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Abstract

We consider a model describing the evolution of damage in visco-elastic materials, where both
the stiffness and the viscosity properties are assumed to degenerate as the damaging is complete.
The equation of motion ruling the evolution of macroscopic displacement is hyperbolic. The
evolution of the damage parameter is described by a doubly nonlinear parabolic variational
inclusion, due to the presence of two maximal monotone graphs involving the phase parameter
and its time derivative. Existence of a solution is proved in some subinterval of time in which
the damage process is not complete. Uniqueness is established in the case when one of the
two monotone graphs is assumed to be Lipschitz continuous.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we present some analytical results concerning a model of damage for
viscoelastic materials. The system of PDEs we deal with is recovered by the modeling
approach proposed by Frémond[6] to describe the phenomenon in terms of continuum
mechanics laws. It is known that the phenomenon of damage is caused by microscopic
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actions breaking links in the material. Thus, a good and exhaustive macroscopic theory
has to take into account also the effects of these microscopic actions. The idea developed
by Frémond consists in generalizing the principle of virtual powers introducing the
power of microscopic forces, in duality with microscopic velocities. Consequently, we
recover two balance equations, the classical momentum balance and a new equilibrium
equation for microscopic forces, which governs the evolution of the damage process.
These two equations are complemented by physically meaningful boundary conditions.
For the sake of simplicity, we consider an isothermal phenomenon. Hence, the state
variables of the system are the symmetric strain tensorε(u), depending on the vector
of small displacementu, a damage parameter�, and the gradient∇�. From now on,
in regard of simplicity, we deal with a scalar displacementu and replaceε(u) by ∇u.
Concerning the physical meaning of the damage quantity�, we require that� ∈ [0,1],
letting � = 1 when the material is undamaged and� = 0 if the material is completely
damaged. Let us point out that the gradient of damage is introduced to take into account
the influence of damage at a material point on damage of its neighborhood. For a more
detailed presentation of the mechanical features of the model and its applications,
see, e.g.,[6,8,9]. Hence, the evolving of the damage process depends on dissipative
variables, as the damage time derivative�t , which is related to microscopic velocities,
and also the macroscopic strain rate∇ut , as we are considering viscoelastic materials.
Even if we do not aim to detail modeling aspects, for the sake of completeness we
just stress the main physical features of the problem. The constitutive equations are
derived by the free energy� and the pseudo-potential of dissipation�, while the
balance equations are formally recovered by the generalized principle of virtual power.
Now, let us consider a body located in a bounded smooth domain� ⊂ R3, whose
boundary is�, with outward unit normal vectorn. In the absence of volumic and
surface microscopic actions exerted on the body, the equation governing the damage�
is given in terms of two new interior forces, sayB and H, and takes the form

B − div H = 0. (1.1)

These quantities are related to the free energy and the pseudo-potential of dissipation
as follows:

B = ��

��
+ ��

��t
, (1.2)

H = ��

�∇�
. (1.3)

In particular, the dissipative contribution inB, derived by the pseudo-potential�, ac-
counts for the evolution of�. In addition, (1.1) is complemented by a natural boundary
assumption

H · n = 0. (1.4)
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The classical balance equation for macroscopic movements, in which accelerations are
retained, reads in terms of the stress�

utt − div � = f, (1.5)

where f represents an exterior volumic force applied to the body. We state a non-
displacement prescription on the boundary (i.e., an homogeneous Dirichlet boundary
condition)

u = 0 on �. (1.6)

We recover� by deformations, as usual in elasticity relations, and by the strain rate,
as we are accounting for viscosity effects, i.e.,

� = ��

�∇u + ��

�∇ut . (1.7)

Now, let us make precise the two energy functionals we deal with. We let the free
energy be defined by

�(∇u, �,∇�) = 1
2�|∇u|2 + w(1 − �)+ I[0,1](�)+ 1

2|∇�|2, (1.8)

where 1
2�|∇u|2 represents the classical elastic contribution in which the rigidity of

the material decreases as� tends to 0, i.e., in the evolution of the damage. Note
that, for the sake of simplicity, we have considered the rigidity matrix given by� Id.
The constantw > 0 accounts for cohesion in the material, whileI[0,1] guarantees the
physical consistence of the damage parameter�, as it makes� assume values only in
the interval[0,1]. Indeed, the indicator functionI[0,1] is defined by

I[0,1](�) = 0 if � ∈ [0,1], I[0,1](�) = +∞ otherwise. (1.9)

Then, the pseudo-potential of dissipation� is introduced as a proper, positive, and
convex function depending, in general, on dissipative variables (but in our case also
on �)

�(�t ,∇ut ) = 1
2|�t |2 + 1

2�|∇ut |2 + I(−∞,0](�t ). (1.10)

Note that the viscosity contribution in (1.10) depends on a stiffness matrix vanishing
when the material is damaged, as it does the elasticity term in (1.8). Finally, the last
contribution on the right-hand side of (1.10) represents a constraint on the sign of�t ,
ensuring�t �0. Indeed,I(−∞,0)(�t ) = 0 if �t �0, while it is equal to+∞ if �t > 0.
This term characterizes an irreversible evolution of damage, as� cannot increase, which
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corresponds to the fact that we are considering materials which cannot reconstruct the
interior links broken during the damage process.

Now, we are in the position of writing the complete system

utt − div(�(∇ut + ∇u)) = f, (1.11)

�t − �� + �I(−∞,0](�t )+ �I[0,1](�)  w − 1
2|∇u|2. (1.12)

We recall that�I(−∞,0](�t ) is defined only for�t �0, and it is�I(−∞,0](�t ) = {0} if
�t < 0 and�I(−∞,0](0) = [0,+∞). Analogously, the operator�I[0,1](�) turns out to be
defined only for� ∈ [0,1] and it is �I[0,1](�) = {0} if � ∈ (0,1), �I[0,1](0) = (−∞,0],
and �I[0,1](1) = [0,+∞). Then, we complete the system by boundary assumptions
on �

�n� = 0, u = 0, (1.13)

and initial prescriptions in�

�(0) = 1, u(0) = u0, ut (0) = v0. (1.14)

Note that the degeneracy of the elasticity and viscosity contributions in (1.11) as� ↘
0 comes from the fact that the material loses its physical properties in damaging.
However, macroscopic deformations are involved as a quadratic source of damage in the
equation governing the evolution of� (1.12). In particular, it results that this quadratic
contribution cannot be controlled once the material is damaged. This fact, combined
with the presence of a double nonlinearity in (1.12) involving monotone constraints,
makes the system very difficult to be solved in the whole time interval where we are
investigating the phenomenon. Thus, following the idea exploited in [4,7], we restrict
ourselves to consider the evolution of damage when the damage parameter� remains
strictly greater then a positive constant�, i.e., when the material is not completely
damaged and retains some stiffness and viscosity properties. Differently from [4,7],
where the term�I[0,1](�) is neglected in the relation corresponding to (1.12), we keep
such term and even assume that it can be replaced by a more general maximal monotone
graph�, in regard of different dynamics. This yields the doubly nonlinear character of
(1.12).

