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Via Ferrata 1, I-27100 Pavia, Italy
E-mail: antonio.segatti@unipv.it

Sergey Zelik
Department of Mathematics, University of Surrey,

Guildford, GU2 7XH, United Kingdom
E-mail: S.Zelik@surrey.ac.uk

Abstract

We study the modified Cahn-Hilliard equation proposed by P. Galenko et al. in order to account
for rapid spinodal decomposition in certain glasses. This equation contains, as additional term,
the second-order time derivative of the (relative) concentration multiplied by a (small) positive
coefficient ε. Thus, in absence of viscosity effects, we are in presence of a Petrovsky type equation
and the solutions do not regularize in finite time. Many results are known in one spatial dimension.
However, even in two spatial dimensions, the problem of finding a unique solution satisfying given
initial and boundary conditions is far from being trivial. A fairly complete analysis of the 2D case
has been recently carried out by M. Grasselli, G. Schimperna and S. Zelik. The 3D case is still
rather poorly understood but for the existence of energy bounded solutions. Taking advantage of
this fact, A. Segatti has investigated the asymptotic behavior of a generalized dynamical system
which can be associated with the equation. Here we take a step further by establishing the
existence and uniqueness of a global weak solution, provided that ε is small enough. More precisely,
we show that there exists ε0 > 0 such that well-posedness holds if (suitable) norms of the initial
data are bounded by a positive function of ε ∈ (0, ε0) which goes to +∞ as ε tends to 0. This
result allows us to construct a semigroup Sε(t) on an appropriate (bounded) phase space and,
besides, to prove the existence of a global attractor. Finally, we show a regularity result for
the attractor by using a decomposition method and we discuss the existence of an exponential
attractor.

Key words: Cahn-Hilliard equation, weak solutions, global existence, global attractors, exponential
attractors.

AMS (MOS) subject classification: 35B40, 35B41, 82C26.
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1 Introduction

This paper is devoted to the analysis of the following modified Cahn-Hilliard equation

εutt + ut −∆(−∆u+ f(u)) = g, (1.1)

on Ω×(0,+∞), Ω being a bounded smooth subset of R3, endowed with initial and boundary conditions{
u
∣∣
t=0

= u0, ut
∣∣
t=0

= u1,

u
∣∣
∂Ω

= ∆u
∣∣
∂Ω

= 0
(1.2)

Here ε > 0, f is the derivative of a nonconvex potential (e.g., f is a polynomial of degree 2n + 1,
n ∈ N, with positive leading coefficient) and g is a given (time-independent) function. In the case
ε = 0, equation (1.1) reduces to the well-known Cahn-Hilliard equation (cf. [5]) which has been
widely analyzed by many authors (see, e.g., [8, 9, 22, 25, 26, 27, 28, 29, 32, 36] and references therein).
We recall that this equation describes the phase separation of a binary mixture and u denotes the
relative concentration of one species. This kind of phenomenon is rather complex and one of its
typical features is the so-called spinodal decomposition (see, for instance, [4, 18, 24]). To model
non-equilibrium decompositions caused by deep supercooling in certain glasses, P. Galenko et al. (cf.
[11, 12, 13]) have proposed to modify the usual Cahn-Hilliard equation by adding the inertial term εutt.
This equation shows a good agreement with experiments performed on glasses (see [14]). It is worth
remarking that, from the practical viewpoint, the parameter ε is usually very small with respect to
the other physical constants, which have been all set equal to one for simplicity (see, however, Remark
2.5).

Equation (1.1) endowed, e.g., with conditions (1.2), has different mathematical features with
respect to the Cahn-Hilliard equation since it is no longer parabolic and solutions do not get smoother
in finite time. Therefore, its analysis presents some difficulties which can be overcome rather easily in
dimension. This is due to the fact that energy bounded solutions (i.e., of H1× (H1)′-type, cf. Def. 2.1
below) are also globally bounded thanks to the injection H1(Ω) ↪→ L∞(Ω). For the same reason,
uniqueness of energy bounded solutions holds for potentials of any growth. As a consequence, there is
a number of results concerning the one-dimensional case (see [7, 15, 17, 37, 38]). The two-dimensional
case is much more complicated also because energy bounded solutions are no longer bounded in
L∞(Ω). This case has been treated only recently in [20]. Actually, in dimension two, the existence of
an energy bounded solution is relatively easy to prove, but its uniqueness is far less standard and was
obtained in [20] for potentials growing (at most) like a polynomial of degree 4. In that work it was also
shown that a dynamical system can be defined on the phase space of the energy bounded solutions
and it possesses a global attractor. A further similar result was established in [20] for quasi-strong
solutions, that is, originating from a phase space of H3 ×H1-type. One of the key tools for proving
these two-dimensional results is a logarithmic interpolation inequality which holds in dimension two
only (see [3]) and whose use forces the restriction on the growth of the potential.

Thus, the three-dimensional case must be analyzed by means of a different approach. As far as
we know, the only available results so far are contained in [33], where the author adopts the approach
of multi-valued semigroups and related (generalized) global attractor developed by Babin and Vishik
(cf. [1], see also [2]) to equation (1.1). This approach is based solely on the existence of energy
bounded solutions (actually the mere existence property is still easy to show for energy solutions, also
in dimension three). Other authors have studied this equation by adding a viscous term like −∆ut. In
this case solutions regularize in finite time and, consequently, the corresponding mathematical analysis
becomes simpler, though nontrivial (see [6, 16, 21], cf. also [35] where smoothing properties are due
to weakly singular memory kernels).

As observed in [20], equation (1.1) bears some similarities with the semilinear damped wave
equation. However, in contrast to that case, for equation (1.1) in dimension three, any non-quadratic
potential appears to show a “supercritical” character. In particular, energy solutions could be in some
sense too weak and possibly non-unique, whereas “stronger” solutions should have better properties,
of course, provided they exist globally in time. Thus, it seemed natural to try to extend the approach
to the supercritical damped wave equations developed in [39] (see also [19, 40]) to equation (1.1).
Recall that, roughly speaking, this approach consists of two key steps. First, one needs to verify the
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global well-posedness and dissipativity of smooth solutions, provided that ε is small enough and the
initial data are suitably bounded (in a stronger energy space) by a constant Rε which blows up as ε
goes to 0. The second (and probably more delicate) step consists in showing that any energy solution
is asymptotically smooth and tends to the global attractor for the smooth solutions whose existence
has been previously obtained.

In the present paper we focus on the first step of the above mentioned strategy, namely, on the
global existence and uniqueness of sufficiently regular solutions with initial energy bounded by Rε. The
second step, related with the energy solutions, will be considered in a forthcoming paper. Therefore,
we begin to establish the global existence and dissipativity of the H2 × L2-type solutions. These are
the so-called weak solutions in our terminology and they are stronger than the H1×H−1-type energy
solutions. Then, we will show that any such solution (if it exists) is asymptotically smoother (and
this regularity is restricted only by the smoothness of f and g). It is also smoother from the very
beginning provided that the initial data are smoother as well (even without any assumptions on the
smallness of ε). Finally, we demonstrate the existence and regularity of the global attractor for the
properly defined semigroup associated with equation (1.1) and solutions which are more regular than
the energy ones. We also report the statement of a result on the existence of exponential attractors
which could be shown just by following the lines of [20, Sec. 5] and whose proof is thus omitted.

Analogously to [39], the key proof of the global existence of more regular solutions for small ε
is based on a careful comparison of a solution with the properly chosen solution of the limiting (ε = 0)
parabolic Cahn-Hilliard equation. However, since equation (1.1) is essentially more complicated than
the damped wave equation, the extension of the technique of [39] to our case is far from being
straightforward. In particular, even in the regular phase spaces (say, Hs+1×Hs−1, s > 1/2) equation
(1.1) remains “critical” and the standard decomposition of the associated semigroup does not allow to
obtain further regularity and the associated asymptotic smoothness (in contrast to the case of wave
equations). We overcome this difficulty by suggesting a new decomposition of the semigroup into a
compact and a decaying part, which, we believe, is of an independent interest (see (3.91) and (3.92)
below). It is also worth mentioning that the boundary conditions of Navier type are chosen just for
simplicity. Actually, the physically more appropriate no-flux (or periodic) boundary conditions could
be equally considered with some additional complications due to the evolution of the spatial average
of u (see, e.g., [7]).

The plan of the paper is as follows. In the next section we will give our basic assumptions and
state our main results. The proofs will be collected in the subsequent Section 3.

2 Mathematical formulation and results

2.1 Assumptions and statement of the problem

Let us set H := L2(Ω) and denote by (·, ·) the scalar product both in H and in H ×H, and by ‖ · ‖
the related norm. The symbol ‖ · ‖X will indicate the norm in the generic (real) Banach space X.
Next, we set V := H1

0 (Ω), so that V ′ = H−1(Ω) is the topological dual of V . The duality between V ′

and V will be noted by 〈·, ·〉. The space V is endowed with the scalar product

((v, z)) :=
∫

Ω

∇v · ∇z, ∀ v, z ∈ V, (2.1)

and the related norm. We shall denote by A the Riesz operator on V associated with (2.1), namely,

A : V → V ′, 〈Av, z〉 = ((v, z)) =
∫

Ω

∇v · ∇z, ∀ v, z ∈ V, (2.2)

so that we also have the dual scalar product on V ′ given by

((η, ξ))∗ := 〈η,A−1ξ〉 = 〈ξ, A−1η〉, ∀ ξ, η ∈ V ′. (2.3)

Abusing notation slightly, we shall also indicate by the same letter A the restriction of the operator
defined in (2.2) to the set D(A) = H2(Ω) ∩ V , i.e., the unbounded operator defined as

A = −∆ with domain D(A) = H2(Ω) ∩H1
0 (Ω) ⊂ L2(Ω). (2.4)
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We can thus introduce the family of Hilbert spaces

H2s = D(As), s ∈ R,

with scalar products
((u, v))2s := (Asu,Asv), ∀ u, v ∈ Hs.

