{array}
$$

subject to

$$
\boldsymbol{n} \cdot \boldsymbol{t}=\vartheta \quad \text { in } \quad \mathscr{B}
$$

and to appropriate boundary conditions for both \boldsymbol{n} and t on $\partial \mathscr{B}$.

Remarks

- This theory features two constrained fields, \boldsymbol{n} and \boldsymbol{t}.
- Physically, t represents the optic axis of the medium, likely to be the only optic observable when the pitch p ranges in the nanometric domain.
- Dozov (2001) proposed a quartic elastic theory, featuring only \boldsymbol{n}, but allowing for terms in both $(\nabla \boldsymbol{n})^{4}$ and $\left(\nabla^{2} \boldsymbol{n}\right)^{2}$, to counteract a negative bend constant K_{33} required to ignite the twist-bend instability.
- Dozov (2001) proposed a quartic elastic theory, featuring only \boldsymbol{n}, but allowing for terms in both $(\nabla \boldsymbol{n})^{4}$ and $\left(\nabla^{2} \boldsymbol{n}\right)^{2}$, to counteract a negative bend constant K_{33} required to ignite the twist-bend instability.
- f_{e}^{+}reduces to the elastic free-energy density of classical nematics when either $q \rightarrow 0$ or $\vartheta \rightarrow 0$.
- Dozov (2001) proposed a quartic elastic theory, featuring only \boldsymbol{n}, but allowing for terms in both $(\nabla \boldsymbol{n})^{4}$ and $\left(\nabla^{2} \boldsymbol{n}\right)^{2}$, to counteract a negative bend constant K_{33} required to ignite the twist-bend instability.
- f_{e}^{+}reduces to the elastic free-energy density of classical nematics when either $q \rightarrow 0$ or $\vartheta \rightarrow 0$.
- For $\vartheta=\frac{\pi}{2}, f_{e}^{+}$delivers an alternative energy density for chiral nematics, which is positive-definite for all $K_{24} \geqq 0$
- Dozov (2001) proposed a quartic elastic theory, featuring only \boldsymbol{n}, but allowing for terms in both $(\nabla \boldsymbol{n})^{4}$ and $\left(\nabla^{2} \boldsymbol{n}\right)^{2}$, to counteract a negative bend constant K_{33} required to ignite the twist-bend instability.
- f_{e}^{+}reduces to the elastic free-energy density of classical nematics when either $q \rightarrow 0$ or $\vartheta \rightarrow 0$.
- For $\vartheta=\frac{\pi}{2}, f_{e}^{+}$delivers an alternative energy density for chiral nematics, which is positive-definite for all $K_{24} \geqq 0$ (whereas, to ensure energy positive-definiteness, the classical theory requires that $K_{24}=0$).

Merging Opposite Helicities

The natural state of the helical nematic phase with opposite chirality
$-q$ is characterized by the twist tensor

$$
\mathbf{T}^{-}:=-\mathbf{T}^{+}=-q(\boldsymbol{t} \times \boldsymbol{n}) \otimes \boldsymbol{t} \quad q>0
$$

Merging Opposite Helicities

The natural state of the helical nematic phase with opposite chirality $-q$ is characterized by the twist tensor

$$
\mathbf{T}^{-}:=-\mathbf{T}^{+}=-q(\boldsymbol{t} \times \boldsymbol{n}) \otimes \boldsymbol{t} \quad q>0
$$

Assuming that the elastic response is the same, but about a natural state with opposite helicity, the free energy density f_{e}^{-}is obtained from f_{e}^{+}by the formal change $q \mapsto-q$:

$$
\begin{aligned}
f_{e}^{-}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n}) & =\frac{1}{2}\left\{K_{11}(\operatorname{div} \boldsymbol{n})^{2}+K_{22}\left(\boldsymbol{n} \cdot \operatorname{curl} \boldsymbol{n}-q|\boldsymbol{t} \times \boldsymbol{n}|^{2}\right)^{2}\right. \\
& +K_{33}|\boldsymbol{n} \times \operatorname{curl} \boldsymbol{n}-q(\boldsymbol{t} \cdot \boldsymbol{n}) \boldsymbol{t} \times \boldsymbol{n}|^{2} \\
& \left.+K_{24}\left[\operatorname{tr}(\nabla \boldsymbol{n})^{2}-(\operatorname{div} \boldsymbol{n})^{2}\right]\right\}+K_{24} q \boldsymbol{t} \times \boldsymbol{n} \cdot(\nabla \boldsymbol{n})^{\top} \boldsymbol{t}
\end{aligned}
$$