Before entering the details of the subject of the paper, let us briefly recall some an-
alytical results in the literature related to the Frémond damage model. From the point
of view of applications, numerical results show that the system provides a behavior of
the damaged materials in accordance with experiments (cf. [6] and references therein).
On the contrary, analytical results have been obtained only for some simplified ver-
sion of the system or in the one-dimensional case (cf. [7,8]). We point out that the
investigation of the one-dimensional model shows local-in-time existence and unique-
ness of solutions. The local character of these results is mainly due to the presence
of a quadratic source of damage which becomes unbounded in the evolving of the
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damage. The three-dimensional model has been investigated in[4] from the point of
view of the existence and uniqueness of the solution in a finite time interval in which
��� > 0. More precisely, by considering also some dissipative effects on the gradient
of damage, but neglecting any viscosity contributions for macroscopic deformations in
the momentum balance, the authors show that for any fixed� > 0 there exists a time
t̂ such that the problem admits a solution in(0, t̂), with ���. Moreover, uniqueness
is proved for any solution with� > 0. Finally, we mention the paper [2] in which the
authors investigate relations between macroscopic deformations and the microscopic
motions which are responsible for damage assuming some viscosity effects. However,
our situation is fairly different, as we cannot recover a uniform bound for deformations
by the presence of the viscosity since this term degenerates during the damage pro-
cess and does not help to provide more regularity on deformations. In particular, the
well-posedness of the complete model in any time interval remains an open question
and it seems that the model itself has to be improved, e.g. by adding some constitutive
relations to characterize the behavior of a completely damaged material.

Here is the outline of the paper. In Section 2 we state our hypotheses on data and
list our main results. Namely, we introduce a non-degenerate version of the system
by replacing� in (1.11) by its truncation at the level� ∈ (0,1). In Section 3 we
investigate the truncated problem and prove existence of a solution. This result is
obtained regularizing the monotone constraints on the internal variables and exploiting
an a priori estimates-passage to the limit technique, joint with a fixed point argument.
In Section 4 we show that, at least for small times, the component� of the solution
to the truncated problem stays above the barrier� a.e. in�; hence, it also solves the
original (non-truncated) problem. Finally, in Section 5 uniqueness of the solution is
shown by using contracting estimates.

2. Main results

First of all, we recall that� is a bounded domain inR3 with smooth boundary
� = ��. We also setH := L2(�), V := H 1(�) (endowed with usual scalar products),
in order that, identifyingH with H ′, we get the Hilbert tripletV ⊂ H ⊂ V ′. We denote
by ‖ · ‖E the norm in the generic normed spacesE andE3. In particular,‖ · ‖V will
stand both for the norm inV and in its closed subspaceH 1

0 . Moreover, we denote by
(·, ·) the scalar product inH and by〈·, ·〉 the duality product between the spaceE and
its topological dualE′. Letting � : � → [0,1] be a measurable function, we consider
the (possibly degenerate) elliptic operator−div(�∇·) which maps

H 1
0 (�) → H−1(�), v �→ −div(�∇v),

where 〈−div(�∇v), z〉 = (
�∇v,∇z) ∀z ∈ H 1

0 (�). (2.1)

Analogously, we introduce the realization of the Laplace operator with homogeneous
Neumann boundary conditions as

B : V → V ′, 〈Bu, v〉 = (∇u,∇v) ∀u, v ∈ V. (2.2)
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We also define

W := {
v ∈ H 2(�) : �nv = 0 on �

}
, (2.3)

which is a closed subspace ofH 2(�) by continuity of the trace operator.

Remark 2.1. Let us observe that ifu and � belong toH 2(�), then there hold

−div(�∇u) ∈ H, and − div(�∇u) = −��u− ∇� · ∇u. (2.4)

This fact can be proved by means of an approximation-density procedure. Thus, in
such a regularity framework, the term−div(�∇v) makes sense inH, hence almost
everywhere in�. Analogously, also the termBu in (2.2) can be understood as an
L2-function as we haveu ∈ W .

Looking back at Eqs. (1.11)–(1.12), we assume the following hypotheses:

f ∈ L2(0, T ;H), (2.5)

w > 0, (2.6)

u0 ∈ H 2(�) ∩H 1
0 (�), v0 ∈ H 1

0 (�), (2.7)

� ⊂ R × R maximal monotone graph given by� = �I(−∞,0], (2.8)

� ⊂ R × R maximal monotone graph such that[0,1] ⊂ D(�), 0 ∈ �(0). (2.9)

Since any maximal monotone graph inR2 is cyclically monotone (cf., e.g.,[5, pp. 38,
43]), by (2.9) it follows that there exists a convex, lower semicontinuous and proper
function � : R → [0,+∞] such that� = ��, with 0 = min� = �(0). Also, for the
sake of simplicity, we set� := I(−∞,0] and� := ��. Finally, in order to reformulate our
problem (1.11)–(1.12) in the abstract setting of the above Hilbert spaces, we introduce
the functional induced by� on H, namely (see [5, p. 47])

�(v) :=



∫
�

�(v) if �(v) ∈ L1(�),

+∞ otherwise.
(2.10)

It is a well-known fact that, under the above assumptions on�, � is still a proper,
l.s.c., and convex functional mappingH into [0,+∞], such that its subdifferential��
acts as a maximal monotone operator inH ×H . Furthermore, forz, v ∈ H , we have
v ∈ ��(z) if and only if v(x) ∈ ��(z(x)) for a.a.x ∈ �. In a similar way we construct
� as the realization inH of the proper, l.s.c., and convex function� = I(−∞,0]. For
the sake of simplicity and with a slight abuse of notation, we will write� for �� and
� for ��.

We can now state the main result of this paper.
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Theorem 2.2. Let assumptions(2.5)–(2.9)hold. Then, for each(small) positive constant
�, there exist̂t(�) ∈ [0, T ] (depending on�), and a quadruple(�, �, 	, u) with regularity

� ∈ H 1(0, t̂;V ) ∩ L∞(0, t̂;W), (2.11)

� ∈ L∞(0, t̂;H), (2.12)

	 ∈ L∞(0, t̂;H), (2.13)

u ∈ H 2(0, t̂;H) ∩W1,∞(0, t̂;H 1
0 (�)) ∩H 1(0, t̂;H 2(�)), (2.14)

��� in � × [0, t̂], (2.15)

and fulfilling a.e. in� × (0, t̂)

�t� + � + B� + 	 = w − |∇u|2
2

, (2.16)

� ∈ �(�t�), (2.17)

	 ∈ �(�), (2.18)

�t t u− div
(
�∇(u+ �t u)

) = f, (2.19)

and the initial conditions

�(·,0) = 1, u(·,0) = u0, �t u(·,0) = v0, (2.20)

a.e. in �.