It is well known that Hs1 ⊂ Hs2 with dense and compact immersion when s1 > s2. For ε ≥ 0, we
introduce the scale of Hilbert spaces

Vs = Vs(ε) :=

{
D(A

s+1
2 ) if ε = 0

D(A
s+1
2 )×D(A

s−1
2 ) if ε > 0,

(2.5)

so that we have, in particular, V0(ε) = V × V ′ if ε > 0 and V0(0) = V ; analogously, V1(ε) =
(H2(Ω)∩V )×H and V1(0) = H2(Ω)∩V . The spaces Vs are naturally endowed with the graph norm

‖(u, v)‖2s := ‖A
s+1
2 u‖2 + ε‖A

s−1
2 v‖2, (2.6)

where the couple (u, v) has to be intended as u if ε = 0.
Regarding the nonlinear function f , we assume that f ∈ C2(R; R) with f(0) = 0 satisfies

lim inf
|r|→+∞

f(r)
r

> −λ1; (2.7)

∃λ ∈ [0,+∞) : f ′(r) ≥ −λ, ∀ r ∈ R. (2.8)

Here λ1 is the first eigenvalue of A. Note that f can be, for instance, a polynomial of arbitrarily large
odd degree with positive leading coefficient. If we indicate as F the potential of f (i.e., a suitable
primitive of f), we can always suppose that

F (r) ≥ −κ
2
r2, (2.9)

for some κ < λ1. By (2.8), we also have that F is λ-convex.
Finally, we let

g ∈ H. (2.10)

Problem (1.1)-(1.2) and can then be reformulated as

Problem Pε. Find a pair (u, ut) satisfying

A−1(εutt + ut) +Au+ f(u) = A−1g, (2.11)
u|t=0 = u0, ut|t=0 = u1. (2.12)

Here, it is intended that the first relation holds at least for almost any time t in the life span of the
solution. Actually, we will consider in the sequel both local and global in time solutions. In the sequel
we will frequently write U for the couple (u, ut) and U0 for (u0, u1) (the same convention will be kept
for other letters, e.g., we will write V = (v, vt)). Moreover, for the sake of brevity, solutions will be
sometimes noted simply as u, or as U , rather than as (u, ut).

Speaking of regularity, we can now introduce, for ε > 0, the energy associated with (2.11) as

Eε : V0 → R, Eε(u, v) :=
1
2
‖(u, v)‖20 + (F (u), 1)− 〈g,A−1u〉. (2.13)

Analogously, if ε = 0, we set

E0 : V → R, E0(u) :=
1
2
‖u‖2V + (F (u), 1)− 〈g,A−1u〉. (2.14)

Assumptions (2.7) and (2.10) guarantee that both Eε and E0 are finite for all (u, v) ∈ V1. Instead,
they can be +∞ if (u, v) ∈ V0. Of course, thanks to (2.7), Eε (E0) is in any case bounded from below
on the whole V0 (respectively, V ). The above discussion leads to the following definition, essentially
mutuated from [20].
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Definition 2.1. We say that a solution u to Pε defined on some time interval (0, T ) is an en-
ergy bounded solution, or, more concisely, energy solution, if (u, ut) ∈ L∞(0, T ;V0) and Eε(u, ut) ∈
L∞(0, T ). If (u, ut) ∈ L∞(0, T ;V1), we say instead that u is a weak solution. If (u, ut) ∈ L∞(0, T ;V2),
u is named quasi-strong solution.

Thus, for energy solutions, (2.11) makes sense in D(A−1); for weak solutions, it holds in H;
finally, for quasi-strong solutions, the equation makes sense in V . In particular, despite of the name,
energy bounded solutions are weaker than weak solutions. Notice also that, in some sense, there
is a larger regularity gap between energy and weak solutions than between weak and quasi-strong
solutions. Indeed, the regularity of energy solutions is unsufficient to have the term ∆f(u) in (1.1)
belonging to H−1(Ω) (actually, u ∈ V does not imply that ∆f(u) ∈ H−1(Ω) if f is not linear). Thus,
the non-linearity ∆f(u) is not subordinated to the linear part of the equation and, for this reason,
equation (1.1) is “supercritical” in the class of energy solutions. In contrast to that, thanks to the
embedding Hs+1(Ω) ↪→ C(Ω), s > 1/2, the assumption u ∈ Hs+1(Ω) implies that ∆f(u) ∈ Hs−1(Ω)
(but, nevertheless, it does not belong to Hs−1+δ(Ω) for any positive δ) if s > 1/2. Therefore, equation
(1.1) becomes “critical” in any phase space Hs+1(Ω) ×Hs(Ω) for s > 1/2 and, in particular, in the
case of weak solutions. That explains why the asymptotic smoothing property is a non-trivial one even
in the case of regular solutions (in contrast to the usual wave equation which becomes “subcritical”
in the classes of regular solutions).

We also notice that a comparison in (2.11) gives that utt ∈ L∞(0, T, V ′) for quasi-strong
solutions, utt ∈ L∞(0, T,D(A−1)) for weak solutions, and utt ∈ L∞(0, T,D(A−2)) for energy solu-
tions. This immediately leads to U = (u, ut) ∈ C0

w([0, T ];Vi) with, respectively, i = 2, 1, 0, where
C0
w([0, T ];X) is defined as (X being a real Banach space)

C0
w([0, T ];X) :=

{
v ∈ L∞(0, T ;X) : 〈φ, v(·)〉 ∈ C0([0, T ]), ∀φ ∈ X ′

}
.

Therefore solutions can be evaluated pointwise in time and initial conditions (2.12) in Vi, i = 2, 1, 0,
have a well-defined meaning in all the cases.

2.2 Local and global well-posedness

As noticed in the Introduction, although it is relatively easy to show existence of energy solutions to
Problem Pε under the natural growth restrictions on the potential, here we will be interested only
in the (more restrictive) class of weak solutions for which we start proving a local in time existence
result.

Theorem 2.2. Let the assumptions (2.7)-(2.8) and (2.10) hold. If

U0 = (u0, u1) ∈ V1, (2.15)

then there exist a time T0 = T0(‖U0‖1, ‖g‖) > 0 and a constant Q = Q(‖U0‖1, ‖g‖) > 0 both
independent of ε, such that Problem Pε has a solution U = (u, ut) in [0, T0] which satisfies

‖U(t)‖1 ≤ Q(‖U0‖1, ‖g‖), ∀ t ∈ [0, T0]. (2.16)

Taking advantage of the additional regularity, we also have uniqueness.

Theorem 2.3. Let the assumptions of Theorem 2.2 hold and let (u1, u1
t ) and (u2, u2

t ) be a pair of
weak solutions defined on some interval (0, T ) and having the same initial data (u0, u1) with the
regularity (2.15). Then (u1, u1

t ) and (u2, u2
t ) do coincide on (0, T ).

Next, we pass to our main result. This states that, under a restriction on the magnitude of
the initial data, the local solution to Pε can be extended to a global one (which is still unique thanks
to Theorem 2.3).

Theorem 2.4. Let the assumptions of Theorem 2.2 hold. Then, there exist ε0 > 0 and a nonincreasing
positive function R : (0, ε0)→ (0,+∞) with the property

lim
ε↘0

R(ε) = +∞, (2.17)
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such that, for every ε ∈ (0, ε0) and every initial condition U0 = (u0, u1) ∈ V1 satisfying

‖U0‖1 ≤ R(ε), (2.18)

there exists a (unique) global weak solution U = (u, ut) to problem Pε such that

‖U(t)‖1 ≤ Q(‖U0‖1)e−κt +Q(‖g‖), ∀ t ≥ 0, (2.19)

for some positive constant κ and some positive increasing monotone function Q both independent of
ε. Moreover, u satisfies the energy dissipation inequality

‖U(t)‖20 +
∫ t

0

e−κ(t−s)‖ut(s)‖2V ′ ds ≤ Q(‖U0‖21)e−κt +Q(‖g‖2), ∀ t ≥ 0, (2.20)

where the positive increasing monotone function Q and the positive constant κ are independent of ε,
as well as the higher order identity

I(U)(M) = e−
M
ε I(U0) +

∫ M

0

e
t−M
ε

[(
g, ut +

1
2ε
u

)
+

1
2

(f ′′(u)|∇u|2, ut)
]

dt, ∀M > 0, (2.21)

where I = I(U) is defined by

I(U) :=
ε

2
‖ut‖2 +

1
2
‖Au‖2 +

1
2

(ut, u) +
1
2

(f ′(u)∇u,∇u). (2.22)

Remark 2.5. On account of [39, Rem. 3.4], we can observe that if we consider

σutt + γut −∆(−∆u+ f(u)) = g,

where σ, γ > 0, then, by rescaling the equation with t 7→ γt′, we obtain equation (1.1) with ε = σ
γ2 .

Therefore, the constraint on ε is related with both the inertial and the damping coefficients.

For the reader’s convenience, we also recall a result regarding the parabolic case, whose proof
is standard (see, e.g., [8, 22, 34] for details).

Theorem 2.6. Let (2.7)-(2.8) and (2.10) hold and let T > 0. If u0 ∈ V is such that E0(u0) < ∞
(hence, in particular, if u0 ∈ D(A)), then there exists a unique function

u ∈ H1(0, T ;V ′) ∩ L∞(0, T ;V ) ∩ L2(0, T ;D(A)) (2.23)

which solves
A−1ut +Au+ f(u) = A−1g, in H, a.e. in (0, T ). (2.24)

2.3 Long time behavior

Theorem 2.4 allows us to interpret Pε as a dynamical system defined on a suitable phase space. Indeed,
for ε ∈ (0, ε0), let us set

Bε(R) :=
{
U0 = (u0, u1) ∈ V1 : ‖U0‖1 ≤ R

}
, (2.25)

where R = R(ε) is as in Theorem 2.4. Thanks to this theorem, we have that

Sε(t)U0 := U(t) = (u(t), ut(t)), ∀U0 ∈ Bε(R), ∀ t ≥ 0, (2.26)

is a semigroup. We now define
Bε :=

[ ⋃
t≥0

Sε(t)Bε(R)
]
V1

, (2.27)

where [·]V1 denotes the closure with respect to the strong topology of V1. Owing to estimate (2.19), Bε
is a bounded and, of course, closed set of V1 which is invariant under the action of Sε(t). Therefore,
thanks to (2.19), (Bε, Sε(t)) is a (dissipative) dynamical system. We now come to our first result.
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Theorem 2.7. Let the assumptions of Theorem 2.4 hold. Then, for all ε ∈ (0, ε0) there exists a
compact global attractor Aε ⊂ V1 for the semigroup Sε(t) on the phase space Bε which is bounded
in V2. Moreover, if f ∈ C2,1

loc (R; R), then there exists ε1 ∈ (0, ε0] such that, for all ε ∈ (0, ε1), Aε is
bounded in V3.

