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Abstract

This work deals with a nonlinear system modelling solid-solid phase transitions and me-

chanical deformations in shape memory alloys. The model is studied in the non-stationary

case and accounts for local microscopic interactions between the different phases introduc-

ing the gradients of the phase parameters as state variables. By using an approximation -

a priori estimates - passage to the limit procedure we prove existence and uniqueness of a

weak solution to the resulting initial-boundary value problem and we give some regularity

results. Moreover, continuous dependence on data of the solutions is proved under stronger

regularity assumptions on data.

1 Introduction

This paper deals with a nonlinear system describing the behaviour of shape memory alloys sub-
jected to mechanical treatments when the temperature field is known in the space-time domain.
Shape memory alloys are metallic alloys which can be permanently deformed by mechanical ac-
tions and then recover their original shape just by thermal means. The phenomenon has been
interpreted (see, e.g., [1, 16]), at a microscopic scale, as the effect of a structural phase transition
between two different configurations of the metallic lattice, the austenite (prevailing at high tem-
perature) and its shared counterpart, termed martensite (prevailing at low temperature). Here,
we investigate the phenomenon at the macroscopic scale and assume the phases to coexist at each
point with appropriate proportions. Furthermore, we suppose that just two martensitic variants
are present together with one austenite (actually, in three dimensions, 24 different martensitic
variants have been detected). In the literature, several models have been introduced to achieve
an efficient and predictive description of the shape memory effect (we refer, for an exhaustive
presentation of these models, to [14] and references therein). In this work we follow the approach
proposed by Frémond [13, 14], deriving the model by continuum mechanics laws. In this direc-
tion, we take as state variables the absolute temperature ϑ (which is assumed to be known), the
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linearized strain tensor ε(u) ( u is the vector of small displacements), and the volumetric ratios
of the two martensitic (β1, β2) and of the austenite (β3) variants. In particular, we ask these last
quantities to fulfill the constraint

β1 + β2 + β3 = 1, 0 ≤ βi ≤ 1 for i = 1, 2, 3. (1.1)

From a physical point of view, (1.1) means that we are requiring no void nor overlapping between
the phases. Then, we introduce two linearly independent variables (χ1, χ2), related to the phase
proportions as follows

χ
1 := β1 + β2, χ

2 := β2 − β1,

so that (1.1) implies

(χ1, χ2) ∈ C :=
{

(γ1, γ2) ∈ R
2 such that |γ2| ≤ γ1 ≤ 1

}

. (1.2)

Thus, assuming that the temperature is known in the space-time domain, by the principle of virtual
power written for microscopic and macroscopic forces (cf. [14]), we get the equation governing the
evolution of the unknowns. In particular, it is worthwhile to note that we write the momentum
balance accounting also for macroscopic accelerations. Concerning a complete thermomechanical
derivation of the model, the reader can refer to [5, 14]. We point out that, as the temperature is
known, we address only the equations governing the evolution of the phase parameters and the
macroscopic displacements. See, e.g., [14] for the expression of the energy balance and for the
physical meaning of the constants ν, λ, µ, k, η, `, ϑ∗ involved in the equations. Here, we let these
constants be strictly positive, except for ν, that could be eventually equal to zero. The momentum
balance and the equation governing the phase dynamics read, respectively,

utt − div
(

− ν∆(divu) I + λdivuI + 2µε(u) + α(ϑ)χ2 I
)

= G, (1.3)

k

(

χ
1t

χ
2t

)

− η

(

∆χ
1

∆χ
2

)

+

(

`
ϑ∗

(ϑ − ϑ∗)
α (ϑ) divu

)

+ ∂IC (χ1, χ2) 3
(

0
0

)

. (1.4)

The latter relations are intended to be fulfilled a.e. in Q = Ω × (0, T ), where Ω is an open
and bounded closed set of R

3 with smooth boundary ∂Ω and T stands for some final time. The
symbol IC in (1.4) represents the indicator function of C (namely IC = 0 if (χ1, χ2) ∈ C, IC = +∞
otherwise) and ∂IC : R

2 → 2R
2

stands for the subdifferential of IC , that turns out to be a maximal
monotone operator (we refer to [6] for the details). We recall that ∂IC accounts for the constraint
(1.2) as ∂IC is defined only for (χ1, χ2) ∈ C and it is ∂IC(χ1, χ2) = (0, 0) if (χ1, χ2) belongs to
the interior of C and coincides with the cone of the normal vectors to the boundary at the point
(χ1, χ2), if (χ1, χ2) lies on the boundary of C. In addition, I stands for the identity matrix in R

3.
As usual, the linearized strain tensor ε is given by,

εij(u) =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

for i = 1, 2, 3.

Furthermore, α : R → R, is a given function of the temperature which accounts for the energy
associated to the termal expansion during the phase transition, while G : Q → R

3 stands for an
applied volume force. The system (1.3 - 1.4) has to be supplied by suitable initial and boundary
conditions. Thus, we prescribe

u(·, 0) = u
0

ut(·, 0) = w
0 χ

1(·, 0) = χ0
1

χ
2(·, 0) = χ0

2. (1.5)
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Denoting by ∂n the outward normal derivative to the boundary ∂Ω, we fix

u = 0 on ∂Ω × (0, T ) (1.6)

∂n(νdivu) = 0 on ∂Ω × (0, T ) (1.7)

∂n
χ

j = 0 on ∂Ω × (0, T ) j = 1, 2. (1.8)

We point out that (1.6) corresponds to assume that the body is fixed on its boundary, while (1.7)
means that no double forces are applied on the surface. Hence, (1.8) corresponds to the fact that
no surface forces involving microscopic motions are applied on ∂Ω.

Let us point out that the main novelty, if we compare this paper with literature, is the presence
of the inertial term utt in the macroscopic balance equation (1.3). Indeed, in related works the
term utt is omitted (cf. [3] for an analogous problem in the quasi-stationary case). Furthermore, we
include a diffusion term in the variational inequality governing the kinetics of phase proportions.
This position, very useful from a mathematical point of view, is also physically justified as it
corresponds to assume that the microstructure of the material at one point is influenced by its
neighborhood [5, 14]. We note that this term has already been included in [4], where the model
with thermal memory in the heat flux law is studied.

In this paper, we will prove an existence result for the system (1.3 - 1.4) under suitable initial
and boundary conditions for data, as well as a regularity result (Theorem 2.2). Moreover, under
stronger assumptions, we prove the continuous dependence on data (Theorem 2.4) from which
it follows uniqueness of the solution. We point out that the above results work also if we omit
the regularizing fourth order term from the momentum equation (1.3). This term comes form
the second gradient theory and accounts for mechanical actions exerted on internal surfaces.
Nonetheless, our result is interesting both from a mathematical and mechanical point of view as
this term provides a regularity for the solutions we can avoid in our analysis. Moreover, this term
is usually neglected in the first gradient theory, which is the usual framework for applications.