Remark 2.3. Note that, taking the third of (2.14) into account, a comparison in (2.16)
gives a further regularity property for�, namely� ∈ W1,∞(0, t̂;H).

If we assume� Lipschitz continuous, we also have the following uniqueness result:

Theorem 2.4. Suppose we are given data satisfying(2.5)–(2.9),a positive timet̂ and
� ∈ (0,1). Then, if the restriction of� to the interval[�,1] is Lipschitz continuous and
if (�1, �1, 	1, u1) and (�2, �2, 	2, u2) fulfill (2.11)–(2.20),then there holds

(�1, �1, 	1, u1) = (�2, �2, 	2, u2) a.e. in � × (0, t̂). (2.21)

The proof of Theorem2.2 will be carried out by exploiting a truncation procedure.
Thus, we introduce a regularized version of (2.16)–(2.19) obtained by truncating the
elastic coefficient in (2.19) by means of the truncation operatorT� given by T�(r) :=
max

{
r, �

}
, with � ∈ (0,1). The local existence result for the truncated system reads as

follows:
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Theorem 2.5. Under assumptions(2.5)–(2.9),for any � ∈ (0,1) there existT0 ∈ (0, T ]
and a quadruple(�, �, 	, u) with

� ∈ H 1(0, T0;V ) ∩ L∞(0, T0;W), (2.22)

� ∈ L∞(0, T0;H), (2.23)

	 ∈ L∞(0, T0;H), (2.24)

u ∈ H 2(0, T0;H) ∩W1,∞(0, T0;H 1
0 (�)) ∩H 1(0, T0;H 2(�)), (2.25)

and fulfilling a.e. in� × (0, T0) the equations

�t� + � + B� + 	 = w − |∇u|2
2

, (2.26)

� ∈ �(�t�), (2.27)

	 ∈ �(�), (2.28)

�t t u− div
(
T�(�)∇(u+ �t u)

) = f, (2.29)

and the initial conditions

�(·,0) = 1, u(·,0) = u0, �t u(·,0) = v0, (2.30)

a.e in �.

3. Proof of Theorem 2.5

In this section we detail the proof of Theorem2.5 by means of the Schauder
fixed-point argument. To this end, let us first define the correct space to exploit this
procedure. GivenR, T0 > 0 (to be chosen later) we set

U =
{
v ∈ H 1(0, T0;W1,4

0 (�)) : ‖ v ‖4 �R
}
, (3.1)

where ‖ · ‖4 stands for the usual norm inH 1(0, T0;W1,4
0 (�)). Then, we construct

an operatorS which will be shown to mapU into itself. Actually, in order to define
properly such map (see (3.13) below), we need to regularize Eq. (2.16) by replacing
the nonlinear multivalued operator� with its Yosida approximation�ε, with ε > 0
intended to go to 0 in the limit. The passage to the limit procedure will be carefully
investigated in the forthcoming Section 3.4. Concerning the properties of the function
�ε, we remark that it turns out to be a globally Lipschitz continuous mapping with
Lipschitz constant�ε−1 (see [5, Proposition 2.6, p. 28]). To simplify the notation,
from now on we denote bym(R, T ) (or mi(R, T ), i = 0,1,2, . . .) some possibly
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different positive functions depending on the data of the problem and� ∈ (0,1) (but
not on ε) which do not go to∞ when one, or both, their argumentsR, T go to 0.

The construction of the operatorS will be carried out in two steps.

Problem 3.1 (First step). For given ū ∈ U , find (� := S1(ū), �) : � × (0, T0) → R2

solving the system

� + �t� + B� + �ε(�) = w − |∇ū|2
2

, (3.2)

� ∈ �(�t�), (3.3)

�(0) = 1. (3.4)

Note that in the above statement we do not need the symbol	 to denote�ε(�), since
actually �ε is single valued. Our result for Problem3.1 can be stated as follows:

Lemma 3.2. For any R, T0 > 0, ū ∈ U , and � ∈ (0,1), there exists a unique couple
(� = S1(ū), �) fulfilling (3.2)–(3.4)and such that

� ∈ H 1(0, T0, V ) ∩ L∞(0, T0,W), (3.5)

� ∈ L∞(0, T0;H), (3.6)

‖ � ‖2
H1(0,T0;V )∩L∞(0,T0;W) �m0(R, T0). (3.7)

The second step of our fixed point argument can be described by introducing the
following:

Problem 3.3 (Second step). For given

�̄ ∈ X = X (R, T0) :=
{
�̄ ∈ H 1(0, T0;V ) ∩ L∞(0, T0;W) :‖ �̄ ‖2

H1(0,T0;V )∩L∞(0,T0;W)

�m0(R, T0)

}
, (3.8)

find u := S2(�) : � × (0, T0) → R solving

�t t u− div
(
T�(�̄)∇(u+ �t u)

) = f a.e. in� × (0, T0),

u = 0 a.e. on� × (0, T0), (3.9)

u(0) = u0, ut (0) = v0 a.e. in�. (3.10)
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The existence-regularity result related to Problem3.3 is as follows:

Lemma 3.4. For anyR > 0 and� ∈ (0,1), there existsT0 = T0(�) ∈ (0, T ], depending
on �, such that, for any �̄ ∈ X , Problem3.3 has one and only one solutionu = S2(�̄)
satisfying

u ∈ H 2(0, T0;H) ∩W1,∞(0, T0;H 1
0 (�)) ∩H 1(0, T0;H 2(�)), (3.11)

‖ u ‖4 �R. (3.12)

Clearly, these two lemmata lead to the construction of the desired operatorS, defined
as the compositionS2 ◦ S1. The properties ofS are stated by the following:

Theorem 3.5. GivenR > 0 and � ∈ (0,1), there exists a timeT0 ∈ (0, T ] such that

S : U(R, T0) → U(R, T0) is well defined, (3.13)

S is continuous with respect to the norm‖ · ‖4, (3.14)

S is a compact map, (3.15)

The rest of this section is devoted to the proofs of Lemmas3.2, 3.4 and of Theorem
3.5. The latter Theorem 3.5 guarantees in particular thatS fulfills the assumptions of
Schauder’s fixed point Theorem. Hence,� = S1(u), whereu is a fixed point ofS, is a
solution to Problem 3.1 for̄u = u andu is a solution to Problem 3.3 wherē� = S1(u).