Remark 2.8. Being Bε bounded, the attraction property can be formulated simply as

lim
t→+∞

dist1(Sε(t)Bε,Aε) = 0, (2.28)

where dist1 denotes the Hausdorff semidistance of sets in the norm of V1.

Remark 2.9. The main issue in the above Theorem is the V3-regularity of the attractor. Actually,
the existence of a global attractor bounded in V1 could be achieved in a relatively standard way
by using, for instance, the equality (2.21) together with the so-called energy method by J.M. Ball
(cf. [2]). To show that the attractor has the V3 regularity, we will proceed in two steps: first we will
show a V1-V2 regularization estimate providing the existence of a V2-bounded exponentially attracting
set (see Section 3.4). This is enough to ensure the existence of the global attractor bounded in V2.
Then we achieve a V2-V3 smoothing property by means of a decomposition procedure similar to that
used for the two-dimensional problem in [20] (see the following Section 3.5). However, to complete
the proof we need to use the transitivity property of exponential attraction (see [10, Thm. 5.1]) to
guarantee that Aε actually attracts also solutions with initial data in V1. This property holds provided
that Sε(t) is Lipschitz continuous on V1 and, in order to prove that, we must require f ∈ C2,1

loc (R; R)
(see Lemma 3.8 below). Moreover, this assumption is needed for proving the V3-boundedness of one
component of the semigroup (see (3.148)).

Remark 2.10. We recall that the technique introduced in [39] can also be used to handle singular
potentials (see [19]). Thus, with some more technicalities, the results of this paper can be proven
even in the case of suitable singular potentials defined, say, on (0, 1) so that u(x, t) ∈ (0, 1) for all
(x, t) ∈ Ω̄× (0,+∞).

Remark 2.11. Using the asymptotic compactness of the trajectories and the  Lojasiewicz-Simon
inequality, it could also be proved that any weak solution converges to a unique equilibrium, whenever
f is real analytic.

Finally, we move to our last result, dealing with the exponential attractor issue. We will
not prove this result, since the argument would follow with almost no modifications the proof of [20,
Thm. 5.1]. The only significant difference is that here we have to take care of the further constraint
(2.18), but this affects just the statement and not the proof.

Theorem 2.12. Let the assumptions of Theorem 2.2 together with (2.18) hold. In addition, suppose
that f ∈ C2,1

loc (R; R). Then, the semigroup Sε(t) restricted to Bε admits an exponential attractorMε.
Namely, Mε is a positively invariant, compact subset of V1 with finite fractal dimension with respect
to the V1-metric which is also bounded in V2 (in V3, if ε ∈ (0, ε1)) and such that there exist positive
constants κ,C such that

dist1

(
Sε(t)Bε,Mε

)
≤ Ce−κt. (2.29)

Remark 2.13. Theorem 2.12 implies that Aε has finite fractal dimension with respect to the V1-
metric.

3 Proofs

In what follows, the symbols c, κ, and ci, i ≥ 0, will denote positive constants depending on the data
f, g of the problem, but independent of the initial datum, of time, and of ε. The values of c and κ
are allowed to change even within a single line. Analogously, Q : R+ → R+ (or Qi, i ≥ 0) will be
positive increasing monotone functions defined on the whole real line (the expression of Q can also
vary). A monotone function noted by q will be instead allowed to explode in (strictly positive) finite
times. Finally, C, or Ci, i ≥ 0, will stand for positive constants with additional dependencies (e.g.,
on the initial datum), specified on occurrence.
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3.1 Proof of Theorem 2.2

The existence result relies on an approximation-a priori estimates-passage to the limit procedure. The
approximation step is based on a Faedo-Galerkin scheme. The crucial point here is that the finite
dimensionality of the approximating problem allows for testing (2.11) with (the discrete equivalent
of) Aut, which would not be permitted in the continuous setting.
The Faedo-Galerkin scheme is as follows. First of all, since A−1 is compact and self-adjoint, there
exists an orthonormal basis of L2(Ω) consisting of eigenvectors of A, that is

Avi = λivi, ‖vi‖ = 1, for i = 1, 2, . . . ,
(vi, vj) = δi,j , for i 6= j,

0 < λ1 ≤ λ2 ≤ . . . ≤ λj → +∞, as j ↗ +∞.
(3.1)

It is well known that
{
λ
−1/2
j vj

}
j≥1

is an orthonormal basis of H1
0 (Ω). For any N ≥ 1 we let V N be

the space spanned by {v1, . . . , vN}. Then we introduce the approximating problem

Problem PN : Find tN > 0 and ui ∈ C2([0, tN ]) for i = 1, . . . , N such that, setting

uN :=
N∑
i=1

ui(t)vi,

then uN ∈ C2([0, tN ], D(A)) solves

ε〈A−1uNtt , v〉+ 〈A−1uNt , v〉+ 〈AuN , v〉+ 〈f(uN ), v〉 = 〈A−1gN , v〉 ∀ v ∈ V N , (3.2)

uN (0) = uN0 , uNt (0) = uN1 , (3.3)

where uN0 , u
N
1 and gN are suitable sequences in V N such that, as N → +∞,

uN0 → u0 in D(A), (3.4)

uN1 → u1 in H, (3.5)

gN → g in H. (3.6)

Problem PN consist of a N -dimensional system of nonlinear ordinary differential equations. Thus, the
Cauchy-Lipschitz Theorem applies and we know that there exists a unique (maximal) solution uN in
[0, T ∗), T ∗ ∈ (0,+∞] being the life span. We now derive some a priori estimates that will lead us
to prove the existence result. To this end, just for the sake of simplicity, we drop from now on the
superscript N .

We start by deriving the standard basic energy estimate. To get it, we set v = ut in (3.2), so that

d
dt

[1
2
‖U‖20 + (F (u), 1)− (g,A−1u)

]
+ ‖ut‖2V ′ = 0, (3.7)

where U = (u, ut). Integrating (3.7) and recalling (2.9), we deduce

‖U(t)‖20 +
∫ t

0

‖ut(s)‖2V ′ ds ≤ Q(‖U0‖21) + ‖g‖2. (3.8)

By letting t go to +∞ in (3.8) we obtain in particular the finiteness of the dissipation integral∫ +∞

0

‖ut(s)‖2V ′ ds ≤ Q(‖U0‖21) + ‖g‖2. (3.9)

We now set v = αu in (3.2), where the constant α will be chosen later in a way independent of ε. By
adding the resulting equality to (3.7), we obtain

d
dt

[1
2
‖U‖20 + εα(A−1/2ut, A

−1/2u) + (F (u), 1)− (g,A−1u)
]

+ (1− εα)‖ut‖2V ′ + α‖∇u‖2 + α(A−1/2ut, A
−1/2u) + α(f(u), u)− α(g,A−1u) = 0. (3.10)
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Thanks to (2.8) we have that α(f(u), u) ≥ −λα2 ‖u‖
2 + α(F (u), 1). Hence, denoting by Φ(U) the

quantity in square brackets in (3.10) and choosing α sufficiently small, we can find two positive
constants κ and c such that identity (3.10) yields

d
dt

Φ(U) + κΦ(U) + κ‖ut‖2V ′ ≤ c. (3.11)

Thus, by making use of the standard Gronwall Lemma, we conclude that

Φ(U(t)) +
∫ t

0

e−κ(t−s)‖ut(s)‖2V ′ ds ≤ Φ(U0)e−κt + c. (3.12)

Since
c‖U‖20 − c(1 + ‖g‖2) ≤ Φ(U) ≤ Q(‖U‖21) +Q(‖g‖2

)
(3.13)

for some positive constant c, estimate (3.12) implies

ε‖ut(t)‖2V ′ + ‖∇u(t)‖2 +
∫ t

0

e−κ(t−s)‖ut(s)‖2V ′ ds

≤ Q(‖U0‖1)e−κt +Q(‖g‖), ∀ t ≥ 0, (3.14)

for some positive constant κ independent of ε. Thus, (2.20) follows as well.

