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Twist-Bend Nematic Phases

The discovery of a new liquid crystal phase is a rare event and need

to be supported by concurring experimental methods.

Early Experimental Evidence

A subtle nematic-to-nematic transition was suspected to occur upon

further decreasing the temperature below the isotropic-to-nematic tran-

sition in a number of recent experimental studies:

• P. J. Barnes, A. G. Douglass, S. K. Heeks & G. R.

Luckhurst (1993)

• M. Sepelj, A. Lesac, U. Baumeister, S. Diele, H. L.

Nguyen & D. W. Bruce (2007)

• C. T. Imrie & P. A. Henderson (2007)

• V. P. Panov, M. Nagaraj, J. K. Vij, Y. P. Panarin, A.

Kohlmeier, M. G. Tamba, R. A. Lewis & G. H. Mehl

(2010)
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molecular flexibility

Up to 2011, the new (suspected) phase was known as the NX phase

and it was invariably associated with bent and flexible molecules.

Simple bent-core molecules do not exhibit two nematic phases, they

instead go from nematics into smectics directly.

first characterization

Perhaps, the first complete experimental characterization of this new

phase was achieved by

• M. Cestari, S. Diez-Berart, D. A. Dunmur, A. Fer-

rarini, M. R. de la Fuente, D. J. B. Jackson, D. O.

Lopez, G. R. Luckhurst, M. A. Perez-Jubindo, R. M.

Richardson, J. Salud, B. A. Timimi & H. Zimmermann

(2011)

who employed a number of different methods.
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See also

• P. A. Henderson & C. T. Imrie (2011)

• M. Cestari, E. Frezza, A. Ferrarini & G. R. Luckhurst

(2011)

• V. P. Panov, R. Balachandran, M. Nagaraj, J. K. Vij,

M. G. Tamba, A. Kohlmeier & G. H. Mehl (2011)

• V. P. Panov, R. Balachandran, J. K. Vij, M. G. Tamba,

A. Kohlmeier & G. H. Mehl (2012)

• L. Beguin, J. W. Emsley, M. Lelli, A. Lesage, G. R.

Luckhurst, B. A. Timimi & H. Zimmermann (2012)

for further, independent experimental confirmations.
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material: CB7CB

The simplest molecular structure having core flexibility is a dimer

structure in which two semirigid mesogenic groups are connected by a

flexible chain.
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material: CB7CB

The simplest molecular structure having core flexibility is a dimer

structure in which two semirigid mesogenic groups are connected by a

flexible chain.

A CB7CB molecule can be viewed as having three parts, each ≈ 1 nm

in length: two rigid end groups connected by a flexible spacer.
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transition temperatures

First transition, on cooling, at TNI = 116 ± 1 ◦C, with transitional

entropy ∆SNI/R = 0.34, where R ≈ 8.31 J(molK)−1 is the gas con-

stant.
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transition temperatures

First transition, on cooling, at TNI = 116 ± 1 ◦C, with transitional

entropy ∆SNI/R = 0.34, where R ≈ 8.31 J(molK)−1 is the gas con-

stant.

Second transition, on further cooling, at TNX = 103 ± 1 ◦C, with

∆SNI/R = 0.31.

Both transitions are weakly first-order, with at two-phase coexis-

tence at each transition of approximately 0.1 ◦C.

The X phase supercools extensively. On heating, the crystal form of

CB7CB melts at T = 102 ◦C
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Theoretical Predictions

• R. B. Meyer (1973), inspired by the symmetry of polar inter-

actions, envisaged a twist-bend spontaneous equilibriummolec-

ular arrangement, occurring in two variants with opposite he-

licities.
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Theoretical Predictions

• R. B. Meyer (1973), inspired by the symmetry of polar inter-

actions, envisaged a twist-bend spontaneous equilibriummolec-

ular arrangement, occurring in two variants with opposite he-

licities.

• I. Dozov (2001) arrived independently to the same picture

starting from purely static (and steric) considerations.

b = n× curln
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computer simulation

Memmer (2002) performed (Monte Carlo) molecular simulations which

reproduced the heliconical equilibrium organizations predicted by

Dozov (2001).
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computer simulation

Memmer (2002) performed (Monte Carlo) molecular simulations which

reproduced the heliconical equilibrium organizations predicted by

Dozov (2001).