Although we deal with the case of known temperature, which is an interesting situation from a
physical and an experimental point of view, we point out that Frémond’s model is complemented
by the energy equation (cf. [14]). The resulting system is highly nonlinear, especially due to
nonlinearities in the energy balance coupling temperature, displacements and phase fractions. In
the last years, several works have been dedicated to the study of this problem. For the sake of
simplicity, we mention the ones strictly connected with our paper and refer to them for the general
theory (we point out that the existence of a solution to the three dimensional problem with full
momentum, i.e including the term utt, and nonlinearities in the energy balance, as far as we know,
is still an open problem). Among the others, let us recall [8], where the author finds an existence
result for the n-dimensional problem with the full momentum and the linearized energy balance
equation, while in [12] and in [19] the authors give an existence and uniqueness result for the full
model in the one-dimensional setting. In [10], a first existence and uniqueness result for the quasi-
static situation was given in the case when all the nonlinearities in the energy balance equation
are neglected. In [9], the author shows the existence of a unique solution to the full quasi-static
three dimensional model under suitable regularity and compatibility assumptions on the thermal
expansion coefficient, which are coherent with realistic data. Finally, for the sake of completeness,
we should quote some numerical results concerning the error control of the time discretization
scheme, with variable time-step, approximating the system (1.3-1.4) (cf. [18]). We remind that
the investigation of the error control for problems related to Frémond model has recently received
a good deal of interest, as the papers [20], [21] show.
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Here is the outline of the paper. In section 2, we present system (1.3 - 1.8) as an abstract
Cauchy problem and formulate the main results of the paper. Section 3 brings the proof of the
existence and regularity of a solution to the problem. Finally, section 4 contains the proof of the
continuous dependence on data along with the uniqueness result.

2 Continuous problem and main results

In this section, we face the system (1.3 - 1.4) in an abstract setting as a Cauchy problem for two
coupled evolution equations and we state the main results of the paper.

Let us introduce four Hilbert spaces H, V, H, and V specified as follows

H := L2(Ω), V := H1(Ω),

H := (L2(Ω))3, V :=
{

v ∈ (H1
0 (Ω))3 : νdivv ∈ V

}

.

As usual, we identify H and H with their respective duals H ′ and H
′ so that V ⊂ H ⊂ V ′ and

V ⊂ H ⊂ V
′ turn out to be standard Hilbert triplets. The symbol (·, ·)Ω denotes the scalar

product in H or in H, while < ·, · > indicates the duality pairing between V ′ and V and between
V

′ and V . The symbol ‖ · ‖E, will indicate the norm in the generic normed vector space E. The
space V is naturally endowed with the hilbertian norm

‖ v ‖2
V

:=

3
∑

i=1

‖ ∇vi ‖2
H

+ ν ‖ ∇(divv) ‖2
H

. (2.1)

We point out that the factor ν in (2.1), allows us to consider in the analysis at the same time both
the case ν = 0 (i.e. the fourth order term in (1.3) is omitted) and the case ν > 0. We observe
that if ν = 0 , the space V simply reduces to (H1

0 (Ω))3.
Next, we introduce a continuous and symmetric bilinear form defined, for all v1, v2 in V , as follows

a(v1, v2) := ν

∫

Ω

∇(div v1) · ∇(div v2) + λ

∫

Ω

div v1 div v2 + 2µ

3
∑

i,j=1

∫

Ω

εij(v1) εij(v2). (2.2)

Recalling the Korn inequality (see, e.g. [7, pag. 291]), we infer that there exists a positive
constant cv such that,

a(v, v) ≥ cv ‖ v ‖2
V

∀v ∈ V . (2.3)

Moreover, it is a standard matter to verify that

‖ divv ‖2
H≤ 3 ‖ v ‖2

V
∀v ∈ V . (2.4)

Now, we generalize the set C introduced in (1.2) and consider a bounded convex set K ⊂ R
2 such

that 0 ∈ K. Then, we introduce the corresponding convex in H2

K :=
{

(γ1, γ2) ∈ H2 : (γ1, γ2) ∈ K a.e. in Ω
}

, (2.5)

and observe that there exists a positive constant cκ, which depends only on K, such that

{|γ1(x)|2 + |γ2(x)|2}1/2 ≤ cκ, for a.e. x ∈ Ω, ∀ (γ1, γ2) ∈ K. (2.6)
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Now, to put the problem in the abstract setting of the above Hilbert spaces, we introduce the
operators

H : V → V
′, (2.7)

B : H → V
′, (2.8)

A : V → V ′, (2.9)

specified by

< Hv, w > = a(v, w), ∀v, w ∈ V, (2.10)

< Bu, v > = (u, divv)Ω , ∀u ∈ H, ∀v ∈ V , (2.11)

< Au, v > = (∇u,∇v)Ω , ∀u, v ∈ V. (2.12)

Finally, we prescribe the regularity assumptions on data

α ∈ W 1,∞(R), (2.13)

G ∈ L2(0, T ; H), (2.14)

ϑ ∈ L2(0, T ; V ), (2.15)

u
0 ∈ V , w

0 ∈ H, (2.16)

(χ0
1, χ

0
2) ∈ K. (2.17)

Remark 2.1. We note that some properties of the function α, such as monotonicity (in the sense
that α is a decreasing function) and positiveness, although physically motivated (see, e.g., [14]),
are not required by our analysis.

Now, we can state the precise formulation of the problem.

PROBLEM (P): Find

u ∈ H2(0, T ; V ′) ∩ C1([0, T ]; H) ∩ C0([0, T ]; V ), (2.18)

χ
1, χ2 ∈ H1(0, T ; V ′) ∩ C0([0, T ]; H) ∩ L∞(Q) ∩ L2(0, T ; V ), (2.19)

such that the conditions

u(0) = u
0 in V , ut(0) = w

0 in H, (2.20)

χ
1(0) = χ0

1, χ
2(0) = χ0

2 in H. (2.21)

are fulfilled, and such that u, χ1, χ2 solve almost everywhere in (0, T ) the abstract equations

utt + Hu + B(α(ϑ)χ2) = G in V
′, (2.22)

k

(

χ
1t

χ
2t

)

+ η

(

Aχ
1

Aχ
2

)

+

(

`
ϑ∗

(ϑ − ϑ∗)
α (ϑ) divu

)

+

(

h1

h2

)

=

(

0
0

)

in V ′, (2.23)

for some

(

h1

h2

)

∈ L2(0, T ; H2) with

(

h1

h2

)

∈ ∂IK,V (χ1, χ2), a.e. in (0, T ), (2.24)
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where ∂IK,V (χ1, χ2) : V 2 → V ′2 denotes the subdifferential of the indicator function of K ∩
(V )2. Using (2.12) and the definition of subdifferential, one can easily check that (2.23 - 2.24) are
equivalent to the variational formulation

(χ1, χ2) ∈ K ∩ (V )2, (2.25)

2
∑

j=1

k < χ
jt, χj − γj > +η (∇χ

j,∇(χj − γj))Ω

+
`

ϑ∗
< ϑ − ϑ∗, χ1 − γ1 > + < α(ϑ)divu, χ2 − γ2 >≤ 0

∀(γ1, γ2) ∈ K ∩ (V )2 a.e. in (0, T ). (2.26)

For Problem (P), we can prove the following existence and regularity result.

Theorem 2.2. Under assumptions (2.6-2.17), there exists a solution (χ1, χ2, u) to (P). If in
addition, (χ0

1, χ
0
2) ∈ V 2, then χ

1, χ2 ∈ H1(0, T ; H) ∩ C0([0, T ]; V ) ∩ L2(0, T ; H2(Ω)).