We set now v = A(ut +αu) in (3.2), α being as before a positive parameter to be chosen later on. We
thus obtain

d
dt

[ε
2
‖ut‖2 +

1
2
‖Au‖2 − (g, u)

]
+ εα〈utt, u〉+ α(ut, u) + ‖ut‖2 + α‖Au‖2

+ (Af(u), ut) + α(Af(u), u)− α(g, u) = 0. (3.15)

Observe now that
(Af(u), ut) =

1
2

d
dt

(f ′(u)∇u,∇u)− 1
2

(f ′′(u)|∇u|2, ut). (3.16)

Thus, (3.15) takes the form

d
dt

[ε
2
‖ut‖2 +

1
2
‖Au‖2 +

1
2

(f ′(u)∇u,∇u) + εα(ut, u)− (g, u)
]

+ (1− εα)‖ut‖2 + α‖Au‖2 + α(f ′(u)∇u,∇u) + α(ut, u)− α(g, u)

=
1
2

(f ′′(u)|∇u|2, ut). (3.17)

Using standard interpolation arguments, the right hand side can be estimated as follows

1
2

(f ′′(u)|∇u|2, ut) ≤
1
4
‖ut‖2 +

1
4
‖f ′′(u)‖2L∞(Ω)‖∇u‖

4
L4(Ω). (3.18)

We then introduce the following functional

Z(t) :=
ε

2
‖ut‖2 +

1
2
‖u‖2D(A) +

1
2

(f ′(u)∇u,∇u) + εα(ut, u)− (g, u), (3.19)

which is bounded from below. Actually, thanks to (2.8) and the Young inequality we have (possibly
choosing α small)

Z(t) ≥ c
(
ε‖ut‖2 + ‖u‖2D(A)

)
− λ

2
‖∇u‖2 − ‖u‖2 − ‖g‖2. (3.20)

Thus, thanks to (3.8), we infer that

Z(t) ≥ c
(
ε‖ut‖2 + ‖u‖2D(A)

)
−Q0(‖U0‖21)− ‖g‖2. (3.21)
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Moreover, by (2.15), f ∈ C2(R), and the embedding H2(Ω) ↪→ C0(Ω̄), we have

Z(0) ≤ Q1(‖U0‖1) +Q1(‖g‖). (3.22)

Thus, on account of (3.18), from (3.17) we deduce the inequality

d
dt
Z + κZ ≤ Q2(Z), (3.23)

for some κ depending on the choice of α. Let now y be the solution to the Cauchy problem

y′(t) + κy(t) = Q2(y(t)), y(0) = Z(0). (3.24)

Then, the comparison principle gives
Z(t) ≤ y(t), (3.25)

for every t ∈ [0, T0], where T0 = T0(‖(u0, u1)‖1, ‖g‖V ′) is some positive time which is (strictly) smaller
than both the life span of y and of the Galerkin solution (i.e., T ∗). Thus, recalling (3.21), we find

c‖U(t)‖21 −Q0(‖U0‖21)− ‖g‖2 ≤ Z(t) ≤ Q
(
‖U0‖1, ‖g‖), (3.26)

for all t ∈ [0, T0], with Q as in the statement.

In order to pass to the limit as N goes to +∞, we make explicit the N -dependence again. Recalling
(3.4)-(3.6), estimate (3.26) gives

‖(uN , uNt )‖L∞(0,T0;V1) ≤ C, (3.27)

for a positive constant C independent of N but, of course, depending on U0. Moreover, after choosing
v = A−1uNtt in (3.2), we get

‖uNtt ‖L∞(0,T0;D(A−1)) ≤ C. (3.28)

These estimates are enough to pass to the limit as N tends to +∞ in (3.2) and to obtain a solution
to (2.11). Actually, (3.27) and (3.28) combined with the embedding H2(Ω) ↪→ C0(Ω̄) and with the
smoothness of f , give that (up to a subsequence)

(uN , uNt ) ⇀ U weakly star in L∞(0, T0;V1), (3.29)

uNtt ⇀ utt weakly star in L∞(0, T0;D(A−1)), (3.30)

f(uN )→ f(u) uniformly in Ω̄× [0, T0], (3.31)

as N → +∞. Thus, by lower semicontinuity of norms with respect to weak star convergence, u is a
weak solution to problem Pε satisfying (2.16). This concludes the proof.

Remark 3.1. Once we have the uniform boundedness of f(u) at our disposal, it is easy to see that,
if f and the initial datum are smooth enough, then more regular solutions can be constructed. For
instance, if U0 ∈ V2 and (2.7)-(2.8) hold, then a local in time quasi-strong solution exists. The details
of this standard argument are left to the reader.

Remark 3.2. Let us notice that, for U as in Theorem 2.2, one has, more precisely,

U ∈ C0([0, T0];V1). (3.32)

To show this, we can rewrite equation (2.11) as

A−1(εutt + ut) +Au = A−1g − f(u) =: h, (3.33)

where it is clear, due to (2.16), that h ∈ L2(0, T0;D(A)). Thus, property (3.32) can be shown simply
by approximating both h and the initial datum U0 by smoother sequences {hn} and {U0,n}, applying
the linear theory to the resulting problem

A−1(εun,tt + un,t) +Aun = hn, (3.34)

and then using a Cauchy sequence argument. Note that one has to require that hn → h strongly in
L2(0, T0;D(A)). Further details on this procedure can be found in [20, Proof of Thm. 3.1].
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3.2 Proof of Theorem 2.3

Referring to the notation in the statement, we set u = u1 − u2 and U = (u, ut), so that

A−1(εutt + ut) +Au+ f(u1)− f(u2) = 0, in H, a.e. in (0, T ). (3.35)

We now test (3.35) by ut, obtaining

1
2

d
dt
‖U‖20 + ‖ut‖2V ′ = −

(
A1/2(f(u1)− f(u2)), A−1/2ut

)
. (3.36)

Observe now that

‖A1/2(f(u1)− f(u2))‖2

=
∥∥∥∇(∫ 1

0

f ′(su1 + (1− s)u2) ds · (u1 − u2)
)∥∥∥2

≤ sup
s∈[0,1]

‖f ′(su1 + (1− s)u2)‖2L∞(Ω)‖A
1/2u‖2

+ sup
s∈[0,1]

‖f ′′(su1 + (1− s)u2)‖2L∞(Ω)

(
1 + ‖u1‖2D(A) + ‖u2‖2D(A)

)
‖A1/2u‖2, (3.37)

thanks to the regularity properties of f . Thus, for a proper constant C, we find out(
A1/2(f(u1)− f(u2)), A−1/2ut

)
≤ C‖∇u‖2 +

1
2
‖ut‖2V ′ , (3.38)

whence it follows that

1
2

d
dt
‖U‖20 +

1
2
‖ut‖2V ′ ≤ C‖∇u‖2, (3.39)

and the assertion immediately follows from the Gronwall lemma.

3.3 Proof of Theorem 2.4

We first need a couple of important preparatory propositions. The first one is devoted to prove
some uniform in time regularity estimates for the solution u0 to an auxiliary (parabolic) problem
(cf. Problem P0 below) which contains, as a forcing term, a solution u to Pε with initial datum
U0 = (u0, u1) ∈ V1. As a second step we will prove that ‖(u− u0)‖V ′ can be controlled by cε1/2, for
some c > 0, on bounded time intervals. The coupling of these two properties will allow us to reconsider
and improve the bound (2.16). In fact, we will see that, if ε is small enough and, correspondingly, the
V1-norm of (u0, u1) is controlled in the sense of (2.18), then the left hand side of (2.16) is bounded
uniformly in time in a quantitatively controlled way (in particular, it cannot explode as t↗ T0). By
standard extension arguments, this implies that the V1-norm of U = (u, ut) is uniformly bounded in
(0,∞), i.e., u is a global weak solution (and, consequently, it is unique in this class). Actually, we will
prove something more, namely, under the above restrictions, (2.16) can be improven to get a global
and dissipative inequality which entails the existence of a bounded absorbing set.

Let us then state the auxiliary Problem P0 as

A−1u0
t +Au0 + f(u0) + λu0 = λu+A−1g, in V ′, a.e. in (0, T ), (3.40)

u0|t=0 = u0 in Ω. (3.41)

Here, the initial datum u0 in (3.41) is the first component of the initial data of Problem Pε. Thus it
lies in D(A). Moreover, it is worth noting that the function u in the right hand side is the (unique)
weak local solution to Problem Pε constructed in Theorem 2.2 and defined in some interval (0, T0).
Thus, our first aim will be to construct the solution u0 in the same time interval. Observe also that,
by (2.8), β := f + λ Id is a nondecreasing monotone function. Arguing as in the proof of Theorem
2.2, i.e., testing (2.11) by A(ut + αu), we have that U satisfies the analogue of (2.20), namely

‖U(t)‖20 +
∫ t+1

t

‖ut(s)‖2V ′ ds ≤ Q(‖U0‖1)e−κt +Q(‖g‖), ∀ t ∈ (0, T0), (3.42)
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for some constant κ independent of ε.
Let us now state our first proposition addressing the properties of the solution u0 to P0. This

is in fact a variant of Theorem 2.6 (cf. also [8]) which makes the regularity and dissipativity properties
of u0 more precise.

Proposition 3.3. Let the assumptions (2.7)-(2.8) and (2.10) hold. Let u0 be a solution to Problem P0.
Then, the following estimate holds

‖u0(t)‖D(A) ≤ Q(‖U0‖1)e−κt +Q(‖g‖), ∀ t ∈ (0, T0), (3.43)

for some positive constant κ independent of ε and some monotone function Q independent of T0.

Proof. The proof is based on a number of a priori estimates which will be obtained by formal argu-
ments. However, the whole procedure could be justified within a new Faedo-Galerkin approximation
scheme, which is completely standard and hence omitted.

The main point in the proof is that we will use only property (3.14) of the function u, where
the right hand side does not explode as t ↗ T0. Thus, let us test (3.40) by u0

t + αu0. It is then not
difficult to infer, at least for α > 0 small enough,

d
dt
E∗ + αE∗ + ‖u0

t‖2V ′ ≤ λ
(
u0
t + αu0, u

)
, (3.44)

where we have set

E∗ = E∗(u0) :=
1
2
‖∇u0‖2 +

α

2
‖u0‖2V ′ + (B(u0), 1)− 〈g,A−1u0〉, (3.45)

with B(r) := F (r) + λr2/2. Thus, estimating standardly the right hand side of (3.44), we obtain the
inequality

d
dt
E∗ +

α

2
E∗ +

1
2
‖u0

t‖2V ′ ≤ c‖u‖2V , (3.46)

where c does not depend on ε. Thus, multiplying (3.46) by e
α
2 t and then integrating between 0 and

t, it is not difficult to obtain that u0 fulfils the dissipative bound

E∗(u0(t)) +
1
2

∫ t

0

e−
α
2 (t−s)‖u0

t (s)‖2V ′ ds ≤ E∗(u0)e−
α
2 t + c

∫ t

0

e−
α
2 (t−s)‖u(s)‖2V ds. (3.47)

Recalling (3.14), and choosing α ≥ 2κ, with κ as in (2.20), one then infers

E∗(u0(t)) +
1
2

∫ t

0

e−
α
2 (t−s)‖u0

t (s)‖2V ′ ds ≤ Q
(
‖U0‖1

)
e−

α
2 t +Q

(
‖g‖
)
. (3.48)