Bent-core Gay-Berne molecules with no polar interactions.
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naming the phase

Luckhurst et al (2011) suggested to call this phase

twist-bend nematic (TBN)

recognizing its ground states as those envisaged by Meyer and Do-

zov.
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naming the phase

Luckhurst et al (2011) suggested to call this phase

twist-bend nematic (TBN)

recognizing its ground states as those envisaged by Meyer and Do-

zov.

heliconical natural states

The TBN natural states are conical twists, in which the average

molecular orientation n performs uniform precessions, making the an-

gle ϑ with the twist axis t.

Letting t = ez in a Cartesian frame (ex, ey, ez),

n±
0 = sinϑ cos(±qz) ex + sinϑ sin(±qz) ey + cosϑ ez,

curln±
0 · n±

0 = ∓q sin2 ϑ

q > 0 twist parameter

p := 2π
q

pitch ϑ cone angle
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Recent (impressive) Experimental Evidence

A visual direct evidence for the TBN phase in CB7CB (and allied

mixtures) has been provided very recently with accurate measurements

of both p and ϑ.
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A visual direct evidence for the TBN phase in CB7CB (and allied

mixtures) has been provided very recently with accurate measurements

of both p and ϑ.

• D. Chen, J. H. Porada, J. B. Hooper, A. Klittnick, Y.

Shen, M. R. Tuchband, E. Korblova, D. Bedrov, D. M.

Walba, M. A. Glaser, J. E. Maclennana & N. A. Clark

(2013)

• V. Borshch, Y.-K. Kim, J. Xiang, M. Gao, A. Jakli, V.

P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H.

Mehl, & O. D. Lavrentovich (2013)
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Recent (impressive) Experimental Evidence

A visual direct evidence for the TBN phase in CB7CB (and allied

mixtures) has been provided very recently with accurate measurements

of both p and ϑ.

• D. Chen, J. H. Porada, J. B. Hooper, A. Klittnick, Y.

Shen, M. R. Tuchband, E. Korblova, D. Bedrov, D. M.

Walba, M. A. Glaser, J. E. Maclennana & N. A. Clark

(2013)

• V. Borshch, Y.-K. Kim, J. Xiang, M. Gao, A. Jakli, V.

P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H.

Mehl, & O. D. Lavrentovich (2013)

measured pitch and cone angle

p ≈ 10 nm ϑ ≈ 20◦
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Freeze-Fracture Transmission Electron Microscopy (FFTEM)

T = 95 ◦C, scale bar: 100 nm
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Freeze-Fracture Transmission Electron Microscopy (FFTEM)

T = 95 ◦C, scale bar: 100 nm T = 90 ◦C, scale bar: 100 nm
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Comparisons

TBN vs N

TN = 105 ◦C TTBN = 95 ◦C

scale bar: 100 nm
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Comparisons

TBN vs N

TN = 105 ◦C TTBN = 95 ◦C

scale bar: 100 nm

TBN vs SmC∗
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atomistic MD simulations

in periodic box of a nominally 5.6× 5.6× 8.0 nm
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Symmetries

The molecular effective curvature, while inducing nomicroscopic twist,

allegedly favors a chiral collective arrangement in which bow-shaped

molecules uniformly precess along an ideal cylindrical helix.

m
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Two symmetries are broken in the helical arrangement:

• the continuous translations along the twist axis t

• the continuous rotations around t

However, a symmetry is recovered which involves any given transla-

tion along t, provided it is accompanied by an appropriately tuned

rotation. Lorman & Mettout (1999,2004)

This forbids any smectic modulation in the mass density, rendering

the helical phase purely nematic.

no polarity

While the nematic director n is defined as the

ensemble average

n := 〈m〉

no polar order survives in a helical phase, as

〈p〉 = 0
m

t

p
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Chiral Variants

There are two chiral variant of a helical nematic phase, which have

opposite helicities.
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Chiral Variants

There are two chiral variant of a helical nematic phase, which have

opposite helicities.

There is experimental evidence that a TBN-phase hosts both chiral

variants.

Our strategy will be to treat first each variant separately and then to

attempt at merging them together in a TBN-phase.
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Helical Nematic Phases

Here we take both the natural pitch p = 2π/q and the cone angle ϑ as

prescribed parameters, constitutive of a certain helical phase.
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Helical Nematic Phases

Here we take both the natural pitch p = 2π/q and the cone angle ϑ as

prescribed parameters, constitutive of a certain helical phase.