3.1. Proof of Lemma 3.2

Let us considerū ∈ U ; then, settingg(x, t) := −|∇ū(x, t)|2/2 we notice thatg ∈
H 1(0, T0;H) and there exists a positive constantC depending only on the embeddings
H 1(0, T0;W1,4

0 (�)) ↪→ L∞(0, T0;W1,4
0 (�)) ↪→ L4(0, T0;W1,4

0 (�)) such that

‖ g ‖H1(0,T0;H) �CR2. (3.16)

Now, remarking thatg is assigned fulfilling (3.16) and that the nonlinearity�ε is
Lipschitz continuous, we aim to find a sufficiently regular solution to the differential
inclusion

�(�t�)+ �t� + B� + �ε(�)  w + g (3.17)

combined with condition (3.4). More precisely, we look for a solution satisfying prop-
erties (3.5)–(3.7). A possible way to address this problem is to substitute the nonlinear
operator� with its Yosida approximation�
 for 
 > 0 intended to go to zero in the
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limit and solve the regularized problem by means of a time discretization scheme.
We prefer not to go into the details of this argument since it is quite close to the
investigation devised by Bonfanti et al.[3]. However, we point out that this procedure
entails existence and uniqueness of a solution�
 to (the
-regularized version of) (3.17)
together with (3.4) which satisfies

�
 ∈ H 1(0, T0;V ) ∩ L∞(0, T0;W). (3.18)

Then, assuming to have such�
, let us perform some estimates in order to remove
the approximation in
. Actually, it is worthwhile noting that the estimates we derive
will be independent of both
 and ε. Moreover, from now, and up to the end of this
paper, the symbolC will be used to denote some positive constants (possibly different
from each other) appearing in the computations and only depending on data, but not on
T0, �, R. If the constant depends on additional parameters (e.g.,T0), we will indicate
this by using a symbol likeC(·). Moreover, we denote by, e.g.,c� possible different
positive constants allowed to depend in addition on positive (small) parameters (here
denoted by�). In particular, we make use of the Young inequality in the form

ab��a2 + c�b
2 ∀a, b ∈ R, � > 0. (3.19)

For simplicity, the superscriptε will be temporarily omitted in denoting the solution.
First estimate: Test (3.17) by �t�
 and integrate the resulting relation on[0, t] with

t�T0. The monotonicity of�
, (2.10), (2.20), (3.19), and Sobolev’s embeddings entail,
for any t ∈ [0, T0], the following inequality:

1

2

∫ t

0
‖ �t�
(s) ‖2

H ds + 1

2
‖ ∇�
(t) ‖2

H +�(�
(t))

�w2T0|�| + �(1)+ C ‖ ū ‖4
H1(0,T0;W1,4(�)) . (3.20)

Let us remark that�(1) < +∞ as 1∈ D(�) (cf. (2.9)).
Second estimate: Test (3.17) by�t (B�
 + �(�
)) and integrate on the time interval

[0, t] with t�T0. We obtain

1

2
‖ (B�
 + �(�
)

)
(t) ‖2

H +
∫ t

0
‖ ∇�t�
(s) ‖2

H ds

� 1

2
‖ �(1) ‖2

H +
∫ t

0

(
w − |∇ū|2

2
, �t

(B�
 + �(�
)
))
(s) ds

=: 1

2
‖ �(1) ‖2 +I1(t), (3.21)

thanks to the monotonicity of the operators�
, � and to (3.19). Our aim is now to
bound the right-hand side of (3.21). In this direction, an integration by parts with
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respect to time gives

I1(t) =
(
w − |∇ū(t)|2

2
,B�
(t)+ �(�
(t))

)
−

(
w − |∇ū0|2

2
, �(1)

)

+
∫ t

0

(B�
 + �(�
),∇ū∇�t ū
)
(s) ds := I2(t)+ I3(t)+ I4(t). (3.22)

Thus, thanks to (3.19), Poincaré’s inequality, and Sobolev’s embeddings, we can deduce

I2(t)� 1
4 ‖ (B�
 + �(�
)

)
(t) ‖2

H +2w2|�| + C ‖ ū ‖4
H1(0,T0;W1,4

0 (�))
, (3.23)

I3(t)�w2|�| + C ‖ ū0 ‖4
W

1,4
0 (�)

+1
2 ‖ �(1) ‖2

H , (3.24)

I4(t) � C

(∫ t

0
‖ (B�
 + �(�
)

)
(s) ‖2

H‖ ū(s) ‖2
W

1,4
0 (�)

ds

+
∫ t

0
‖ �t ū(s) ‖2

W
1,4
0 (�)

ds

)
. (3.25)

Now, summing (3.20) and (3.21), collecting (3.23)–(3.25), and recalling (3.1), for any
t ∈ [0, T0] we get

1

4
‖ (B�
 + �(�
))(t) ‖2

H +1

2

∫ t

0
‖ �t�
(s) ‖2

V ds + 1

2
‖ ∇�
(t) ‖2

H +�(�
(t))

�w2|�|(3 + T0)+ CR4+ ‖ �(1) ‖2
H +�(1)

+C

(∫ t

0
‖ (B�
 + �(�
))(s) ‖2

H‖ ū(s) ‖2
W

1,4
0 (�)

ds

+
∫ t

0
‖ �t ū(s) ‖2

W
1,4
0 (�)

ds

)
. (3.26)

Next, we can apply the Gronwall Lemma and find a positive constantm1(R, T0) such
that (cf. also (3.1))

‖ (B�
 + �(�
)
)
(t) ‖2

H +
∫ t

0
‖ �t�
(s) ‖2

V ds+ ‖ ∇�
(t) ‖2
H

�m1(R, T0) ∀t ∈ [0, T0]. (3.27)

Then, noting that,∀t ∈ [0, T0] and a.e.x ∈ � it is

|�
(x, t)|�1 +
∫ t

0
|�t�
(x, s)| ds,
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so that

‖ �
(t) ‖2
H �2|�| + 2T0

∫ t

0
‖ �t�
(s) ‖2

H ds (3.28)

(and an analogous relation for the gradient), we easily get from (3.27)–(3.28)

‖ �
 ‖2
H1(0,T0;V ) � T0

(
‖ �
 ‖2

L∞(0,T0;H) + ‖ ∇�
 ‖2
L∞(0,T0;H)

)

+ ‖ �t�
 ‖2
L2(0,T0;H) + ‖ ∇�t�
 ‖2

L2(0,T0;H)

� T0

(
4|�| + 2T0

( ‖ �t�
 ‖2
L2(0,T0;H) + ‖ ∇�t�
 ‖2

L2(0,T0;H)
))

+ ‖ �t�
 ‖2
L2(0,T0;H) + ‖ ∇�t�
 ‖2

L2(0,T0;H)

� 4T0|�| + (1 + 2T 2
0 )m1(R, T0) =: m2(R, T0). (3.29)

Next, let us point out that the monotonicity of� gives, for almost anyt ∈ [0, T0],

‖ (B�
 + �(�
))(t) ‖2
H � ‖ B�
(t) ‖2

H + ‖ �(�
(t)) ‖2
H . (3.30)

Thus, from (3.27), (3.29), and standard elliptic regularity results, we get

‖ �
 ‖2
L∞(0,T0;W) �m3(R, T0). (3.31)