Remark 2.3. Let us observe that Theorem 2.2, gives (h1, h2) ∈ L2(0, T ; H2), thus the subdif-
ferential ∂IK,V makes sense almost everywhere in Ω, while the other terms in (2.23) make sense
only in the duality between V ′ and V . This fact is relevant also from a mechanical point of view,
because the subdifferential ∂IK,V represents the thermodynamical reaction of the system to the
internal constraint (1.2). Indeed as already specified, ∂IK,V (χ1, χ2) is not an empty set if and only
if (χ1, χ2) ∈ K ∩ (V )2 which ensures that (1.2) holds. Moreover, the thermodynamical reaction is
zero if (χ1, χ2) belongs to the interior of K∩(V )2, while a normal reaction force appears if (χ1, χ2)
lies on the boundary of K, as ∂IK,V (χ1, χ2) coincides with the cone of the normal vectors to the
boundary at the point (χ1, χ2).

Now, we establish some further results of continuous dependence on data of the solutions to
(P). To this aim, we consider two families of data Fi, i = 1, 2,

Fi =
{

u
0
i , w

0
i , (χ

0
1i, χ

0
2i), ϑi,Gi

}

(2.27)

satisfying conditions (2.14), (2.16 - 2.17) and in addition

ϑ1, ϑ2 ∈ L2(0, T ; W 1,3(Ω)). (2.28)

We denote by (ui, χ1i, χ2i) the corresponding solution of (P) related to the set Fi, i = 1, 2.,
whose existence is established by Theorem 2.2.
The following statement holds.

Theorem 2.4. Let F1,F2 be as in (2.27-2.28) and let (u1, χ11, χ21), (u2, χ12, χ22), represent the
corresponding solutions to (P). Then, there exists a positive constant C1 depending only on
k, η, `, ϑ∗, cκ, cv, T, Ω, ‖ α ‖W 1,∞(R), maxi=1,2

{

‖ ∇ϑi(t) ‖L2(0,T ;(L3(Ω))3)

}

, and cΩ where cΩ is a posi-
tive constant given by the Sobolev immersions H1(Ω) ↪→ L6(Ω) and (H1(Ω))3 ↪→ (L6(Ω))3, such
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that

‖(u1 − u2)‖2
C1([0,T ];V ′)∩C0([0,T ];H)

+ sup
t∈[0,T ]

∥

∥

∥

∥

∫ t

0

(u1 − u2)(s)ds

∥

∥

∥

∥

2

V

+

2
∑

j=1

‖χj1 − χ
j2‖2

C0([0,T ];H)∩L2(0,T ;V )

≤ C1

(

∥

∥w
0
1 − w

0
2

∥

∥

2

V
′
+ ‖ u

0
1 − u

0
2 ‖2

H
+

2
∑

j=1

∥

∥χ0
j1 − χ0

j2

∥

∥

2

H

+ ‖G1 − G2‖2
L2(0,T ;H) + ‖ϑ1 − ϑ2‖2

L2(0,T ;H) + ‖α(ϑ1) − α(ϑ2)‖2
L2(0,T ;L3(Ω))

)

. (2.29)

In particular, it follows that Problem (P) admits a unique solution. If, in addition (χ0
1i, χ

0
2i) ∈

K ∩ (V )2, then

‖ u1 − u2 ‖2
C1([0,T ];H)∩C0([0,T ];V ) +

2
∑

j=1

‖ χ
j1 − χ

j2 ‖2
C0([0,T ];H)∩L2(0,T ;V )

≤ C2

(

‖ w
0
1 − w

0
2 ‖2

H
+ ‖ u

0
1 − u

0
2 ‖2

V
+

2
∑

j=1

‖ χ0
j1 − χ0

j2 ‖2
H

+ ‖ G1 − G2 ‖2
L2(0,T ;H) + ‖ ϑ1 − ϑ2 ‖2

L2(0,T ;H) + ‖ α(ϑ1) − α(ϑ2) ‖2
L2(0,T ;V )

)

, (2.30)

for a positive constant C2 depending on the same constants as C1.

3 Existence

In this section we detail the proof of Theorem 2.2, which will be split into three parts. First,
we approximate Problem (P) by means of an implicit time discretization scheme, then we derive
some uniform a priori estimates on the solutions of the discretized system, and finally we pass to
the limit by compactness and monotonicity arguments.

3.1 Approximation

Letting N be an arbitrary positive integer, we denote by P a partition of the time interval [0, T ],
namely

P := {0 = t0 < t1 < . . . < tN−1 < tN = T}, (3.1)

defined by an uniform time step τ =
T

N
. By virtue of (2.14) and (2.15), we are allowed to set for

i = 1, . . . , N

G
i :=

1

τ

∫ iτ

(i−1)τ

G(·, t)dt ∈ H, Θi :=
1

τ

∫ τ

(i−1)τ

ϑ(·, t)dt ∈ V. (3.2)
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Moreover, we introduce a suitable approximation of (χ0
1, χ

0
2) (for further details see, e.g., [11,

Appendix]), satisfying

{χ0
jτ} ∈ H2(Ω), ∂n

χ0
jτ = 0 on Γ = ∂Ω, j = 1, 2, (3.3)

{

(χ0
1τ , χ

0
2τ )
}

∈ K a.e. in Ω,
{

(χ0
1τ , χ

0
2τ )
}

→ (χ0
1, χ

0
2) in H2, as τ ↘ 0, (3.4)

τ 1/2
2
∑

j=1

‖ χ0
jτ ‖V ≤ c with c independent of τ. (3.5)

For any fixed τ , the approximating problem is stated as follows

PROBLEM (Pτ ).
Find vectors (U 0, . . . , UN) ∈ V

N+1, (W 0, . . . , W N) ∈ H
N+1, (X 0

j , . . . ,XN
j ) ∈ V N+1,

j = 1, 2, such that
X 0

1 = χ0
1τ , X 0

2 = χ0
2τ , U

0 = u
0, W

0 = w
0, (3.6)

and fulfilling, for i = 1, ...., N ,

W
i − W

i−1

τ
+ HU

i + B(α(ϑi)X i
2) = G

i, (3.7)

W
i =

U
i − U

i−1

τ
, (3.8)

k

τ

(

X i
1 − X i−1

1

X i
2 − X i−1

2

)

+ η

(

AX i
1

AX i
2

)

+

(

`
ϑ∗

(Θi − ϑ∗)
α (Θi) divU

i

)

+

(

hi
1

hi
2

)

=

(

0
0

)

, (3.9)

for some

(

hi
1

hi
2

)

∈ H2 with
(

hi
1

hi
2

)

∈ ∂IK,V (X i
1,X i

2). (3.10)

Under the same assumptions of Theorem 2.2, for sufficiently small τ , Problem (Pτ) has a unique
solution, as it is stated by the following Lemma.

Lemma 3.1. There exists a positive constant δ depending only on k, η, `, ϑ∗, cv, cκ, ‖ α ‖L∞(R) such
that for any time step τ < δ, Problem (Pτ ) admits one and only one solution.