(Positive) Natural State

n+
0 = sinϑ cos qz ex + sinϑ sin qz ey + cosϑ ez q > 0

⇓

∇n+
0 = q

(

ez × n+
0

)

⊗ ez curln+
0 · n+

0 = −q sin2 ϑ< 0

twist tensor

More generally, for n prescribed at a point in space, the tensor

T+ := q(t× n)⊗ t

expresses the natural distortion associated there with the preferred

twisted configuration that agrees with the prescribed nematic director

n and has t as twist axis.
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natural distortions

We imagine that in the absence of any frustrating cause, given n at a

point, the director field would attain in its vicinity a spatial arrange-

ment such that

∇n = T+(t)

with any t such that

n · t = cosϑ
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natural distortions

We imagine that in the absence of any frustrating cause, given n at a

point, the director field would attain in its vicinity a spatial arrange-

ment such that

∇n = T+(t)

with any t such that

n · t = cosϑ

energy reference

For a generic configuration, the elastic energy that measures locally

the distortional cost should be accounted for relative to the whole

class of natural distortions, vanishing whenever any of the latter is

attained.
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Elastic Energy Density

We write the elastic energy f+
e per unit volume as

f+
e (t,n,∇n) = 1

2
[∇n−T+(t)] ·K(n)[∇n−T+(t)]

19



Elastic Energy Density

We write the elastic energy f+
e per unit volume as

f+
e (t,n,∇n) = 1

2
[∇n−T+(t)] ·K(n)[∇n−T+(t)]

K(n)

positive-definite, symmetric forth-order tensor

invariant under rotations about n

19



Elastic Energy Density

We write the elastic energy f+
e per unit volume as

f+
e (t,n,∇n) = 1

2
[∇n−T+(t)] ·K(n)[∇n−T+(t)]

K(n)

positive-definite, symmetric forth-order tensor

invariant under rotations about n

n · t = cosϑ

19



Elastic Energy Density

We write the elastic energy f+
e per unit volume as

f+
e (t,n,∇n) = 1

2
[∇n−T+(t)] ·K(n)[∇n−T+(t)]

K(n)

positive-definite, symmetric forth-order tensor

invariant under rotations about n

n · t = cosϑ

metric interpretation

If for given n and ∇n, t can be chosen so that ∇n = T+(t), f+
e

vanishes, attaining its absolute minimum.

19



Elastic Energy Density

We write the elastic energy f+
e per unit volume as

f+
e (t,n,∇n) = 1

2
[∇n−T+(t)] ·K(n)[∇n−T+(t)]

K(n)

positive-definite, symmetric forth-order tensor

invariant under rotations about n

n · t = cosϑ

metric interpretation

If for given n and ∇n, t can be chosen so that ∇n = T+(t), f+
e

vanishes, attaining its absolute minimum.

If there is no such t, then minimizing f+
e in t would identify the natural

state closest to the nematic distortion represented by ∇n in the metric

induced by K(n).
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two-director theory

Here both n and t are to be considered as unknown fields, though

constrained: at equilibrium, the free-energy functional that we shall

construct is to be minimized in both these fields.
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two-director theory

Here both n and t are to be considered as unknown fields, though

constrained: at equilibrium, the free-energy functional that we shall

construct is to be minimized in both these fields.

identities

(∇n)Tn = 0 (T+)
T
n = 0 trT+ = 0

reduced K(n)

Kijhk = k1δihδjk + k2δijδhk + k3δihnjnk + k4δikδjh

ki elastic moduli
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representation formula

f+
e (t,n,∇n) =

1

2

{

K11(divn)
2 +K22(n · curln+ q|t× n|2)2

+K33|n× curln+ q(t · n) t× n|2

+K24[tr(∇n)2 − (divn)2]
}

−K24q t× n · (∇n)Tt
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representation formula

f+
e (t,n,∇n) =

1

2

{

K11(divn)
2 +K22(n · curln+ q|t× n|2)2

+K33|n× curln+ q(t · n) t× n|2

+K24[tr(∇n)2 − (divn)2]
}

−K24q t× n · (∇n)Tt

K11 = k1 + k2 + k4 K22 = k1

K33 = k1 + k3 K24 = k1 + k4

Ericksen’s inequalities

2K11 ≧ K24 2K22 ≧ K24 K33 ≧ 0 K24 ≧ 0
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Typical Variational Problem

In the absence of other distorting causes, the free-energy functional to

be minimized is

F
+
e [t,n] :=

∫

B

f+
e (t,n,∇n)dV
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Typical Variational Problem

In the absence of other distorting causes, the free-energy functional to

be minimized is

F
+
e [t,n] :=

∫

B

f+
e (t,n,∇n)dV

B region in space

V volume measure

subject to

n · t = ϑ in B

and to appropriate boundary conditions for both n and t on ∂B.