Finally, combining (3.27), (3.29) and (3.31), one concludes that any solution of the
-
regularized problem satisfies (3.7). Clearly, this upper bound will be conserved provided
that we are able to pass to the limit as
 ↘ 0. Actually, by means of (3.7) we have
a limit function � (candidate to be the solution to Problem 1) such that (up to the
extraction of a suitable subsequence of
 ↘ 0, not relabeled)

�
 → � weakly star inH 1(0, T0;V ) ∩ L∞(0, T0;W). (3.32)

Now, by the generalized Aubin compactness Lemma (see[12, Corollary 4]), we have

�
 → � strongly inC0([0, T0];V ). (3.33)

We recall that for the moment we are investigating only the
-limit, so thatε is actually
a fixed parameter. The latter convergence (3.33), combined with the Lipschitz continuity
of the Yosida approximation�ε of �, gives

�(�
) → �(�) strongly inC0([0, T0];H). (3.34)
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Observing now that Eq. (3.17) can be rewritten in the equivalent form

(Id + �
)(�t�
) = w − |∇ū|2
2

− B�
 − �(�
), (3.35)

a comparison of terms on the right-hand side of (3.35) yields

(Id + �
)(�t�
) → � := w − |∇ū|2
2

− B� − �(�) weakly star inL∞(0, T0;H).
(3.36)

Thus, passing to the limit, we get that relation (3.2) actually holds with� in place of
� + �t�. Our next aim is to give an interpretation of� in terms of the operator�, that
is to prove� ∈ (Id + �)(�t�) or, equivalently, (3.3) as we set� := � − �t�. To this
aim, we first observe that(Id + �
)

−1 is Lipschitz continuous uniformly with respect
to 
. Thus

�t�
 = (�
 + Id)−1
(
w − |∇ū|2

2
− B�
 − �(�
)

)
,

converges weakly star inL∞(0, T0;H) to �t�. Hence, we can exploit a semicontinuity-
comparison procedure (see[5, Proposition 2.5, p. 27]) to eventually characterize�.
Namely, let us test (3.17) by�t�
 and integrate over(0, T0). We get

∫ T0

0
‖ �t�
(s) ‖2

H ds +
∫ T0

0

(
�
(�t�
), �t�


)
(s) ds

=
∫ T0

0

(
w − |∇ū|2

2
, �t�


)
(s) ds −

∫ T0

0

(
�(�
), �t�


)
(s) ds

−1

2
‖ ∇�
(T0) ‖2

H . (3.37)

By (3.32) and (3.33), we have

lim

↘0

[
−1

2
‖ ∇�
(T0) ‖2

H +
∫ T0

0

(
w − |∇ū|2

2
, �t�


)
(s) ds

]

= −1

2
‖ ∇�(T0) ‖2

H +
∫ T0

0

(
w − |∇ū|2

2
, �t�

)
(s) ds. (3.38)

Moreover, by (3.32) and (3.34), it is

lim

↘0

[
−

∫ T0

0

(
�(�
), �t�


)
(s) ds

]
= −

∫ T0

0

(
�(�), �t�

)
(s) ds. (3.39)
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Now, let us take the lim sup of (3.37) and compare it with the limit relation tested by
�t� and integrated in time: on account of (3.38)–(3.39), we readily obtain that

lim sup

↘0

∫ T0

0

(
(Id + �
)(�t�
), �t�


)
(s) ds�

∫ T0

0

(
�, �t�

)
(s) ds, (3.40)

which gives the desired identification, i.e.� ∈ (Id + �)(�t�) (cf. [5, Proposition 2.5,
p. 27]). Then, letting� := � − �t�, it is a standard matter to find (3.3). To conclude
the proof, it remains to show that the couple(�, �) solving Problem 3.1 is unique; this
entails that the whole sequence(�
, �
) converges to(�, �). To this end, we consider
two solutions(�1, �1), (�2, �2) with �i ∈ �(�t�i ), i = 1,2, i = 1,2, take the difference
between the corresponding equations (3.2) and test it by�t (�1−�2). After an integration
in time and recalling the Lipschitz continuity of�ε, we obtain (we set, for simplicity
of notation,� := �1 − �2)

‖ �t� ‖2
L2(0,t;H) +1

2
‖ ∇�(t) ‖2

H � 1

ε

∫ t

0
‖ �(s) ‖H‖ �t�(s) ‖H ds. (3.41)

In order to recover the fullV-norm of � on the left-hand side, we add to (3.41) the
inequality

� ‖ �(t) ‖2
H ��T0

∫ t

0
‖ �t�(s) ‖2

H ds for a.e. t ∈ (0, T0). (3.42)

Next, exploiting Young’s inequality in the form (3.19) in order to split the right-hand
side of (3.41) and taking� < 1/2T0, by the Gronwall Lemma we get�1 = �2 a.e. in
� × (0, T0). Thus, a comparison in (3.2), implies�1 = �2 a.e., which concludes the
proof.

3.2. Proof of Lemma 3.4

Now, let us fix �̄ (with the regularity prescribed by (3.8)) in Eq. (3.9). Since we are
going to take�̄ = S1(ū) = � at the end, we shall write already from the beginning�
in place of �̄, for simplicity. Then, since��T�(�)�1 almost everywhere, the family
of operators (depending ont ∈ [0, T0])

H 1
0 (�) → H−1(�), v → −div

(
T�(�(t))∇v

)
(3.43)

is uniformly strongly elliptic w.r.t.t ∈ [0, T0]. Thus, by (2.5), (3.8) and standard well-
posedness theorems, there exists a unique solution to Problem 3.3 with the prescribed
regularity. Let us now perform the quantitative estimates relating the regularity ofu to
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� and to suitable norms of�. Namely, let us test (2.29) by�t (u− �u) and integrate it
in time: the considerations above entail

1

2
‖ �t u(t) ‖2

V +�

2

∫ t

0
‖ ��t u(s) ‖2

H ds�
10∑
i=5

Ii(t), (3.44)

where

I5(t) := 1

2

(
‖ v0 ‖2

V +
(

1 + 1

�

) ∫ t

0
‖ f (s) ‖2

H ds +
∫ t

0
‖ ut (s) ‖2

H ds

)
,

I6(t) :=
∫ t

0

(
T ′

�(�)∇�(∇u+ ∇�t u), �t u
)
(s) ds,

I7(t) :=
∫ t

0

(
T�(�)(�u+ ��t u), �t u

)
(s) ds,

I8(t) := −
∫ t

0

(
T�(�)�u,��t u

)
(s) ds,

I9(t) := −
∫ t

0

(
T ′

�(�)∇�∇u,��t u
)
(s) ds,

I10(t) := −
∫ t

0

(
T ′

�(�)∇�∇�t u,��t u
)
(s) ds.