Proof. First of all, thanks to (3.6) and (2.16 - 2.17), it suffices to prove that for i ≥ 1 the system
(3.7 - 3.8) has a unique solution, which will be found by exploiting an iterative procedure. At first
step, we fix an arbitrary pair (X̃1, X̃2) ∈ K ∩ (V )2 and substitute X i

2 by X̃2 in (3.7). By (2.6)
and (2.13), we have that α(Θi)X̃2 ∈ L2(Ω). Thus, recalling (2.2) and (2.3), an application of the
Lax-Milgram Lemma yields existence and uniqueness of a solution Ũ = L(X̃2) ∈ V fulfilling

τ−2
Ũ + HŨ = −B(α(Θi)X̃2) + G

i + τ−2
U

i−1 + τ−1
W

i−1. (3.11)

At the second step, we take Ũ instead of U
i in (3.9) (cf. 3.10) and denote by (X1,X2) = S(Ũ)

the unique solution of the resulting variational inequality. Thus, we can define an operator E :
K ∩ (V )2 → K ∩ (V )2 such that

E(X̃1, X̃2) := S(L(X̃2)) = (X1,X2). (3.12)
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Now, we aim to apply the Banach Theorem to show that E admits a fixed point. In order to prove
that E is a contracting map, we will show some Lipschitz continuity estimates for the operators
L and S. To this aim, we denote by {(X̃1, X̃2)} and {(X̂1, X̂2)} two sets of data both belonging
to K ∩ V 2. Then, we write (3.7) for the two pairs, take the difference and test by the difference
of the corresponding solutions. Accounting for (2.3) and (2.13) and by applying the elementary
inequality

2ab ≤ 1

ε
a2 + εb2 ∀a, b ∈ R, ∀ε > 0, (3.13)

we find a constant c1 such that

‖ Ũ − Û ‖2
V
≤ c1

2
∑

j=1

‖ X̃j − X̂j ‖2
V , (3.14)

where, for instance, c1 = 3 ‖ α ‖2
L∞(R) /c2

v
. Concerning (3.9), we substitute U

i by Ũ and Û

respectively, denote by (Z̃1, Z̃2) and (Ẑ1, Ẑ2) the corresponding solutions, take the difference and
test by the difference of the solutions. For τ < k

2η
, one obtains

2
∑

j=1

‖ Z̃j − Ẑj ‖2
V ≤ c2τ ‖ Ũ − Û ‖2

V
, (3.15)

where, for instance, c2 = 3 ‖ α ‖L∞(R) /2ηk. Recalling now (3.12), for τ < k
2η

, (3.14) and (3.15),
imply that there exists a constant c3, independent on τ , such that

∥

∥

∥
E(X̃1, X̃2) − E(X̂1, X̂2)

∥

∥

∥

2

V 2

≤ c3τ
∥

∥

∥
(X̃1, X̃2) − (X̂1, X̂2)

∥

∥

∥

2

V 2

. (3.16)

Thus, taking δ = min

{

1,
k

2η
,

1

c3

}

, for τ < δ, the operator E is a contracting map in V 2 and

consequently there exists one and only one fixed point (X i
1,X i

2) of E. As a consequence, for
i = 1, . . . , N , (X i

1,X i
2, L(X i

2)) will be the unique solution to (3.7 - 3.9).

3.2 A Priori Estimates

First of all, we introduce some convenient notations. Given a vector {Z i}N
i=1 in the linear space

Z, we denote by Z̄τ the piecewise constant and by Ẑτ the piecewise linear interpolating functions,
i.e.

Z̄τ (t) := Z i, Ẑτ (t) := Z i +
Zi − Zi−1

τ
(t − iτ)

for t ∈ ](i − 1)τ, iτ ], i = 1, . . . , N (3.17)

Thus, owing to (3.17), we may conveniently rewrite relations (3.7 - 3.10) as follows

ŵτt + Hūτ + B(α(Θ̄τ )χ̄2τ ) = Ḡτ , (3.18)

w̄τ = ûτt, (3.19)

k

(

χ̂
1τt

χ̂
2τt

)

+ η

(

Aχ̄
1τ

Aχ̄
2τ

)

+

(

`
ϑ∗

(

Θ̄τ − ϑ∗
)

α
(

Θ̄τ

)

divūτ

)

+

(

h̄1τ

h̄2τ

)

=

(

0
0

)

, (3.20)

where

(

h̄1τ

h̄2τ

)

∈ ∂IK,V (χ̄1τ , χ̄2τ ) . (3.21)
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The remaining part of the section is devoted to prove some a priori estimates, independent
of τ , for the functions defined above. Letting δ be defined as in Lemma 3.1, we can state the
following result

Lemma 3.2. There exist two constants τ ∗ ∈ (0, δ) and C3 such that for any time step τ ≤ τ ∗,
one has

‖ ûτ ‖W 1,∞(0,T ;H)∩L∞(0,T ;V ) + ‖ ŵτ ‖H1(0,T ;V ′)∩L∞(0,T ;H)

+ ‖ ūτ ‖L∞(0,T ;V ) +

2
∑

j=1

‖ χ̂
jτ ‖H1(0,T ;V ′)∩L∞(Q)

+

2
∑

j=1

‖ χ̄
jτ ‖L∞(Q)∩L2(0,T ;V ) +

2
∑

j=1

‖ h̄jτ ‖L2(0,T ;H)≤ C3. (3.22)

If in addition (χ0
1, χ

0
2) ∈ V 2, there exists a constant C4 such that, for any time step τ < τ ∗, one

has
‖ χ̂

jτ ‖H1(0,T ;H)∩C0([0,T ];V ) + ‖ χ̄
jτ ‖L∞(0,T ;V )∩L2(0,T ;H2(Ω))≤ C4, j = 1, 2. (3.23)

Henceforth, we let c denote any constant which may depend on k, η, `, ϑ∗, cκ, cv, ‖ α ‖W 1,∞(R), T, |Ω|
(|Ω| stands for the Lebesque measure of Ω). Obviously, c is always independent of τ and may vary
from line to line.

Proof. First, we test (3.9) by τ

(

X i
1

X i
2

)

. Since we have 2A(A−B) = A2 +(A−B)2−B2, ∀ A, B ∈
R, and being 0 ∈ K, we can infer that

2
∑

j=1

(

k

2
‖ X i

j ‖2
H +

k

2
‖ X i

j − X i−1
j ‖2

H −k

2
‖ X i−1

j ‖2
H +ητ ‖ ∇X i

j ‖2
H

)

≤ `τ

2ϑ∗
‖ Θi − ϑ∗ ‖2

H +
`τ

2ϑ∗
‖ X i

1 ‖2
H −τ(α(Θi)divU

i,X i
2)Ω, (3.24)

for i = 1....N . Next, testing (3.7) by W
i = U

i − U
i−1, similarly we obtain

1

2

(

‖ W
i ‖2

H
+ ‖ W

i − W
i−1 ‖2

H
− ‖ W

i−1 ‖2
H

+a(U i, U i) + a(U i − U
i−1, U i − U

i−1) − a(U i−1, U i−1)
)

≤ τ

2
‖ G

i ‖2
H

+
τ

2
‖ W

i ‖2
H

−τ(α(Θi)X i
2, divW

i)Ω, (3.25)

for i = 1....N . Adding (3.25) to (3.24), and summing up for i = 1, . . . , m, where m ≤ N = T/τ ,
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with the help of (2.3), (2.16-2.17), (3.2), (3.6), we have that

Sm :=
2
∑

j=1

k

2
‖ Xm

j ‖2
H +

k

2
τ

m
∑

i=1

τ
2
∑

j=1

∥

∥

∥

∥

∥

X i
j −X i−1

j

τ

∥

∥

∥

∥

∥

2

H

+ η
m
∑

i=1

τ
2
∑

j=1

‖ ∇X i
j ‖2

H

+
1

2

(

‖ W
m ‖2

H
+τ

m
∑

i=1

τ

∥

∥

∥

∥

W
i − W

i−1

τ

∥

∥

∥

∥

2

H

+ cv ‖ U
m ‖2

V

+ τcv

m
∑

i=1

τ

∥

∥

∥

∥

U
i − U

i−1

τ

∥

∥

∥

∥

2

V

)