Next, let us test (3.40) by A3u0. We obtain (recall that β = f + λId)

d
dt
‖Au0‖2 + ‖A2u0‖2 ≤ c

(
‖g‖2 + ‖Aβ(u0)‖2 + ‖Au‖2

)
. (3.49)

Using interpolation, we then obtain

d
dt
‖Au0‖2 + ‖A2u0‖2 ≤ c

(
‖g‖2 +Q(‖Au0‖) + ‖Au‖2

)
, (3.50)

whence, recalling (2.16) and applying again the comparison argument as in (3.24)-(3.25), it follows
that there exists a time T1 ≤ T0, depending on ‖U0‖1 and on ‖g‖, such that

‖Au0(t)‖2 ≤ q
(
‖g‖
)

+ q
(
‖U0‖1

)
, ∀ t ∈ [0, T1]. (3.51)

We now test (3.40) by u0
t . This yields

1
2
‖u0

t‖2V ′ +
d
dt

(1
2
‖∇u0‖2 + (B(u0), 1)

)
≤ c
(
‖u‖2V + ‖g‖2

)
. (3.52)
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Integrating over (0, T1), we then deduce (recall (3.8))∫ T1

0

‖u0
t (t)‖2V ′ dt ≤ cT1

(
Q(‖U0‖1) +Q(‖g‖)

)
. (3.53)

We now differentiate with respect to time (3.40) and test the resulting equation by tu0
t , obtaining

d
dt

(t‖u0
t‖2V ′) + t‖∇u0

t‖2 ≤ ‖u0
t‖2V ′ + ct‖ut‖2V ′ . (3.54)

Integrating (3.54) over (0, T1), recalling (3.53), and using the dissipation integral (3.9), we obtain

‖u0
t (T1)‖2V ′ ≤ Q(‖U0‖1) +Q(‖g‖). (3.55)

Let us differentiate (3.40) once more and test the obtained equation by u0
t . We then get

d
dt
‖u0

t‖2V ′ + ‖∇u0
t‖2 ≤ c‖ut‖2V ′ . (3.56)

Summing (3.46) and (3.56), we infer

d
dt
F(t) + κF(t) ≤ c

(
‖u‖2V + ‖ut‖2V ′

)
, (3.57)

for some positive constants κ (possibly different from the κ in (3.42)) and c. Here (see (3.45))

F := E∗(u0) + ‖u0
t‖2V ′ .

Subsequently, we integrate (3.57) over (T1, t), with t arbitrary, thus obtaining

F(t) ≤ ce−κ(t−T1)F(T1) + c

∫ t

T1

e−κ(t−s)(‖u(s)‖2V + ‖ut(s)‖2V ′
)

ds. (3.58)

According to (3.42), we have that∫ t+1

t

(
‖u(s)‖2V + ‖ut(s)‖2V ′

)
ds ≤ Q(‖U0‖1)e−κt +Q(‖g‖). (3.59)

Thus, using a suitable version of the Gronwall lemma (see, e.g., [30]) and recalling (3.55), we get

‖u0
t (t)‖2V ′ ≤ Q(‖U0‖1)e−κt +Q(‖g‖), ∀ t ≥ T1. (3.60)

for some κ > 0 (the smaller between the one appearing in (3.42) and the one in (3.57)). Next, by a
direct comparison argument in (3.40), (3.42) again, and standard elliptic regularity, we infer

‖u0(t)‖D(A) ≤ Q
(
‖U0‖1

)
e−κt +Q

(
‖g‖
)
, ∀ t ≥ T1. (3.61)

Finally, (3.51) and (3.61) imply (3.43), which concludes the proof.

The following proposition gives the quantitative estimate of the difference between u0 and the
(unique) local solution u to Pε.

Proposition 3.4. Let assumptions (2.7)-(2.8) and (2.10) hold, let u as before, and let u0(t) be the
corresponding (unique) solution to Problem P0. Then, the following estimate holds

‖u0(t)− u(t)‖2V ′ ≤ cε
(
Q(‖u0, u1‖1)e−κt +Q(‖g‖)

)
, ∀ t ∈ (0, T0), (3.62)

where Q, c, κ are independent both of ε and of T0.
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Proof. Let us take the difference between (2.11) and (3.40). Setting u := u− u0, we have that

A−1ut +Au+ β(u)− β(u0) = −A−1(εutt), a.e. in (0, T0). (3.63)

We can then test (3.63) by u. A number of simple manipulations and the monotonicity of β allow us
to deduce the following inequality

d
dt

[1
2
‖u‖2V ′ + ε〈ut, A−1u〉

]
+ ‖u‖2V = ε〈ut, A−1ut〉 ≤

ε

2
(
‖ut‖2V ′ + ‖ut‖2V ′

)
. (3.64)

Adding to (3.64) the straightforward inequality

ε〈ut, A−1u〉 ≤ cε‖ut‖2V ′ +
1
2
‖u‖2V , (3.65)

and noting by Y the quantity in square brackets in (3.64), we easily obtain

d
dt
Y + κY ≤ cε

(
‖ut‖2V ′ + ‖u0

t‖2V ′
)

=: m(t). (3.66)

Observe now that (see (3.42), (3.53) and (3.60))∫ t+1

t

m(s) ds ≤ ε
(
Q(‖U0‖1)e−κt +Q(‖g‖)

)
, (3.67)

and recall that Y (0) = 0. Then, the comparison principle entails that

Y (t) ≤ ε
(
Q(‖U0‖1)e−κt +Q(‖g‖)

)
, (3.68)

which yields, using (3.42) once again,

‖u(t)‖2V ′ ≤ ε
(
Q(‖U0‖1)e−κt +Q(‖g‖)

)
, (3.69)

that is, the desired estimate.

Assuming that ε is sufficiently small and the V1-norm of the initial data is controlled by a function
R(ε) with the properties indicated in the statement of Theorem 2.4, let us now derive a V1-bound
for U which is independent of the final time T0. This will permit, by standard extension methods, to
prolong U to a global in time weak solution. The key point to show such an estimate is the comparison
of U with the auxiliary solution u0 provided by Proposition 3.4.

The starting point is the following relation (cf. (3.17)-(3.19)), holding for all t ∈ (0, T0),

d
dt
Z(t) + κZ(t) ≤ 1

4
‖f ′′(u)‖2L∞(Ω)‖u‖

4
W 1,4(Ω) ≤M

(
‖u‖H7/4(Ω)

)
. (3.70)

Here the last inequality is a consequence of the continuous embedding H7/4(Ω) ⊂ L∞(Ω) ∩W 1,4(Ω)
and of the C2 regularity of f . We have denoted by M a continuous and increasingly monotone
function independent of T0 and such that M(0) = 0. Recalling (3.43) and (3.69), and properly using
interpolation, we can write

‖u‖H7/4(Ω) ≤ ‖u‖H7/4(Ω) + ‖u0‖H7/4(Ω)

≤ ‖u‖11/12
D(A) ‖u‖

1/12
V ′ + ‖u0‖H7/4(Ω)

≤ ‖u‖11/12
D(A)

[
ε1/24

(
Q(‖U0‖1)e−κt +Q(‖g‖)

)]
+Q(‖U0‖1)e−κt +Q(‖g‖)

≤
(
‖u‖11/12

D(A) + ‖u0‖11/12
D(A)

)[
ε1/24

(
Q(‖U0‖1)e−κt +Q(‖g‖)

)]
+Q(‖U0‖1)e−κt +Q(‖g‖). (3.71)

Now, recalling (3.8) and (3.21), we can define

Z̃ = Z +Q(‖U0‖1)e−κ0t +Q(‖g‖V ′), (3.72)
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for suitable Q and κ0 > 0, chosen such that

c‖U(t)‖21 ≤ Z̃(t), ∀ t ∈ (0, T0), (3.73)

for some c > 0. Using (3.43) and (3.73), we then see that the M -term on the right hand side of (3.70)
can be estimated as follows:

M
(
‖u‖H7/4(Ω)

)
≤M

[(
ε1/24Z̃ + 1

)(
Q(‖U0‖1)e−κt +Q(‖g‖)

)]
(3.74)

(we assumed here Z̃ ≥ 1, which is of course not restrictive). Thus, (3.70) can be rewritten as

d
dt
Z̃(t) + κZ̃(t) ≤M1

(
P ε1/24Z̃

)
+M2(Q), ∀ t ∈ (0, T0), (3.75)

where M1 and M2 have the same properties as M (i.e., they are continuous monotone functions such
that M1(0) = M2(0) = 0) and we have set, for brevity,

P := Q3(‖U0‖1)e−κt +Q4(‖g‖), Q := Q5(‖U0‖1)e−κt +Q6(‖g‖), (3.76)

for some Qi, i = 3, . . . , 6, having the same properties as the generic Q.
We can now set ρ = Z̃(0) > 0 and observe that (cf. (3.19), (3.22) and (3.72)), for a fixed

R > 0, we have that
‖U0‖1 ≤ R⇒ ρ ≤ Q7(R) +Q8(‖g‖). (3.77)

Now, for some z∗ > ρ whose value will be chosen later, we put

ε1/24 :=
1

(Q3(R) +Q4(‖g‖))z∗
M−1

1 (1). (3.78)

Notice that here we used that M1 is continuous and such that M1(0) = 0. Hence, if ε > 0 is as above
(or smaller), and z ≤ z∗, then there holds

M1

[(
Q3(R) +Q4(‖g‖)

)
zε1/24

]
≤M1

[(
Q3(R) +Q4(‖g‖)

)
z∗ε1/24

]
≤ 1. (3.79)

Thus, assuming that Z̃ is smaller than z∗, (3.75) entails in particular

d
dt
Z̃(t) + κZ̃(t) ≤M3(Q) := 1 +M2(Q). (3.80)

By the comparison principle, we then have

Z̃(t) ≤ ρe−κt +
∫ t

0

e−κ(t−s)M3

(
Q5(R)e−κs +Q6(‖g‖)

)
ds

≤ ρ+ κ−1M3

(
Q5(R) +Q6(‖g‖)

)
. (3.81)

The above relation holds, in principle, until Z̃(t) is not greater than the number z∗. To make this
true uniformly in time, it is then enough to set

z∗ := ρ+ κ−1M3

(
Q5(R) +Q6(‖g‖)

)
, (3.82)

and take ε as given by (3.78) with this choice of z∗. More precisely, from (3.78) we obtain

ε =
(

1(
Q3(R) +Q4(‖g‖)

)(
ρ+M3(Q5(R) +Q6(‖g‖))

)M−1
1 (1)

)24

=: Φ(R), (3.83)

where Φ is a monotone function of R as we think ρ be controlled by the latter expression in (3.77).
The desired R(ε) is then chosen simply as Φ−1. Of course, the value ε0 is then given by limR↘0 Φ(R).