Our next goal is to estimate the termsIi(t) for i = 6, . . . ,10. Let us start withI6.
Thanks to Young’s inequality, Sobolev’s embeddings, and the definition ofT� we have

I6(t)�C ‖ � ‖L∞(0,T0;W)
(∫ t

0
‖ �t u(s) ‖2

V ds +
∫ t

0
‖ ∇u(s) ‖2

H ds

)
. (3.45)

Referring to the latter bound,I7, I8 and I9 (cf. also the definition and the uniform
bound of the operatorT�) will be treated similarly. Namely, we have

I7(t) � c�

∫ t

0
‖ �t u(s) ‖2

H ds + c�

∫ t

0
‖ �u(s) ‖2

H ds

+�
∫ t

0
‖ ��t u(s) ‖2

H ds, (3.46)

I8(t)�c�
∫ t

0
‖ �u(s) ‖2

H ds + �
∫ t

0
‖ ��t u(s) ‖2

H ds, (3.47)

I9(t)�c� ‖ � ‖2
L∞(0,T0;W)

∫ t

0
‖ u(s) ‖2

H2(�) ds + �
∫ t

0
‖ ��t u(s) ‖2

H ds.

(3.48)
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Some work has be done on the termI10. First of all, Young’s inequality gives

I10(t) � �
∫ t

0
‖ ��t u(s) ‖2

H ds + c�

∫ t

0

∫
�

|∇�|2|∇�t u||∇�t u| dx ds

=: I11(t)+ I12(t). (3.49)

Next, we focus our attention onI12: another application of Young’s inequality combined
with Sobolev’s embeddings gives

I12(t)�c� ‖ ∇� ‖2
L∞(0,T0;L6(�))

∫ t

0
‖ ∇�t u ‖H‖ ∇�t u ‖L6(�) ds

�
c� ‖ � ‖2

L∞(0,T0;W)
2

(
1

�

∫ t

0
‖ �t u(s) ‖2

V ds

+�
∫ t

0
‖ �t u(s) ‖2

H2(�) ds

)
. (3.50)

Now, collecting (3.45)–(3.50), choosing� sufficiently small (depending of course on
�) and using the Poincaré inequality, one obtains

‖ �t u(t) ‖2
V +�

∫ t

0
‖ ��t u(s) ‖2

H ds

�C(�)
(

‖ v0 ‖2
V +

∫ t

0
‖ f (s) ‖2 ds +

(
1+ ‖ � ‖2

L∞(0,T0;W)
) ∫ t

0
‖ u(s) ‖2

H2(�) ds

+ ‖ � ‖2
L∞(0,T0;W) �

∫ t

0
‖ �t u(s) ‖2

H2(�) ds

+ (
1 + �−1 ‖ � ‖2

L∞(0,T0;W) + ‖ � ‖L∞(0,T0;W)
) ∫ t

0
‖ �t u(s) ‖2

V ds

)
. (3.51)

Now, adding to both sides the term�
∫ t

0
‖ �t u(s) ‖2

H ds, exploiting well-known elliptic

regularity results in order to obtain the fullL2(0, T0;H 2(�))-norm of u on the left side,
and choosing� sufficiently small (e.g.,� = �(2C(�) ‖ � ‖2

L∞(0,T0;W))
−1) we deduce

(recall that� ∈ (0,1))

‖ �t u(t) ‖2
V +�

∫ t

0
‖ �t u(s) ‖2

H2(�) ds

�C(�)
(

‖ v0 ‖2
V +

∫ t

0
‖ f (s) ‖2 ds +

(
1+ ‖ � ‖2

L∞(0,T0;W)
) ∫ t

0
‖ u(s) ‖2

H2(�) ds

+ (
1+ ‖ � ‖4

L∞(0,T0;W) + ‖ � ‖L∞(0,T0;W)
) ∫ t

0
‖ �t u(s) ‖2

V ds

)
. (3.52)
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Next, we sum the inequality

‖ u(t) ‖2
H2(�) �2 ‖ u0 ‖2

H2(�) +2T0

∫ t

0
‖ �t u(s) ‖2

H2(�) ds (3.53)

to (3.52) and obtain

‖ �t u(t) ‖2
V + ‖ u(t) ‖2

H2(�) +�
∫ t

0
‖ �t u(s) ‖2

H2(�) ds

�C(�)
(

‖ v0 ‖2
V + ‖ u0 ‖2

H2(�) +
∫ t

0
‖ f (s) ‖2 ds + T0

∫ t

0
‖ �t u(s) ‖2

H2(�) ds

+
(

1+ ‖ � ‖2
L∞(0,T0;W)

) ∫ t

0
‖ u(s) ‖2

H2(�) ds

+ (
1+ ‖ � ‖4

L∞(0,T0;W) + ‖ � ‖L∞(0,T0;W)
) ∫ t

0
‖ �t u(s) ‖2

V ds

)
. (3.54)

Thus, fixingT0� �

2C(�)
, which is not restrictive since we are looking for local solutions,

and using the Gronwall inequality, we conclude that

‖ u ‖W1,∞(0,T0;H1
0 (�))∩H1(0,T0;H2(�)) �m(R, T0). (3.55)

Note that here and in the sequel of this section the (possibly different) functionsm
depend also on�. Moreover, a comparison argument in (2.29) gives

‖ u ‖H2(0,T0;H) �m(R, T0). (3.56)

Now, thanks to (3.55) and by using standard interpolation tools (see, e.g., [11]), we

can deduce an estimate forut in L
8
3 (0, T0;W1,4

0 (�)). Thus, Hölder’s inequality gives
the following

‖ ut ‖2
L2(0,T0;W1,4

0 (�))
�CT

1
4

0 ‖ ut ‖2

L
8
3 (0,T0;W1,4

0 (�))
�T

1
4

0 m(R, T0). (3.57)
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Moreover, by (3.55) we get

‖ u ‖2
L2(0,T0;W1,4

0 (�))
�T0m(R, T0). (3.58)

Thus, we obtain the following estimate for‖ u ‖
H1(0,T0;W1,4

0 (�)):

‖ u ‖2
H1(0,T0;W1,4

0 (�))
� max

{
T

1/4
0 , T0

}
m4(R, T0). (3.59)

Let us note that the all the constants in the estimates above, and in particular the
functionm4(R, T0) in (3.59), are independent ofε. Thus, also the final timeT0 of the
solution provided by Schauder’s argument will not depend onε. This will be crucial
in the sequel.

Finally, we can chooseT0 in (3.59) such that

max
{
T

1/4
0 , T0

}
m4(R, T0)�R2, (3.60)

to obtain

‖ u ‖2
H1(0,T0;W1,4

0 (�))
�R2, (3.61)

which concludes the proof of Lemma3.4.