≤ D +

3
∑

j=1

T j
m, (3.26)

where

D :=
1

2
‖ W

0 ‖2
H

+a(U 0, U 0) +
k

2

2
∑

j=1

‖ χ0
jτ ‖2

H ,

T 1
m :=

1

2

m
∑

i=1

τ ‖ G
i ‖2

H
+

`

ϑ∗

m
∑

i=1

τ
(

‖ Θi ‖2
H + ‖ ϑ∗ ‖2

H

)

,

T 2
m :=

1

2

m
∑

i=1

τ ‖ W
i ‖2

H
+

`

2ϑ∗

m
∑

i=1

τ ‖ X i
1 ‖2

H −
m
∑

i=1

τ
(

α(Θi)divU
i,X i

2

)

Ω
,

T 3
m := −

m
∑

i=1

τ
(

α(Θi)X i
2, divW

i
)

Ω
,

for i = 1, . . . , m. Now we are going to handle the quantities T 1
m, T 2

m, T 3
m. It is easy to check that

the following estimates hold (cf. (3.2))

T 1
m ≤ 1

2
‖ G ‖2

L2(0,T ;H) +`Tϑ∗|Ω| + `

ϑ∗
‖ ϑ ‖2

L2(0,T ;H), (3.27)

and (cf. (2.3-2.4))

T 2
m ≤ 1

2

m
∑

i=1

τ ‖ W
i ‖2

H
+

3 ‖ α ‖2
L∞(R)

2

m
∑

i=1

τ ‖ U
i ‖2

V

+
`

2ϑ∗

m
∑

i=1

τ ‖ X i
1 ‖2

H +
1

2

m
∑

i=1

τ ‖ X i
2 ‖2

H . (3.28)

Finally, integrating by parts with respect to space variables, for ε > 0 to be chosen later, one has

T 3
m ≤ 1

2
(c2

κ + ε−1)

m
∑

i=1

τ ‖ W
i ‖2

H
+

ε

2
‖ α′ ‖2

L∞(R)

m
∑

i=1

τ ‖ ∇Θi ‖2
H

+
1

2
‖ α ‖2

L∞(R) ε
m
∑

i=1

τ ‖ ∇X i
2 ‖2

H
. (3.29)

Fixing ε such that ε <
2η

‖ α ‖2
L∞(R)

and combining (3.27 − 3.29), it is straightforward to conclude

that there is a positive constant c4 such that

Sm ≤ c4

(

1 +

m
∑

i=1

τSi

)

(3.30)
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for any m satisfying 1 ≤ m ≤ N . Now, choosing τ ∗ := min

{

δ,
1

2c4

}

and letting S0 := 0, we have

that

Sm ≤ 2c4

(

1 +
m−1
∑

i=0

τSi

)

(3.31)

for m = 1, . . . , N and for any time step τ ≤ τ ∗. Finally, by applying the discrete Gronwall Lemma
(see e.g. [17, pag. 14]) to the finite sequence (3.31), we obtain (cf. also (3.26), (3.17) and (2.6))

‖ ūτ ‖L∞(0,T ;V ) + ‖ w̄τ ‖L∞(0,T ;H) + ‖ ûτ ‖W 1,∞(0,T ;H)∩L∞(0,T ;V )

+ ‖ ŵτ ‖L∞(0,T ;H) +

2
∑

j=1

‖ χ̄
jτ ‖L∞(Q)∩L2(0,T ;V )≤ c. (3.32)

Moreover, it is a standard matter to check that

2
∑

j=1

‖ χ̂
jτ ‖L∞(Q) ≤ c. (3.33)

Now, a comparison in (3.18) yields

‖ ŵτ ‖H1(0,T ;V ′) ≤ c. (3.34)

Now, we show that ‖ χ̂
jτ ‖H1(0,T ;V ′) is bounded independently of τ . To this end, let us test (3.20)

by (hi
1, h

i
2) and then sum up for i = 1, . . . , m. All this is formal, but it can be justified using the

procedure presented in, e.g., [4, Appendix]. We first observe that the assumption (χ0
1τ , χ

0
2τ ) ∈ K

and the definition of subdifferential yield

2
∑

j=1

(

X i
j −X i−1

j

τ
, hi

j

)

≥ 1

τ

(

IK(X i
1,X i

2) − IK(X i−1
1 ,X i−1

2 )
)

= 0. (3.35)

Besides, being
∑2

j=1

(

∇X i
j ,∇hi

j

)

≥ 0 because of the monotonicity of ∂IK,V , we easily obtain

2
∑

j=1

m
∑

i=1

τ ‖ hi ‖2
H≤ c

(

m
∑

i=1

τ ‖ Θi − ϑ∗ ‖2
H +

m
∑

i=1

τ ‖ divU
i ‖2

H

)

. (3.36)

Thus, owing to (3.32), one has
2
∑

j=1

‖ h̄jτ ‖L2(0,T ;H) ≤ c. (3.37)

Finally, a comparison in (3.20), yields

2
∑

j=1

‖ χ̂
jτ ‖H1(0,T ;V ′) ≤ c. (3.38)

Now, combining (3.38) with (3.32 - 3.34), (3.22) easily follows. Let us remark that a consequence
of (3.32) and (3.26) is the following estimate

τ
(

‖ ûτ ‖2
H1(0,T ;V) + ‖ ŵτ ‖2

H1(0,T ;H) + ‖ χ̂
jτ ‖2

H1(0,T ;H)

)

≤ c. (3.39)
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Furthermore, we present here a stability estimate for the functions χ̂
jτ j = 1, 2 in the norm of

L2(0, T ; V ), that can not be directly deduced by (3.22). More precisely, recalling (3.6) we have

2
∑

j=1

‖ χ̂
jτ ‖2

L2(0,T ;V )=
2
∑

j=1

N
∑

i=2

∫ iτ

(i−1)τ

∥

∥

∥

∥

∥

X i
j +

X i
j −X i−1

j

τ
(t − iτ)

∥

∥

∥

∥

∥

2

V

+

2
∑

j=1

∫ τ

0

∥

∥

∥

∥

X 1
j +

X 1
j − χ0

jτ

τ
(t − τ)

∥

∥

∥

∥

2

V

≤ c

2
∑

j=1

‖χ̄jτ‖2
L2(0,T ;V ) + cτ

2
∑

j=1

∥

∥χ0
jτ

∥

∥

2

V
. (3.40)

Thus, (3.5) and (3.22), lead to

2
∑

j=1

‖ χ̂
jτ ‖2

L2(0,T ;V ) ≤ c, (3.41)

independently of τ .