Remarks

• This theory features two constrained fields, n and t.

• Physically, t represents the optic axis of the medium, likely

to be the only optic observable when the pitch p ranges in the

nanometric domain.
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• Dozov (2001) proposed a quartic elastic theory, featuring

only n, but allowing for terms in both (∇n)4 and (∇2n)2, to

counteract a negative bend constant K33 required to ignite the

twist-bend instability.
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• Dozov (2001) proposed a quartic elastic theory, featuring

only n, but allowing for terms in both (∇n)4 and (∇2n)2, to

counteract a negative bend constant K33 required to ignite the

twist-bend instability.

• f+
e reduces to the elastic free-energy density of classical ne-

matics when either q → 0 or ϑ → 0.

• For ϑ = π
2
, f+

e delivers an alternative energy density for chiral

nematics, which is positive-definite for all K24 ≧ 0 (whereas,

to ensure energy positive-definiteness, the classical theory re-

quires that K24 = 0).
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Merging Opposite Helicities

The natural state of the helical nematic phase with opposite chirality

−q is characterized by the twist tensor

T− := −T+ = −q(t× n)⊗ t q > 0
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Merging Opposite Helicities

The natural state of the helical nematic phase with opposite chirality

−q is characterized by the twist tensor

T− := −T+ = −q(t× n)⊗ t q > 0

Assuming that the elastic response is the same, but about a natural

state with opposite helicity, the free energy density f−
e is obtained

from f+
e by the formal change q 7→ −q:

f−
e (t,n,∇n) =

1

2

{

K11(divn)
2 +K22(n · curln− q|t× n|2)2

+K33|n× curln− q(t · n) t× n|2

+K24[tr(∇n)2 − (divn)2]
}

+K24q t× n · (∇n)Tt

24



TBN free energy density

A TBN-phase can be envisaged as a nematic phase with two natural

states with opposite helicities.
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TBN free energy density

A TBN-phase can be envisaged as a nematic phase with two natural

states with opposite helicities.

The elastic free energy fe is necessarily non-convex.

possible candidates for fe

• quadratic, but non-smooth

fe(t,n,∇n) = min{f+
e (t,n,∇n), f−

e (t,n,∇n)}

• smooth, but quartic

fe(t,n,∇n) = 1

f0
f+
e (t,n,∇n)f−

e (t,n,∇n)

f0 = 1

2
sin2 ϑ(K22 sin

2 ϑ+K33 cos
2 ϑ)

25



Matching opposite helicities

Since f+
e is minimized for ∇n = T+ and f−

e is minimized for ∇n =

T−, possible minimizers for fe are sequences of alternating natural

states T+, T− matched along appropriate interfaces.
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Matching opposite helicities

Since f+
e is minimized for ∇n = T+ and f−

e is minimized for ∇n =

T−, possible minimizers for fe are sequences of alternating natural

states T+, T− matched along appropriate interfaces.

kinematic compatibility

Letting ν denote a unit normal to an interface S ,

(T+ −T−)u = 0 for all u · ν ≡ 0

• either parallel stacking

t+ = t− = ν

• or wedge laminate

t+ × n = −t− × n and ν = t
+−t

−

|t+−t−|

26



wedge laminate

ν

t+

t−

n S

The trace n on S should satisfy the compatibility condition

∇sn = κn⊥ ⊗ n n⊥ := ν × n κ := q sinϑ cosϑ
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wedge laminate won’t work

As a consequence, the integral lines of n on S should satisfy

κg = κ and (∇sν)n = 0

κg geodesic curvature

∇sν curvature tensor

which are incompatible.
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wedge laminate won’t work

As a consequence, the integral lines of n on S should satisfy

κg = κ and (∇sν)n = 0

κg geodesic curvature

∇sν curvature tensor

which are incompatible.

parallel stacking does work

For t+ = t− = ν and n · ν ≡ cosϑ, the integral lines of n on S need

satisfy

(∇sν)n = 0

which only requires S to be developable

K = 0 zero Gaussian curvature

.
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constants, but introduces an extra field, the twist t. This poses

the question as to which defects the fields n and t may exhibit

and how they are interwoven.

• An extra field also requires extra boundary conditions. The

question is how to set general boundary conditions for both n

and t to grant existence of global energy minimizers.

• No hydrodynamic considerations have entered this study, but

the question should already be asked as to whether the relax-

ation in time of t represents a further source of dissipation.
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