3.3. Proof of Theorem 3.5

Thanks to Lemmata 3.2 and 3.4 it turns out that by choosing a proper timeT0 as
in (3.60) the operatorS is well-defined fromU into itself. Thus, in order to prove
Theorem 3.5, i.e., to apply the Schauder fixed-point Theorem, we need to verify (3.14)
and (3.15). Regarding (3.15), we observe that, given�, R > 0 and choosingT0 as
in (3.60), we derive from (2.5) and (3.7) that,∀ū ∈ U , the correspondingu = S(ū)
satisfies

‖ u ‖H1(0,T0;H2(�))∩W1,∞(0,T0;H1
0 (�))

�C, (3.62)

for a constantC not depending on̄u. Hence, by a comparison of the terms in (2.29)
it is not difficult to infer

‖ �t t u ‖L2(0,T0;H) �C. (3.63)

Thus, the latter two estimates combined with (3.57) and Sobolev’s embeddings Theo-
rems guarantee thatS is a compact operator, i.e., (3.15) holds. Indeed, for > 0 we
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haveH 2(0, T0;H)∩H 1(0, T0;H 2(�)) ⊂⊂ H 1(0, T0;H 2−(�)) ⊂ H 1(0, T0;W1,4(�)),
the latter inclusion actually holding for sufficiently small. Finally, we aim to show
that S is continuous with respect to the natural strong topology induced onU by
H 1(0, T0;W1,4

0 (�)), i.e., property (3.14). Thus, given a sequence

ūn → ū strongly in U, (3.64)

we aim to study the behavior ofS(ūn) as n ↗ +∞ and, in particular, to prove that

S(ūn) → S(ū) strongly in U . (3.65)

As a first step, let us consider the sequence of solutions to Problem3.1 obtained once
ūn substitutesū, i.e., S1(ūn) = �n. Recalling (3.7), there holds the following bound
(with the constantC independent ofn)

‖ �n ‖H1(0,T0;V )∩L∞(0,T0;W) �C, (3.66)

which allows us to extract a subsequence (not relabeled) ofn such that

�n → � weakly star inH 1(0, T0;V ) ∩ L∞(0, T0;W), (3.67)

for some suitable function�. Moreover, using again the compactness result in[12,
Corollary 4], we have the following strong convergence:

�n → � strongly inC0([0, T0];V ). (3.68)

Concerning now the right-hand side of Eq. (3.17), we have

−|∇ūn|2 → −|∇ū|2 strongly inH 1(0, T0;H). (3.69)

Then, reproducing the same argument exploited in the proof of Lemma3.2, it is not
difficult to show that� is the solution to Problem 3.1 corresponding to the limit datum
ū. Moreover, the uniqueness property of Lemma 3.2 gives that the whole sequence
�n converges to�; thus, eventually we have that� = S1(ū). As a second step, let us
set �n = S1(ūn) in (2.29) and consider the corresponding solutionsun. By performing
the same estimates as in the proof of Lemma 3.4, we have that (3.55)–(3.56) hold
independently ofn. This leads to the extraction of a subsequence ofn such that

un → u weakly star inH 1(0, T0;H 2(�)) ∩W1,∞(0, T0;H 1
0 (�))

and

�t t un → �t t u weakly in L2(0, T0;H), (3.70)
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for a suitable limit functionu. The latter weak convergences and the same argument
used before to prove compactness ofS give then

un → u strongly inH 1(0, T0;W1,4
0 (�)). (3.71)

Now, combining (3.68) with (3.70) and recalling the definition ofT�, it is not difficult
to see that we can pass to limit in (2.29) (written forun and�n) asn ↗ +∞. Indeed, at
the limit, we get that the equation is solved byu and � = S1(ū). Thus, the uniqueness
part of Lemma 3.4 guarantees that (3.70)–(3.71) hold for the whole sequenceun, so
that u = S2(�). Finally, (3.68) and (3.71) give (3.65) or, equivalently (3.14), which
concludes the proof.

3.4. Conclusion of the proof of Theorem 2.5

As a final step, we have to pass to the limit asε ↘ 0. Thus, it is convenient to come
back to the notations�ε, etc., in the sequel. Then, since all the preceding estimates hold
independently ofε, we have limit functions�, 	, u such that, at least for a subsequence
(not relabeled)

�ε → � weakly star inH 1(0, T0;V ) ∩ L∞(0, T0;W), (3.72)

�ε(�ε) → 	 weakly star inL∞(0, T0;H), (3.73)

uε → u weakly star inH 1(0, T0;H 2(�)) ∩W1,∞(0, T0;H 1
0 (�)), (3.74)

�t t uε → �t t u weakly in L2(0, T0;H). (3.75)

Now, while the passage to the limit asε ↘ 0 in the equation foru (2.29) can be
performed exactly as in the preceding step, we have to take some more care in dealing
with Eq. (2.26). Indeed, convergences (3.72),(3.74)–(3.75) combined with [12, Corollary
4] give

�ε → � strongly inC0([0, T0];V ), (3.76)

uε → u strongly inH 1(0, T0;W1,4
0 (�)) (3.77)

and this, together with (3.73), entails the immediate identification	 ∈ �(�). Moreover,
arguing as for (3.36), we can prove that

�ε → � weakly star inL∞(0, T0;H), where �ε := �t�ε + �ε, (3.78)

for some limit function�. This allows us to pass to the limit in the equation. As
before, in order to interpret� in terms of �, we exploit a semicontinuity-comparison
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tool. Namely, we aim to prove that

lim sup
ε↘0

∫ T0

0

(
�ε, �t�ε

)
(t) dt�

∫ T0

0

(
�, �t�

)
(t) dt. (3.79)

Then, we exploit the argument given in (3.37)–(3.39), but no longer treat� as in (3.39).
Indeed, integrating by parts in time, it is now enough to show

lim inf
ε↘0

∫
�

�ε(�ε(T0))�
∫

�
�(�(T0)). (3.80)

This easily follows since the functional induced by�ε on L2(�) (cf. (2.10)) converges
in the sense of Mosco [1, Proposition 3.56, p. 354] to the functional

�(v) :=



∫
�

�(v) if �(v) ∈ L1(�),

+∞ otherwise
(3.81)

and we have

�ε(T0) → �(T0) strongly inL2(�). (3.82)

4. Proof of Theorem 2.2

In this section we aim to prove that, at least up to a small final timet̂ to be
specified, the quadruple(�, �, 	, u) solving (2.26)–(2.30) actually solves (2.16)–(2.20).
In particular, to show property (2.15), which actually says that the truncation has no
effect, it is sufficient to find a timêt such that

‖ � − 1 ‖L∞(�×(0,t̂)) �1 − �. (4.1)

Now, from (2.22) and (3.7), we infer that there existsm5(R, T0) such that

‖ �(t)− 1 ‖W �m5(R, T0) and

‖ �(t)− 1 ‖V � t1/2 ‖ �t� ‖L2(0,t;V ) �m5(R, T0)t
1/2, ∀t ∈ [0, T0], (4.2)

where we remark once more that the above functionm5 is effectively computable
in functions of the data. Next, following the notations of Lions and Magenes
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[10, Theorem 9.6, p. 43], we consider the interpolation space

H
5
3 (�) = [

H 2(�),H 1(�)
]

1
3
, (4.3)

which is continuously embedded intoL∞(�) in our three dimensional setting (see, e.g.,
[10, Theorem 9.8, p. 45]). Thus, the interpolation inequality, the previous immersion,
and (4.2) entail

‖ �(t)− 1 ‖L∞(�) � C ‖ �(t)− 1 ‖2/3
H2(�)‖ �(t)− 1 ‖1/3

V

� Cm5(R, T0)t
1/6, ∀t ∈ [0, T0]. (4.4)

Thus, fixing t̂ ∈ [0, T0] such that

t̂�
(

1 − �

Cm5(R, T0)

)6

, (4.5)

where C is the embedding constant in (4.4), it is straightforward to check that (2.15)
holds, which concludes the proof of Theorem 2.2.