Now, we want to deduce the second part of the Lemma. In order to the get (3.23), we assume
that (χ0

1, χ
0
2) ∈ K ∩ V 2 and consequently we replace the convergence (3.4) by

{(χ0
1τ , χ

0
2τ )} → (χ0

1, χ
0
2) in V 2 (3.42)

as τ ↘ 0. Testing (3.9) by

(

X i
1 − X i−1

1

X i
2 − X i−1

2

)

and summing up for i = 1, . . . , N , by reasoning as

in (3.35), we infer that

2
∑

j=1





m
∑

i=1

τ

∥

∥

∥

∥

∥

X i
j −X i−1

j

τ

∥

∥

∥

∥

∥

2

H

+ ‖ ∇Xm
j ‖2

H
+τ

m
∑

i=1

τ

∥

∥

∥

∥

∥

∇(X i
j − X i−1

j )

τ

∥

∥

∥

∥

∥

2

H





≤ c

(

2
∑

j=1

‖ ∇X 0
jτ ‖2

H
+

m
∑

i=1

τ ‖ Θi − ϑ∗ ‖2
H +

m
∑

i=1

τ ‖ Ui ‖2
V

)

, (3.43)

and consequently, due to (3.22) and (3.42), one has

2
∑

j=1

‖ χ̂
jτ ‖H1(0,T ;H)∩L∞(0,T ;V ) +

2
∑

j=1

‖ χ̄
jτ ‖L∞(0,T ;V )≤ c, (3.44)

and

τ

2
∑

j=1

‖ χ̂
jτ ‖2

H1(0,T ;V )≤ c (3.45)

We conclude by noting that a comparison of (3.20) and (3.37), yields

2
∑

j=1

‖ χ̄
jτ ‖L2(0,T ;H2(Ω)) ≤ c (3.46)

so that Lemma 3.2 is proved.
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3.3 Passage to the Limit

In this part, we take the limit of Problem (Pτ) as τ goes to 0, and show that Problem (P) has at
least one solution, so that Theorem 2.2 will be proved. First of all, owing to (3.17), (3.2), (2.15),
(2.14), it is a standard matter to deduce that as τ ↘ 0

Ḡτ → G in L2(0, T ; H), Θ̄τ → ϑ in L2(0, T ; V ). (3.47)

Next, due to (3.22) and (3.41), well known results on weak and weak star compactness ensure that
there exist u, w, χj, hj, j = 1, 2 such that, possibly taking suitable subsequences (not relabeled),
the following convergences hold

ûτ
∗
⇀ u in W 1,∞(0, T ; H) ∩ L∞(0, T ; V ), (3.48)

ŵτ
∗
⇀ w in H1(0, T ; V ′) ∩ L∞(0, T ; H), (3.49)

χ̂
jτ

∗
⇀ χ

j in H1(0, T ; V ′) ∩ L∞(Q) ∩ L∞(0, T ; H) ∩ L2(0, T ; V ), j = 1, 2, (3.50)

h̄jτ ⇀ hj in L2(0, T ; H), j = 1, 2. (3.51)

On account of (3.50), one has , thanks to the Aubin-Lions Lemma (see, e.g.,[15, pag. 58]),

χ̂
jτ → χ

j in L2(0, T ; H), (3.52)

and, by interpolation,
χ

j ∈ C0([0, T ]; H) for j = 1, 2. (3.53)

Now, since (cf. (3.17), (3.22), (3.39))

‖ûτ − ūτ‖2
L2(0,T ;V ) =

τ 2

3

∥

∥

∥

∥

∂ûτ

∂t

∥

∥

∥

∥

2

L2(0,T ;V )

≤ cτ, (3.54)

and analogous estimates hold for ‖ ŵτ − w̄τ ‖2
L2(0,T ;H), ‖ χ̂

jτ − χ̄
jτ ‖2

L2(0,T ;H) for j = 1, 2, by

using (3.22), (3.48 - 3.52), and (3.19), it is a standard matter to deduce that

ūτ
∗
⇀ u in L∞(0, T ; V ), (3.55)

w̄τ
∗
⇀ w in L∞(0, T ; H), (3.56)

χ̄
jτ

∗
⇀ χ

j in L∞(Q) ∩ L∞(0, T ; H) ∩ L2(0, T ; V ) j = 1, 2, (3.57)

χ̄
jτ → χ

j in L2(0, T ; H), j = 1, 2, (3.58)

as τ ↘ 0. In particular, (3.55) implies

divūτ
∗
⇀ divu in L∞(0, T ; H). (3.59)

Then, owing to (3.48 - 3.50), (3.17), (3.6), (3.4), and (3.33), accounting for ut = w, it is straight-
forward to check that the functions u, χ1, χ2, satisfy the initial conditions (2.20 - 2.21) and the
restriction (2.25). In fact K, being convex, is closed also for the weak topology of H 2. Moreover,
by the convergence result (3.47) and the regularity of α, the Lebesgue Theorem implies

α(Θ̄τ) → α(ϑ) strongly in Lp(Q) ∀ p ∈ [1, +∞), (3.60)
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and consequently, as (3.57) holds, one has α(Θ̄τ)χ̄2τ ⇀ α(ϑ)χ2 weakly in L2(Q) as τ ↘ 0. Hence,
recalling (3.47), (3.49), (3.55), (3.19), one easily verifies that (2.22) holds. The last step consists
in proving that χ

1, χ2, divu, satisfy (2.23). To this aim we start to note that by (3.59) and (3.60),
we are allowed to deduce

α(Θ̄τ)divūτ ⇀ α(ϑ)divu in L2(0, T ; L2−ε(Ω)) for any ε > 0,

and thus the convergence could be easily extended to L2(0, T ; V ′). Hence, taking the limit in
(3.20) as τ ↘ 0 and owing to (3.47), (3.50),(3.51), (3.57 - 3.58) and to the continuity of A, one has

k
d

dt

(

χ
1

χ
2

)

+ η

(

Aχ
1

Aχ
2

)

+

(

`
ϑ∗

(ϑ − ϑ∗)
α (ϑ) divu

)

= −
(

h1

h2

)

, (3.61)

and

lim
τ↘0

2
∑

j=1

(h̄jτ , χ̄jτ)Ω =

2
∑

j=1

(hj, χj)Ω. (3.62)

Thus, thanks to [6, Prop. 2.5, pag. 27], we have that (h1, h2) ∈ ∂IK,V (χ1, χ2) a.e. in (0, T ) and
so χ

1, χ2, divu, satisfy (2.23).

Finally, we note that u is more regular than W 1,∞(0, T ; H) ∩ L∞(0, T ; V ); more precisely it
belongs to C1([0, T ]; H)∩C0([0, T ]; V ). In fact, being α(ϑ) and χ

2 ∈ L2(0, T ; V ) and noting that

(α(ϑ(t))χ2(t), divv) = −(α′(ϑ(t))χ2(t)∇ϑ(t), v) − (α(ϑ(t))∇χ
2(t), v) ∀v ∈ V

we have that u satisfies a linear hyperbolic problem with data in L2(0, T ; H) and initial conditions
for u (resp. ut) in V (resp. H). Thus, an application of ([2, Th 8.1, pag. 295]), gives the regularity
required for u. The existence of a solution to (P) is thus proved. To conclude the proof of Theorem
2.2, it remains to show the regularity result. To this purpose, we first note that, thanks to (3.45),
there holds an analogous of (3.54) for ‖ χ̂

j − χ̄
j ‖L2(0,T ;V ) j = 1, 2. Hence, (3.23), (3.50), and

(3.57), give that for j = 1, 2, χ̂
jτ , χ̄jτ , converge weakly star also in H1(0, T ; H)∩ L∞(0, T ; V ) and

in L∞(0, T ; V ) ∩ L2(0, T ; H2(Ω)), respectively. Thus, for j = 1, 2, we have that

χ
j ∈ H1(0, T ; H) ∩ L2(0, T ; H2(Ω)),

and, by interpolation,
χ

j ∈ C0([0, T ], V ).