15



Bound (3.81) entails that Z̃(t) is bounded in a way that does not depend on T0. Thus, the
V1-norm of U(t) cannot explode in finite times, which permits to extend U to a global solution (unique
in its class by Theorem 2.3), as desired. Moreover, (3.81) can now be improved. Namely, we have

Z̃(t) ≤ ρe−κt + e−κt
[ ∫ T

0

eκsM3

(
Q5(R) +Q6(‖g‖)

)
ds+

∫ t

T

eκsQ(‖g‖) ds
]

≤ Q(R)e−κt +Q(‖g‖), (3.84)

where T is a suitable time depending on ρ (and, consequently, on R) and on M3 such that, for t ≥ T ,
Q5(R)e−κs is smaller than some computable quantity Q(‖g‖) (notice that the κ’s in (3.81), (3.84)
might well differ from each other). Relation (3.84) has then the form of a dissipative estimate and
entails (2.19).

To conclude it only remains to prove the energy identity (2.21), which now follows with few
complications from the results above. Formally speaking, we have to test (3.33) by ut + 1

2εu. Setting
then (for U = (u, ut), as usual)

I(U) :=
ε

2
‖ut‖2 +

1
2
‖Au‖2 +

1
2

(ut, u) +
1
2
(
f ′(u)|∇u|2, 1

)
, (3.85)

we deduce that I satisfies

d
dt
I(U) +

1
ε
I(U) =

(
g, ut +

1
2ε
u

)
+

1
2
(
f ′′(u)|∇u|2, ut

)
, (3.86)

so that (2.21) follows simply by integrating (3.86) over a time interval (0,M).
However, the regularity of ut is not enough to justify this estimate (while that of u suffices).

Thus, to make the procedure rigorous, we can rewrite once more (2.11) as

εutt + ut +A2u = g + f ′(u)∆u+ f ′′(u)|∇u|2 =: k, (3.87)

and observe that, once U is globally bounded with values in V1, proceeding as in Remark 3.2 one can
prove that U ∈ C0([0, T ];V1) for all T > 0.

At this point, we claim that, for all 0 ≤ s ≤ t ≤ T , there holds∫ t

s

(
f ′(u)∆u+ f ′′(u)|∇u|2, ut

)
= −1

2
(
f ′(u(t))|∇u(t)|2 − f ′(u(s))|∇u(s)|2, 1

)
+
∫ t

s

(
f ′′(u)|∇u|2, ut

)
. (3.88)

Indeed, this can be proven by substituting U with some smoother Un (for which the above equality is
trivial) such that, as n goes to +∞, Un → U strongly in C0([0, T ];V1) and taking the limit. Actually,
it is easy to see that all terms in both hands sides of (3.88) converge to the expected values (cf. [20,
Sec. 3] for more details on a similar argument). Finally, to justify the fact that the product of the
left hand side of (3.87) times ut gives the expected result one can see (3.87) as a linear problem with
source datum k, regularize k with a sequence {kn}, and take once more the limit by a (standard)
Cauchy argument. The proof is complete.

3.4 Asymptotic boundedness and dissipativity in V2

We give here the first part of the proof of our main Theorem 2.7, whose hypotheses are implicitly
assumed for the whole of this section (notice, however, that for the proof of this part the assumption
f ∈ C2,1

loc is not needed). In particular, we will show that, under the assumptions of Theorem 2.4 (in
particular the initial data must satisfy (2.18)), the semigroup Sε admits an exponentially attracting
set A2 bounded in V2. This fact ensures that there exists a global attractor bounded in V2. Note that
we must appeal to the results in [31] since the (Lipschitz) continuity of Sε is only guaranteed with
respect to the V0 norm (see (3.39)).
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To prove this fact, by (2.19) we can consider weak solutions U whose initial datum U0 lies in
an absorbing set B1 bounded in V1. Moreover, we can assume B1 be positively invariant for Sε. Thus,
in particular, we have that

‖U(t)‖1 ≤ K, ∀ t ≥ 0, (3.89)

where K is the V1-radius of B1. Our aim is then to prove that there exist R2 = R2(K) and a positive
constant α such that

dist1

(
U(t), {ξ ∈ V2, ‖ξ‖2 ≤ R2}

)
≤ Ce−αt. (3.90)

Here and below C is a generic positive constant allowed to depend on K in (3.89).
In order to check (3.90), we will use a decomposition U = V +W where the function V = (v, vt)

is assumed to solve

εvtt + vt +A2v − div(f ′(u)∇v) + Lv = g + Lu, V (0) = 0, (3.91)

where L = L(K) > 0 is a sufficiently large constant which will be fixed later. Then, the remainder
W = (w,wt) will solve

εwtt + wt +A2w − div(f ′(u)∇w) + Lw = 0, W (0) = U0. (3.92)

We start by managing the equation for w.

Lemma 3.5. There exists L = L(K) such that

‖W (t)‖1 ≤ Ce−αt, ∀ t ≥ 0, (3.93)

for some constants C and α depending only on K.

Proof. Indeed, estimate (3.93) follows in a standard way by multiplying equation (3.92) by wt+µw.
The only nontrivial term (f ′′(u)ut, |∇w|2) can actually be estimated as follows∣∣(f ′′(u)ut, |∇w|2

)∣∣ ≤ C‖ut‖‖∇w‖2L4(Ω) ≤
1
2
‖w‖2H2(Ω) +MK‖w‖2, (3.94)

where MK is a positive constant depending only on f and K and whose value determines the choice
of L.

We now study the component V satisfying equation (3.91). To this end, we first note that, due to
(3.89) and (3.93), it is already known that

‖V (t)‖1 ≤ C, ∀ t ≥ 0. (3.95)

The next lemma shows that this component belongs to V2 as well.

Lemma 3.6. The solution v(t) satisfies

‖V (t)‖2 ≤ C, ∀ t ≥ 0. (3.96)

Proof. Let Θ = (θ, θt) := Vt. Then, multiplying equation (3.91) by Av, integrating over Ω and
using (2.8) and (3.95), we see that

‖v(t)‖H3(Ω) ≤ C‖Θ(t)‖0. (3.97)

Hence, we only need to estimate the V0-norm of the function Θ(t), where

εθtt + θt +A2θ − div(f ′(u)∇θ)− div(f ′′(u)ut∇v) + Lθ = Lut. (3.98)

We now claim that multiplying this equation by A−1(θt + µθ) there follows

‖Θ(t)‖0 ≤ C, (3.99)
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which, thanks to (3.97), would finish the proof. To demonstrate our claim, we just estimate the most
difficult terms coming from the nonlinearity f . Firstly, we have∣∣〈 div(f ′′(u)ut∇v), A−1θt

〉∣∣ ≤ µ‖θt‖2V ′ + Cµ‖f ′′(u)‖2L∞(Ω)‖ut‖
2‖∇v‖2L∞(Ω)

≤ µ‖θt‖2V ′ + Cµ‖∇v‖2L∞(Ω) ≤ µ‖Θ‖
2
0 + Cµ. (3.100)

Here we have used (3.89), (3.97) and the well-known inequality

‖∇v‖2L∞(Ω) ≤ c‖v‖H2(Ω)‖v‖H3(Ω). (3.101)

Next, the first nonlinear term coming from (3.98) is transformed as follows:

−
〈

div(f ′(u)∇θ), A−1θt
〉

=
(
f ′(u)θ, θt

)
+
〈

div(f ′′(u)θ∇u), A−1θt
〉

=
1
2

d
dt
(
f ′(u)θ, θ

)
− 1

2
(
f ′′(u)ut, |θ|2

)
−
(
f ′′(u)θ∇u,∇A−1θt

)
. (3.102)

Hence, we only need to estimate the last two terms in the right hand side above. The first is treated
by noting that ∣∣(f ′′(u)ut, |θ|2

)∣∣ ≤ C‖ut‖H‖θ‖2L4(Ω) ≤ µ‖θ‖
2
V + Cµ, (3.103)

while for the second term we have∣∣(f ′′(u)θ∇u,∇A−1θt
)∣∣ ≤ µ‖θt‖2V ′ + Cµ‖∇u‖2L6(Ω)‖θ‖

2
L3(Ω) ≤ µ‖Θ‖

2
0 + Cµ, (3.104)

where we have used that ‖θ‖2L3(Ω) ≤ c‖θ‖H‖θ‖V . This concludes the proof of the claim and of the
lemma.

We conclude by proving the V2-dissipativity.