5. Proof of Theorem 2.4

In this section we outline the proof of Theorem 2.4. To this aim, we consider the
couple of solutions to (2.11)–(2.20) introduced in the statement and set(�, �, 	, u) :=
(�1 −�2, �1 −�2, 	1 −	2, u1 −u2). Then, we take the difference between (2.19) written
for (u1, �1) and for (u2, �2), test it by �t u and integrate in time up tot� t̂ , where t̂
is the reference time introduced in the statement. Recalling (2.15), it is not difficult to
infer

1

2
‖ �t u(t) ‖2

H +�
∫ t

0
‖ ∇�t u(s) ‖2

H ds

�
∫ t

0

∫
�

|�1(s)| · |∇u(s)| · |∇�t u(s)| dx ds +
∫ t

0

∫
�

|�(s)|(|∇u2(s)|

+ |∇�t u2(s)|
)|∇�t u(s)| dx ds =: I13(t)+ I14(t). (5.1)

Since|�1(x, t)| < 1 for almost any(x, t) ∈ �× (0, t̂), and thanks to the third of (2.14),
the integralsI13(t), I14(t) can be estimated in this way:

I13(t)�c�
∫ t

0
‖ ∇u(s) ‖2

H ds + �

4

∫ t

0
‖ ∇�t u(s) ‖2

H ds, (5.2)



114 E. Bonetti et al. / J. Differential Equations 218 (2005) 91–116

I14(t) � �

4

∫ t

0
‖ ∇�t u(s) ‖2

H ds + c�

∫ t

0
‖ (∇u2(s)+ ∇�t u2(s)

)
(s) ‖2

V

× ‖ �(s) ‖2
V ds. (5.3)

Adding now

�

4t̂
‖ ∇u(t) ‖2

H � �

4

∫ t

0
‖ ∇�t u(s) ‖2

H ds, t ∈ (0, t̂),

to the resulting inequality, wherêt is the life time of our problem, we obtain

‖ �t u(t) ‖2
H + ‖ ∇u(t) ‖2

H +
∫ t

0
‖ ∇�t u(s) ‖2

H ds

�C(�, t̂)
(∫ t

0
‖ ∇u(s) ‖2

H ds +
∫ t

0
‖ (∇u2(s)+ ∇�t u2(s)

)
(s) ‖2

V

× ‖ �(s) ‖2
V ds

)
. (5.4)

Next, we write (2.16) firstly for (�1, �1, 	1, u1), then for (�2, �2, 	2, u2), take the dif-
ference, test by�t�, and integrate over(0, t) with t� t̂ . We get∫ t

0
‖ �t�(s) ‖2

H ds + 1
2 ‖ ∇�(t) ‖2

H

� −
∫ t

0
(�(�1(s))− �(�2(s)), �t�(s)) ds

−1

2

∫ t

0

(
|∇u1(s)|2 − |∇u2(s)|2, �t�(s)

)
ds =: I15(t)− I16(t).

(5.5)

Our next aim is clearly to provide a bound forI15 and I16. As for I15, being �
Lipschitz, we have

I15(t)�
1

2

∫ t

0
‖ �t�(s) ‖2

H ds + c

∫ t

0
‖ �(s) ‖2

V ds. (5.6)

ConcerningI16, an integration by parts with respect to time gives

I16(t) = 1

2

(
|∇u1(t)|2 − |∇u2(t)|2, �(t)

)

−
∫ t

0

((∇u(s), �(s)∇�t u1(s)
) + (∇�t u(s), �(s)∇u2(s)

))
ds. (5.7)
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Thus, recalling (2.14), it is not difficult to infer

I16(t) � cε1 ‖ ∇u(t) ‖2
H +ε1 ‖ �(t) ‖2

V

+C

(∫ t

0
‖ ∇u(s) ‖2

H ds +
∫ t

0
‖ �t u1(s) ‖2

H2(�)‖ �(s) ‖2
V ds

)

+ ε2

∫ t

0
‖ ∇�t u(s) ‖2

H +cε2

∫ t

0
‖ u2(s) ‖2

H2(�)‖ �(s) ‖2
V ds, (5.8)

where the constantcε1 depends also on the norms

‖ u1 ‖L∞(0,t̂ ,H2(�)), ‖ u2 ‖L∞(0,t̂ ,H2(�)),

which are bounded quantities owing to third of (2.14). Now, let us add to the resulting
(5.5) the inequality

1

4t̂
‖ �(t) ‖2

H � 1

4

∫ t

0
‖ �t�(s) ‖2

H ds, holding ∀t ∈ [0, t̂].

Then, choosingε1 < min

{
1

2
,

1

4t̂

}
and combining (5.6)–(5.8), inequality (5.5) becomes

∫ t

0
‖ �t�(s) ‖2

H ds+ ‖ �(t) ‖2
V

�C(t̂)
(

‖ ∇u(t) ‖2
H +ε2

∫ t

0
‖ ∇�t u(s) ‖2

H ds +
∫ t

0
‖ ∇u(s) ‖2

H ds

+
∫ t

0

(
1+ ‖ �t u1(s) ‖2

H2(�) +cε2 ‖ u2(s) ‖2
H2(�)

) ‖ �(s) ‖2
V ds

)
. (5.9)

Finally, adding (5.9)–(5.4) multiplied by a proper scaling constantM > C(t̂) , choosing
ε2 small enough (i.e.,ε2 < M/C(t̂)), we get

‖ �t u(t) ‖2
H + ‖ ∇u(t) ‖2

H +
∫ t

0
‖ ∇�t u(s) ‖2

H ds +
∫ t

0
‖ �t�(s) ‖2

H ds+ ‖ �(t) ‖2
V

�C(�, t̂ ,M, ε2)

(∫ t

0
‖ ∇u(s) ‖2

H ds +
∫ t

0

(
1+ ‖ u2(s) ‖2

H2(�)

+ ‖ �t u2(s) ‖2
H2(�) + ‖ �t u1(s) ‖2

H2(�)

) ‖ �(s) ‖2
V ds

)
, (5.10)
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where ‖ u2 ‖2
H2(�) and ‖ �t ui ‖2

H2(�), i = 1,2, belong toL1(0, T0). Thus, we can
apply Gronwall’s Lemma to (5.10) to conclude the proof.
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