TBN free energy density

A $T B N$-phase can be envisaged as a nematic phase with two natural states with opposite helicities.

TBN free energy density

A $T B N$-phase can be envisaged as a nematic phase with two natural states with opposite helicities.

The elastic free energy f_{e} is necessarily non-convex.

TBN free energy density

A $T B N$-phase can be envisaged as a nematic phase with two natural states with opposite helicities.

The elastic free energy f_{e} is necessarily non-convex.

possible candidates for f_{e}

- quadratic, but non-smooth

$$
f_{e}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n})=\min \left\{f_{e}^{+}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n}), f_{e}^{-}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n})\right\}
$$

- smooth, but quartic

$$
\begin{gathered}
f_{e}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n})=\frac{1}{f_{0}} f_{e}^{+}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n}) f_{e}^{-}(\boldsymbol{t}, \boldsymbol{n}, \nabla \boldsymbol{n}) \\
f_{0}=\frac{1}{2} \sin ^{2} \vartheta\left(K_{22} \sin ^{2} \vartheta+K_{33} \cos ^{2} \vartheta\right)
\end{gathered}
$$

Matching opposite helicities

Since f_{e}^{+}is minimized for $\nabla \boldsymbol{n}=\mathbf{T}^{+}$and f_{e}^{-}is minimized for $\nabla \boldsymbol{n}=$ \mathbf{T}^{-}, possible minimizers for f_{e} are sequences of alternating natural states $\mathbf{T}^{+}, \mathbf{T}^{-}$matched along appropriate interfaces.

Matching opposite helicities

Since f_{e}^{+}is minimized for $\nabla \boldsymbol{n}=\mathbf{T}^{+}$and f_{e}^{-}is minimized for $\nabla \boldsymbol{n}=$ \mathbf{T}^{-}, possible minimizers for f_{e} are sequences of alternating natural states $\mathbf{T}^{+}, \mathbf{T}^{-}$matched along appropriate interfaces.

kinematic compatibility

Letting $\boldsymbol{\nu}$ denote a unit normal to an interface \mathscr{S},

$$
\left(\mathbf{T}^{+}-\mathbf{T}^{-}\right) \boldsymbol{u}=\mathbf{0} \quad \text { for all } \quad \boldsymbol{u} \cdot \boldsymbol{\nu} \equiv 0
$$

Matching opposite helicities

Since f_{e}^{+}is minimized for $\nabla \boldsymbol{n}=\mathbf{T}^{+}$and f_{e}^{-}is minimized for $\nabla \boldsymbol{n}=$ \mathbf{T}^{-}, possible minimizers for f_{e} are sequences of alternating natural states $\mathbf{T}^{+}, \mathbf{T}^{-}$matched along appropriate interfaces.

kinematic compatibility

Letting $\boldsymbol{\nu}$ denote a unit normal to an interface \mathscr{S},

$$
\left(\mathbf{T}^{+}-\mathbf{T}^{-}\right) \boldsymbol{u}=\mathbf{0} \quad \text { for all } \quad \boldsymbol{u} \cdot \boldsymbol{\nu} \equiv 0
$$