4 Continuous dependence and uniqueness

First we aim to estimate the norm of (χj1 − χ
j2) for j = 1, 2. in C0([0, T ]; H) ∩ L2(0, T ; V ). To

this purpose, we write relation (2.26) for F1 (letting (γ1, γ2) = (χ12(t), χ22(t))) and F2 (letting
(γ1, γ2) = (χ11(t), χ21(t))), respectively. Taking the sum of the two inequalities, and integrating
in time, we easily obtain

2
∑

j=1

(

k

2
‖ (χj1 − χ

j2)(t) ‖2
H +η

∫ t

0

‖ ∇(χj1 − χ
j2)(s) ‖2

H ds

)

−
2
∑

j=1

k

2
‖ χ0

j1 − χ0
j2 ‖2

H≤
3
∑

i=1

J (i)(t), (4.1)
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for t ∈ (0, T ), where

J (1)(t) = − `

ϑ∗

∫ t

0

(

ϑ1 − ϑ2, χ11 − χ
12

)

Ω
(s)ds,

J (2)(t) = −
∫ t

0

(

α(ϑ2)div(u1 − u2), χ21 − χ
22

)

Ω
(s)ds,

J (3)(t) = −
∫ t

0

(

α(ϑ1) − α(ϑ2)divu1, χ21 − χ
22

)

Ω
(s)ds.

Thanks to Hölder’s inequality, the term J (1)(t) will be controlled as follows

J (1)(t) ≤ `

2ϑ∗

∫ t

0

‖ (ϑ1 − ϑ2)(s) ‖2
H ds +

`

2ϑ∗

∫ t

0

‖ (χ11 − χ
12)(s) ‖2

H ds. (4.2)

Concerning J (2)(t), an integration by parts with respect to space variables, the elementary in-
equality (3.13) and the Sobolev immersion H1(Ω) ↪→ L6(Ω), lead to (ε > 0 will be chosen later)

J (2)(t) ≤
∫ t

0

‖(u1 − u2)(s)‖H
‖ α′ ‖L∞(R)‖ ∇ϑ2(s) ‖(L3(Ω))3 ‖(χ21 − χ

22) (s)‖L6(Ω) ds

+

∫ t

0

‖(u1 − u2) (s)‖
H

‖ α ‖L∞(R) ‖∇ (χ21 − χ
22) (s)‖

H
ds

≤ 1

2ε
‖ α′ ‖2

L∞(R)

∫ t

0

‖ ∇ϑ2(s) ‖2
(L3(Ω))3‖ (u1 − u2)(s) ‖2

H
ds

+
ε

2
cΩ

∫ t

0

(

‖ (χ21 − χ
22)(s) ‖2

H + ‖ ∇(χ21 − χ
22)(s) ‖2

H

)

ds

+
1

2ε
‖ α ‖2

L∞(R)

∫ t

0

‖ (u1 − u2)(s) ‖2
H

ds +
ε

2

∫ t

0

‖ ∇(χ21 − χ
22)(s) ‖2

H
ds, ∀ε > 0. (4.3)

Finally, we deal with J (3)(t). It is straightforward to obtain

J (3)(t) ≤ c
ε

2

∫ t

0

(

‖ (χ21 − χ
22) (s) ‖2

H + ‖ ∇ (χ21 − χ
22) (s) ‖2

H

)

ds

+
1

2ε
‖ divu1 ‖2

L∞(0,T ;H)

∫ t

0

‖ α(ϑ1) − α(ϑ2) ‖2
L3(Ω) ds. (4.4)

Fixing ε small enough, taking into account (4.2 - 4.4) and recalling that (3.22) along with the
semicontinuity of norms with respect to the weak topology, gives that ‖ divu ‖L∞(0,T ;H)≤ c, from
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(4.1), we get the following estimate

2
∑

j=1

(

‖ (χj1 − χ
j2)(t) ‖2

H +

∫ t

0

‖ ∇(χj1 − χ
j2)(s) ‖2

H
ds

)

≤ c

( 2
∑

j=1

‖ χ0
j1 − χ0

j2 ‖2
H +

∫ t

0

‖ (ϑ1 − ϑ2)(s) ‖2
H ds

+

∫ t

0

‖ α(ϑ1) − α(ϑ2) ‖2
L3(Ω) ds +

2
∑

j=1

∫ t

0

‖ (χj1 − χ
j2)(s) ‖2

H ds

∫ t

0

(

1+ ‖ ∇ϑ2(s) ‖2
(L3(Ω))3

)

‖ (u1 − u2)(s) ‖2
H

ds

)

. (4.5)

In order to get a control of the function (u1−u2) with respect to the norm of C0([0, T ]; H), we
first consider the difference between (2.22) written for for F1 and F2, respectively and integrate
over (0, t) for t ∈ (0, T ). Then, we test by v = (u1 − u2)(t), and integrate one more time over
(0, t). Thus, owing to (2.10) and (2.11) we obtain

1

2
‖ (u1 − u2)(t) ‖2

H
−1

2
‖ u

0
1 − u

0
2 ‖2

H
+

1

2
a

(
∫ t

0

(u1 − u2)(s)ds,

∫ t

0

(u1 − u2)(s)ds

)

≤< w
0
1 − w

0
2,

∫ t

0

(u1 − u2)(s)ds > +

∫ t

0

<

∫ s

0

(G1 − G2)(r)dr, (u1 − u2)(s) > ds

−
∫ t

0

(
∫ s

0

(α(ϑ1)χ21 − α(ϑ2)χ22)(r)dr, div(u1 − u2)(s)

)

Ω

ds. (4.6)

Our next aim is to get a bound on the right side of (4.6). To this end, due to (3.13), we handle
the first two terms as follows

< w
0
1 − w

0
2,

∫ t

0

(u1 − u2)(s)ds >

≤ ε

2

∥

∥

∥

∥

∫ t

0

(u1 − u2)(s)ds

∥

∥

∥

∥

2

V

+
1

2ε

∥

∥w
0
1 − w

0
2

∥

∥

2

V
′ , (4.7)

and
∫ t

0

<

∫ s

0

(G1 − G2)(r)dr, (u1 − u2)(s) > ds

≤ 1

2

∫ t

0

∥

∥

∥

∥

∫ s

0

(G1 − G2)(r)dr

∥

∥

∥

∥

2

H

+
1

2

∫ t

0

‖(u1 − u2)(s)‖2
H

ds. (4.8)

Integrating by parts with respect to time, we rewrite the last term as follows

−
∫ t

0

(
∫ s

0

(α(ϑ1)χ21 − α(ϑ2)χ22)(r)dr, div(u1 − u2)(s)

)

Ω

ds =

7
∑

i=4

J (i)(t), (4.9)
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where

J (4)(t) = −
(
∫ t

0

(α(ϑ1) − α(ϑ2))(s)χ21(s)ds, div

∫ t

0

(u1 − u2)(s)ds

)

Ω

,

J (5)(t) = −
(∫ t

0

α(ϑ2(s))(χ21 − χ
22)(s)ds, div

∫ t

0

(u1 − u2)(s)ds

)

Ω

,

J (6)(t) =

∫ t

0

(

(α(ϑ1) − α(ϑ2))(s)χ21(s), div

∫ s

0

(u1 − u2)(r)dr

)

Ω

ds,

J (7)(t) =

∫ t

0

(

α(ϑ2(s))(χ21 − χ
22)(s), div

∫ s

0

(u1 − u2)(r)dr

)

Ω

ds.