Lemma 3.7. Let the assumptions of Theorem 2.4 hold. Letting in addition U0 ∈ V2, the correspond-
ing solution U satisfies the estimate

‖U(t)‖2 ≤ Q(‖U0‖2)e−κt +Q(‖g‖), ∀ t ≥ 0. (3.105)

Proof. Let us differentiate (2.11) with respect to time and set θ := ut and Θ := (θ, θt). We then
obtain

A−1(εθtt + θt) +Aθ + f ′(u)θ = 0. (3.106)

We now test (3.106) by 2θt. Of course, this procedure might be not justified in the current regularity
setting, but could be made rigorous by working in the Galerkin approximation and then taking the
limit. We omit the standard details. Simple computations lead to

d
dt
[
‖Θ‖20 +

(
f ′(u)θ, θ

)]
+ 2‖θt‖2V ′ ≤

(
f ′′(u)θ2, θ

)
. (3.107)

Next, we test (3.106) by αθ, for α > 0 to be chosen. We get

d
dt

[
αε
(
θt, A

−1θ
)

+
α

2
‖θ‖2V ′

]
− αε‖θt‖2V ′ + α‖θ‖2V + α

(
f ′(u)θ, θ

)
= 0. (3.108)

Hence, using the C2-regularity of f , Sobolev’s embeddings and (2.19), we obtain(
f ′′(u)θ2, θ

)
≤ Q(‖u‖D(A))‖θ‖3/2‖θ‖

3/2
V

≤ α

2
‖θ‖2V +Q

(
Q(‖U0‖1)e−κt +Q(‖g‖)

)
. (3.109)

Thus, summing (3.107) and (3.108) together and exploiting (3.109) we obtain

d
dt

Σ + κΣ ≤ Q
(
Q(‖U0‖1)e−κt +Q(‖g‖)

)
, (3.110)
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where we have taken α small enough and set

Σ := ‖Θ‖20 +
(
f ′(u)θ, θ

)
+ αε

(
θt, A

−1θ
)

+
α

2
‖θ‖2V +Q(‖U0‖1)e−κt +Q(‖g‖). (3.111)

Here, on account of (2.8) and (2.19), Q has been chosen such that

c1‖Θ‖20 ≤ Σ ≤ c2‖Θ‖20 +Q(‖U0‖1)e−κt +Q(‖g‖), (3.112)

for some c1, c2 > 0. Thus, proceeding as in (3.84) to control the right hand side of (3.110), we get a
dissipative estimate for ‖Θ‖20. Finally, let us prove (3.105). With this aim, let us first observe that,
applying a comparison argument in (2.11), we get

‖U‖2 ≤ C
(
‖U‖1 + ‖g‖

)
+ C‖f(u)‖V

≤ C
(
‖U‖1 + ‖g‖

)
+ C‖f ′(u)∇u‖+ C‖f(u)‖. (3.113)

Then, estimating the latter term by a further comparison of terms in (2.11) (and not just by using
the regularity properties of f), the chain of inequalities is continued as follows

≤ C
(
‖U‖1 + ‖g‖

)
+ C‖f ′(u)‖L∞(Ω)‖∇u‖+ C‖U‖1

≤
(
C +Q(‖U‖1)

)(
‖U‖1 + ‖g‖

)
, (3.114)

where Q is as usual a monotone function. Thus, the first factor in the last row is uniformly bounded,
while the latter dissipates thanks to (2.19). The proof is concluded.

3.5 Asymptotic boundedness in V3

We conclude here the proof of Theorem 2.7 by showing that the semigroup Sε admits an exponentially
attracting set A3 bounded in V3. To prove this, we start noting a simple fact, namely,

Lemma 3.8. Let the assumptions of Theorem 2.4 hold. Suppose, in addition, that f ∈ C2,1
loc (R; R).

Then Sε(t) is V1-Lipschitz continuous on any bounded positively invariant P1 sets of V1, with Lipschitz
constant of the form C1e

C2t, C1 and C2 being positive constants depending only on the V1-radius of
P1.

Proof. Let us consider a couple of initial conditions U0 = (u0, u1) and V0 = (v0, v1) lying in a
bounded and positively invariant subset P1 of V1. The, let us denote by U = (u, ut) and V = (v, vt)
the two solutions to (2.11) originating, respectively, from U0 and V0. The function W := U − V will
then solve

A−1(εwtt + wt) +Aw + f(u)− f(v) = 0. (3.115)

Then, multiplying (3.115) by 2Awt and integrating over Ω, we get

ε
d
dt
‖wt‖2 + 2‖wt‖2 +

d
dt
‖Aw‖2 = −2

(
A(f(u)− f(v)), wt

)
. (3.116)

Using the positive invariance of P1, the C2,1
loc -regularity of f , standard Sobolev embeddings and the

Young inequality, it is not difficult to see that the right hand side in (3.116) could be estimated as

2
(
A(f(u)− f(v)), wt

)
≤ C‖Aw‖2 + ‖wt‖2, (3.117)

for C depending on the V1-radius of P1. Thus, the Gronwall Lemma entails the desired (local)
Lipschitz continuity of Sε(t).

We will now consider solutions U = (u, ut) whose initial datum U0 lies in A2 and show that they
are exponentially attracted with respect to the V1-norm (actually, also by the V2-norm) by a V3-
bounded set A3. This will conclude the proof of Theorem 2.7 by means of the transitivity property
of exponential attraction introduced in [10, Thm. 5.1]. Note that the Lipschitz condition [10, (5.1)]
holds thanks to Lemma 3.8.
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The construction of the attracting set A3 will follow the lines of Theorem 4.1 in [20] and
is divided into a number of steps presented as separate Lemmas. First of all, we operate a new
decomposition of a U = (u, ut) as a sum U = V + W , where V = (v, vt) and W = (w,wt), as usual.
We take (a new) L > 0 (whose value will be chosen later) and assume V solves now

A−1(εvtt + vt) +Av + LA−1v + f(v) = A−1(Lu+ g) =: A−1h, V |t=0 = 0, (3.118)

while W is a solution of

A−1(εwtt + wt) +Aw + LA−1w + f(u)− f(v) = 0, W |t=0 = U0 := (u0, u1), (3.119)

and we recall that U0 ∈ V2. We will prove that V (·) is compact in V2 (and, more precisely, bounded
in V3), while W (·) exponentially decays in V2. We start with our first

Lemma 3.9. Let the assumptions of Theorem 2.4 hold. Then, we have

‖V (t)‖1 ≤ QL(‖U0‖1)e−κt +QL(‖g‖). (3.120)

Proof. The proof relies on the same argument as the proof of (2.19) in Theorem 2.4. Thus, we
limit ourselves to give the highlights. We namely introduce the parabolic problem

A−1v0
t +Av0 + LA−1v0 + f(v0) = A−1(Lu+ g) = A−1h, v0|t=0 = 0, (3.121)

so that, setting v := v − v0, we have (compare with (3.63))

A−1vt +Av + LA−1v + f(v)− f(v0) = −εA−1vtt, v0|t=0 = 0, (3.122)

Testing then (3.118) by A(vt + αv) for small α > 0 and proceeding as in the proof of Theorem 2.4,
we arrive at the analogue of (3.70), namely

d
dt
Z(t) + κZ(t) ≤ c‖h‖2 +

1
4
‖f ′′(v)‖2L∞(Ω)‖v‖

4
W 1,4(Ω), (3.123)

where this new Z is given by

Z(t) :=
ε

2
‖vt‖2 +

1
2
‖v‖2D(A) +

L

2
‖v‖2 +

1
2

(f ′(v)∇v,∇v) + εα(vt, v). (3.124)

Then, using v0 in order to estimate the latter term on the right hand side of (3.123) and noting that

‖h‖2 ≤ QL(‖U0‖1)e−κt +QL(‖g‖), (3.125)

we arrive at an expression analogous to (3.75), but related to the function v. Thus, we find that there
exists a (new, and possibly smaller) number ε0 > 0 such that, for ε ∈ (0, ε0), the analogue of (3.81)
holds. Noting that no restriction is now required on the initial datum being in fact V (0) = 0, we
obtain (3.120). The proof is complete.

Let us now notice that, comparing (2.19) and (3.120) we obtain the analogue for the component W ,
namely

‖W (t)‖1 ≤ QL(‖U0‖1)e−κt +QL(‖g‖). (3.126)

We now prove that our system admits a dissipation integral in the V -norm.

Lemma 3.10. Let the assumptions of Theorem 2.4 hold. Then, for any quasi-strong solution U =
(u, ut) to Pε there holds∫ +∞

0

‖ut(s)‖2V ds+ sup
s∈[0,+∞)

ε‖utt(s)‖2V ′ ≤ Q
(
‖U0‖2

)
<∞. (3.127)
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Proof. Let us differentiate once more (2.11) with respect to time and set θ := ut and Θ := (θ, θt).
We then get

A−1(εθtt + θt) +Aθ + LA−1θ + f ′(u)θ = LA−1ut =: k. (3.128)

We now test (3.128) by 2θt. Then, simple computations lead to

d
dt
[
‖Θ‖20 + L‖θ‖2V ′ +

(
f ′(u)θ, θ

)]
+ ‖θt‖2V ′

≤ ‖k‖2V +
(
f ′′(u)θ2, θ

)
≤ ‖k‖2V +Q(‖U‖1)‖θ‖3L3(Ω), (3.129)

where Q can depend on ε, but is independent of L. Let us now observe that

Q(‖U‖1)‖θ‖3L3(Ω) ≤ Q(‖U‖1)‖θ‖9/4V ‖θ‖
3/4
V ′ ≤ Q9(‖U‖2)‖θ‖2V ′ +

1
8
‖θ‖2V . (3.130)

Next, we test (3.128) by θ/2, inferring

d
dt

[ε
2
(
θt, A

−1θ
)

+
1
4
‖θ‖2V ′

]
− ε

2
‖θt‖2V ′ +

1
2
‖θ‖2V +

L

2
‖θ‖2V ′ +

1
2
(
f ′(u)θ, θ

)
=

1
2
(
k, θ
)
≤ 1

8
‖θ‖2V + c‖k‖2V . (3.131)

Summing (3.129) and (3.131), we then get

d
dt

[
‖Θ‖20 +

(
L+

1
4

)
‖θ‖2V ′ +

(
f ′(u)θ, θ

)
+
ε

2
(
θt, A

−1θ
)]

+
(

1− ε

2

)
‖θt‖2V ′ +

1
4
‖θ‖2V +

L− 2Q9

2
‖θ‖2V ′ +

1
2
(
f ′(u)θ, θ

)
≤ c‖k‖2V , (3.132)

still for C independent of L. Here Q9 denotes the quantity Q9(‖U‖2) on the right hand side of (3.130).
Thus, noting as a (new) functional Y the quantity in square brackets, we observe that we can choose
L so large (depending on λ in (2.8) and on Q9, i.e., on the norms of the initial datum and of g) to get

d
dt
Y + κY ≤ c‖k‖2V , (3.133)

for some κ > 0, where Y satisfies

CL‖Θ‖20 ≤ Y ≤ cL,ε‖Θ‖20 +QL(‖U‖1).