- either parallel stacking

$$
\boldsymbol{t}^{+}=\boldsymbol{t}^{-}=\nu
$$

- or wedge laminate

$$
t^{+} \times n=-t^{-} \times n \quad \text { and } \quad \nu=\frac{t^{+}-t^{-}}{\left|t^{+}-t^{-}\right|}
$$

wedge laminate

The trace \boldsymbol{n} on \mathscr{S} should satisfy the compatibility condition

$$
\nabla_{\mathrm{s}} \boldsymbol{n}=\kappa \boldsymbol{n}_{\perp} \otimes \boldsymbol{n} \quad \boldsymbol{n}_{\perp}:=\boldsymbol{\nu} \times \boldsymbol{n} \quad \kappa:=q \sin \vartheta \cos \vartheta
$$

wedge laminate won't work
As a consequence, the integral lines of \boldsymbol{n} on \mathscr{S} should satisfy

$$
\kappa_{g}=\kappa \quad \text { and } \quad\left(\nabla_{\mathrm{s}} \boldsymbol{\nu}\right) \boldsymbol{n}=\mathbf{0}
$$

κ_{g} geodesic curvature $\nabla_{\mathrm{s}} \boldsymbol{\nu} \quad$ curvature tensor
which are incompatible.
wedge laminate won't work
As a consequence, the integral lines of \boldsymbol{n} on \mathscr{S} should satisfy

$$
\kappa_{g}=\kappa \quad \text { and } \quad\left(\nabla_{\mathrm{s}} \boldsymbol{\nu}\right) \boldsymbol{n}=\mathbf{0}
$$

κ_{g} geodesic curvature

$$
\nabla_{\mathrm{s}} \nu \quad \text { curvature tensor }
$$

which are incompatible. parallel stacking does work

For $\boldsymbol{t}^{+}=\boldsymbol{t}^{-}=\boldsymbol{\nu}$ and $\boldsymbol{n} \cdot \boldsymbol{\nu} \equiv \cos \vartheta$, the integral lines of \boldsymbol{n} on \mathscr{S} need satisfy

$$
\left(\nabla_{\mathrm{s}} \boldsymbol{\nu}\right) \boldsymbol{n}=\mathbf{0}
$$

which only requires \mathscr{S} to be developable

$$
K=0 \quad \text { zero Gaussian curvature }
$$

Closing Questions

A number of questions are posed by the theory proposed here:

Closing Questions

A number of questions are posed by the theory proposed here:

- No microscopic theory is known to predict the transition from the uniformly aligned ground state characteristic of ordinary nematics to the TBN heliconical ground states.

Closing Questions

A number of questions are posed by the theory proposed here:

- No microscopic theory is known to predict the transition from the uniformly aligned ground state characteristic of ordinary nematics to the TBN heliconical ground states.
- The elastic energy density f_{e} features the classical four elastic constants, but introduces an extra field, the twist t. This poses the question as to which defects the fields \boldsymbol{n} and \boldsymbol{t} may exhibit and how they are interwoven.

Closing Questions

A number of questions are posed by the theory proposed here:

- No microscopic theory is known to predict the transition from the uniformly aligned ground state characteristic of ordinary nematics to the TBN heliconical ground states.
- The elastic energy density f_{e} features the classical four elastic constants, but introduces an extra field, the twist t. This poses the question as to which defects the fields \boldsymbol{n} and \boldsymbol{t} may exhibit and how they are interwoven.
- An extra field also requires extra boundary conditions. The question is how to set general boundary conditions for both n and t to grant existence of global energy minimizers.

Closing Questions

A number of questions are posed by the theory proposed here:

- No microscopic theory is known to predict the transition from the uniformly aligned ground state characteristic of ordinary nematics to the TBN heliconical ground states.
- The elastic energy density f_{e} features the classical four elastic constants, but introduces an extra field, the twist t. This poses the question as to which defects the fields \boldsymbol{n} and \boldsymbol{t} may exhibit and how they are interwoven.
- An extra field also requires extra boundary conditions. The question is how to set general boundary conditions for both n and t to grant existence of global energy minimizers.
- No hydrodynamic considerations have entered this study, but the question should already be asked as to whether the relaxation in time of t represents a further source of dissipation.

Acknowledgements

Discussion

O.D. Lavrentovich

G.R. Luckhurst
M.A. Osipov

Soft Matter Mathematical Modelling
 Department of Mathematics
 University of Pavia, Italy