Hence, recalling that k = LA−1ut and using (3.9) and the fact that Y(0) = Q(‖U0‖2), (3.127) follows
immediately.

We now prove the exponential decay of W in the V0-norm.

Lemma 3.11. Let the assumptions of Theorem 2.4 hold. Then, L can be chosen so large that

‖W (t)‖0 ≤ QL(‖U0‖2)e−κt. (3.134)

Proof. We proceed along the lines of the preceding proof. First, we test (3.119) by 2wt, so that

d
dt
[
‖W‖20 + L‖w‖2V ′ + 2I1

]
+ ‖wt‖2V ′ ≤ 2I2, (3.135)

where I1 and I2 collect the terms coming from f . Namely, we have (recall that U = V +W )

I1 =
(
F (u− w)− F (u) + f(u)w, 1

)
≥ −λ

2
‖w‖2 (3.136)

thanks to (2.8). To estimate I2, let us first notice that, performing the standard energy estimate on
(3.118) (i.e., testing it by vt+αv for small α > 0) and using the energy estimate (2.20) for u to control
the term on the right hand side, we derive

‖V (t)‖20 ≤ QL(‖U0‖1)e−κt + CL, (3.137)
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where both CL and QL depend on L since so does the right hand side of (3.118). Comparing (2.20)
and (3.137), we also get

‖W (t)‖20 ≤ QL(‖U0‖1)e−κt + CL. (3.138)

Using now the uniform V2-bound on U , (3.138), and standard interpolation and embeddings, we can
estimate

I2 =
(
f(u− w)− f(u) + f ′(u)w, ut

)
≤ Q

(
‖u‖L∞(Ω) + ‖w‖L∞(Ω)

)
(|w|2|ut|, 1)

≤ Q
(
‖u‖D(A) + ‖w‖D(A)

)
‖ut‖V ‖w‖2V ≤

1
16
‖w‖2V +QL‖ut‖2V ‖w‖2V , (3.139)

where we used the fact that the D(A)-norms of u and w are uniformly bounded thanks, respectively,
to (2.19) and (3.126), in a way which depends just on the V2-norm of U0. Actually, QL denotes here
a quantity which depends on the V2-norm of U0 and on L. Next, we test (3.119) by w/2, inferring

d
dt

[ε
2
(
wt, A

−1w
)

+
1
4
‖w‖2V ′

]
− ε

2
‖wt‖2V ′ +

1
2
‖w‖2V +

L

2
‖w‖2V ′ +

1
2
(
f(u)− f(u− w), w

)
= 0. (3.140)

Now, using (2.8) and interpolation, it is not difficult to compute(
f(u)− f(u− w), w

)
=
(
f(u)− f(u− w), w

)
+
(
F (u− w)− F (u), 1

)
−
(
F (u− w)− F (u), 1

)
= I1 +

(
F (u)− F (u− w)− f(u− w)w, 1

)
≥ I1 −

λ

2
‖w‖2 ≥ I1 −

1
4
‖w‖2V − C‖w‖2V ′ , (3.141)

for some C > 0 possibly depending also on the initial datum. Thus, adding (3.135) and (3.140), we
arrive at

d
dt

[
‖W‖20 +

(
L+

1
4

)
‖w‖2V ′ + 2I1 +

ε

2
(
wt, A

−1w
)]

+
(

1− ε

2

)
‖wt‖2V ′ +

1
4
‖w‖2V +

L− C
2
‖w‖2V ′ +

1
2
I1 ≤ QL‖ut‖2V ‖w‖2V . (3.142)

Finally, possibly choosing a larger L such that

L ≥ 2C and
L

2
‖w‖2V ′ + I1 +

1
8
‖w‖2V ≥ 0, (3.143)

we can rewrite (3.142) in the form
d
dt
Y + κY ≤ mY, (3.144)

where Y denotes once more the quantity in square brackets and (cf. (3.127))

m := QL‖ut‖2V ∈ L1(0,+∞). (3.145)

Thus, the comparison principle for ODEs readily gives (3.134).

Next, we can prove a V2-dissipativity estimate for (3.118). Of course, when (3.118) is differ-
entiated with respect to time, the “source” term LA−1ut in the right hand side is easily controlled
thanks to (2.20). Hence, we get the estimate

‖V (t)‖22 + ‖vtt(t)‖2V ′ ≤ Q(‖U0‖2)e−κt +Q(‖g‖V ′), (3.146)

where we stress that from now on the dependence on L of the constants and the functions Q is no
longer indicated.

As a next step, we prove that the component V of the solution is compact in V2 and, more
precisely, bounded in V3.

Lemma 3.12. Let the assumptions of Lemma 3.8 hold (hence, in particular, let f ∈ C2,1
loc (R; R)).

Then we have
‖V (t)‖3 ≤ Q(‖U0‖2)e−κt +Q(‖g‖). (3.147)
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Proof. We differentiate (3.118) in time and test the result by A(vtt + αvt) for small α > 0. We
do not give all the details, but just see how the nonlinear terms are controlled. Actually, performing
some calculation and using (3.147) and interpolation, we get(

f ′(v)vt, Avtt
)

=
1
2

d
dt

(f ′(v)|∇vt|2, 1)− 1
2

(f ′′(v)vt|∇vt|2, 1)−
(

div(f ′′(v)vt∇v), vtt
)

≥ 1
2

d
dt

(f ′(v)|∇vt|2, 1)− α

4
‖vt‖2D(A) −

ε

4
‖vtt‖2 − Cα‖vt‖2V , (3.148)

and, analogously,

α
(
f ′(v)vt, Avt

)
≥ α

∫
Ω

f ′(v)|∇vt|2 − C‖vt‖2V , (3.149)

where in both formulas C (or Cα) is a monotone function of ‖V (t)‖2. Thus, noting that the right
hand side term L(ut, vtt + δvt) can be estimated in a standard way, one arrives at an expression of
the form

d
dt
Y3 + κY3 ≤ Q(‖V (t)‖2) +Q(‖U(t)‖2) ≤ Q

(
Q(‖U0‖2)e−κt +Q(‖g‖)

)
, (3.150)

where Lemma 3.7 has been used to deduce the latter inequality, and the functional Y3 (upon possibly
taking a larger L) satisfies

c‖Vt‖21 ≤ Y3 ≤ C‖Vt‖21 +Q(‖V ‖2), (3.151)

where C depends on the radius of the absorbing set. Hence, we have a dissipativity estimate for ‖Vt‖21.
At this point, we can deduce also the dissipativity of ‖V ‖23, by performing a comparison argument
perfectly analogous to the one used in the last part of the proof of Lemma 3.7 (and hence omitted).
The proof is complete.

Finally, we show thatW is exponentially decaying in V2. Of course, this fact, together with (3.147), will
give the desired property of the decomposition (3.118)-(3.119) and conclude the proof of Theorem 2.7.

Lemma 3.13. Let the assumptions of Theorem 2.4 hold. Then we have

‖W (t)‖2 ≤ Q(‖U0‖2)e−κt. (3.152)

Proof. We differentiate (3.119) in time and test the result by wtt + αwt for small α > 0. Still,
the procedure is standard, but for the estimation of the nonlinear terms depending on f . Namely, we
obtain on the left hand side (

(f(u)− f(u− w))t, wtt + αwt
)
. (3.153)

Thus, defining

l = l(u,w) :=
∫ 1

0

f ′(su+ (1− s)(u− w)) ds ≥ −λ, (3.154)

so that f(u)− f(u− w) = lw, we clearly have(
(f(u)− f(u− w))t, wtt + αwt

)
=
(
ltw + lwt, wtt + αwt

)
(3.155)

and ∣∣(ltw,wtt + αwt
)∣∣ ≤ ‖ltw‖V ‖wtt + αwt‖V ′ ≤ c

(
‖lt‖V ‖w‖D(A)

)
‖wtt + αwt‖V ′ . (3.156)

Now, let us notice that, by Lemma 3.7 and (3.146), there follows

‖W (t)‖2 ≤ Q(‖U0‖2)e−κt +Q(‖g‖V ′). (3.157)

In particular, ‖lt‖V ≤ C, with C possibly depending on U0, but independent of time. More precisely,
using (3.134) and interpolation, we get, for all ν > 0,

‖W (t)‖2−ν ≤ Q(‖U0‖2)e−κt, (3.158)

κ depending here on ν. Consequently (take ν = 1), we can control the right hand side of (3.156) so
that ∣∣(ltw,wtt + αwt

)∣∣ ≤ Q(‖U0‖2)e−κt +
ε

4
‖wtt‖2 +

α

4
‖wt‖2V ′ , (3.159)
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and the latter two terms can be moved to the left hand side and estimated directly. Finally, coming
back to the remaining term in (3.155), we get

(
lwt, wtt + αwt

)
=

1
2

d
dt
(
l, w2

t

)
+ α

(
l, w2

t

)
− 1

2
(
lt, w

2
t

)
, (3.160)

and the first two summands on the right hand side are controlled once more thanks to (2.8), while
the third is estimated for small ν > 0 by

−1
2
(
lt, w

2
t

)
≤ c‖lt‖V ‖wt‖2

D
(
A

1−ν
2
) ≤ C‖wt‖2

D
(
A

1−ν
2
) ≤ Q(‖U0‖2)e−κt, (3.161)

thanks to (3.158). Thus, all the nonlinear terms are either (essentially) positive, or exponentially
decaying. Then, (3.152) is proven, which concludes the proof of Lemma 3.13 and of Theorem 2.7.
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[22] N. Kenmochi, M. Niezgódka, and I. Paw low, Subdifferential operator approach to the Cahn-
Hilliard equation with constraint, J. Differential Equations, 117 (1995), 320–356.
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