Thanks to Hölder’s inequality and owing to (2.4), (2.6), (2.13), and (3.13), we infer that, for any
ε > 0 to be chosen later

J (4)(t) + J (6)(t) ≤
√

3

2

(

ε

∥

∥

∥

∥

∫ t

0

(u1 − u2)(s)ds

∥

∥

∥

∥

2

V

+

∫ t

0

∥

∥

∥

∥

∫ s

0

(u1 − u2)(r)dr

∥

∥

∥

∥

2

V

ds

+ c2
κ ‖ α′ ‖2

L∞(R)

(

T

ε
+ 1

)
∫ t

0

‖ (ϑ1 − ϑ2)(s) ‖2
H ds

)

, (4.10)

analogously,

J (5)(t) + J (7)(t) ≤
√

3

2

(

ε

∥

∥

∥

∥

∫ t

0

(u1 − u2)(s)ds

∥

∥

∥

∥

2

V

+

∫ t

0

∥

∥

∥

∥

∫ s

0

(u1 − u2)(r)dr

∥

∥

∥

∥

2

V

ds

+ ‖ α ‖2
L∞(R)

(

T

ε
+ 1

)
∫ t

0

‖(χ21 − χ
22)(s)‖2

H ds

)

. (4.11)

Now, fixing a proper ε and taking into account (4.10-4.11) and (2.3), (4.6) becomes

‖ (u1 − u2)(t) ‖2
H

+

∥

∥

∥

∥

∫ t

0

(u1 − u2)(s)ds

∥

∥

∥

∥

2

V

≤ c

(

‖ u
0
1 − u

0
2 ‖2

H
+ ‖ w

0
1 − w

0
2 ‖2

V
′

+

∫ t

0

∥

∥

∥

∥

∫ s

0

(G1 − G2)(r)dr

∥

∥

∥

∥

2

H

ds +

∫ t

0

‖ (ϑ1 − ϑ2)(s) ‖2
H ds

+

∫ t

0

‖ (u1 − u2)(s) ‖2
H

ds +

∫ t

0

∥

∥

∥

∥

∫ s

0

(u1 − u2)(r)dr

∥

∥

∥

∥

2

V

ds

∫ t

0

‖ (χ21 − χ
22)(s) ‖2

H ds

)

. (4.12)

Thus, adding (4.12) to (4.5) and applying the Gronwall Lemma, one can find a positive costant c
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such that

‖ u1 − u2 ‖2
C0([0,T ];H) + sup

t∈[0,T ]

∥

∥

∥

∥

∫ t

0

(u1 − u2)(s)ds

∥

∥

∥

∥

2

V

+
2
∑

j=1

‖ χ
j1 − χ

j2 ‖2
L2(0,T ;V )∩C0([0,T ];H)

≤ c

( 2
∑

j=1

‖ χ0
j1 − χ0

j2 ‖2
H + ‖ u0

1 − u0
2 ‖2

H
+ ‖ w0

1 − w0
2 ‖2

V
′

+ ‖ G1 − G2 ‖2
L2(0,T ;H) + ‖ ϑ1 − ϑ2 ‖2

L2(0,T ;H) + ‖ α(ϑ1) − α(ϑ2) ‖2
L2(0,T ;L3(Ω))

)

. (4.13)

In order to get an estimate for ‖ (u1 − u2)t ‖C0(0,T ;V ′), let us integrate with respect to time the
difference between (2.22) written for F1 and the same equation written for F2; hence, (4.13), and a
comparison in the resulting relation, allow us to conclude the proof of (2.29). Now, the uniqueness
result easily follows from the estimate (2.29). Indeed, if F1 ≡ F2, the right hand vanishes; hence
we conclude immediately that u1 = u2 and χ

j1 = χ
j2 j = 1, 2, ∀t ∈ [0, T ] and a.e. in Ω.

To conclude the proof of Theorem 2.4, it remains to control the function (u1 − u2) in the
norm of C1([0, T ]; H) ∩ C0([0, T ]; V ). To this end, we take the difference between (2.22) written
for F1 and F2, then we choose v = (u1 − u2)t as test function. All this is formal because
(u1 − u2)t ∈ C0([0, T ]; H). Nevertheless, it is possible to find a rigorous justification in [11,
Appendix], to which we refer for the detailed computations. Thus, for t ∈ (0, T ), we formally
obtain

1

2

d

dt
‖(u1 − u2)t(t)‖2

H
+

1

2

d

dt
a
(

u1 − u2, u1 − u2

)

(t) =< (G1 − G2)(t), (u1 − u2)t(t) >

−
(

(α(ϑ1)χ21 − α(ϑ2)χ22)(t), div(u1 − u2)t(t)
)

Ω
. (4.14)

Arguing as in (4.8), one can easily bound the first term in the right side of(4.14). Our next aim
is to control the other term; to this end, we integrate by parts with respect to space variables. It
is straightforward to obtain

−
(

(α(ϑ1)χ21 − α(ϑ2)χ22)(t), div(u1 − u2)t(t)
)

Ω
=

11
∑

i=8

J (i)(t), (4.15)

for t ∈ (0, T ) where

J (8)(t) =
(

∇χ
21(t)(α(ϑ1) − α(ϑ2))(t), (u1 − u2)t(t)

)

Ω
,

J (9)(t) =
(

χ
21(t)∇(α(ϑ1) − α(ϑ2))(t), (u1 − u2)t(t)

)

Ω
,

J (10)(t) =
(

α′(ϑ2(t))∇ϑ2(t)(χ21 − χ
22)(t), (u1 − u2)t(t)

)

Ω
,

J (11)(t) =
(

α(ϑ2(t))∇(χ21 − χ
22)(t), (u1 − u2)t(t)

)

Ω
.

To handle
{

J (i)(t)
}11

i=8
, we exploit the same techniques used in (4.10 - 4.11). Thus, in view of (2.3),
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we integrate (4.14) in time over (0, t) for t ∈ (0, T ) and we add it to (4.5), obtaining

‖ (u1 − u2)t(t) ‖2
H

+ ‖ (u1 − u2)(t) ‖2
V

+
2
∑

j=1

(

‖(χj1 − χ
j2) (t)‖2

H +

∫ t

0

‖∇ (χj1 − χ
j2) (s)‖2

H
ds

)

≤ c

(

∥

∥w
0
1 − w

0
2

∥

∥

2

H
+
∥

∥u
0
1 − u

0
2

∥

∥

2

V
+

2
∑

j=1

∥

∥χ0
j1 − χ0

j2

∥

∥

2

H
+ ‖G1 − G2‖2

L2(0,t;H)

+ ‖ϑ1 − ϑ2‖2
L2(0,t;H) + ‖α(ϑ1) − α(ϑ2)‖2

L2(0,t;V )

+

∫ t

0

(

1 + c2
κ + c2

Ω + ‖χ21(s)‖2
H2(Ω) + ‖∇ϑ(s)‖2

(L3(Ω))3

)

‖(u1 − u2)t (s)‖2
H

ds

+

∫ t

0

(

1 + ‖∇ϑ2(s)‖2
(L3(Ω))3

)

‖(u1 − u2)t(s)‖2
H

+

∫ t

0

‖ (χ21 − χ
22)(s) ‖2

H ds

)

(4.16)

Hence, applying the Gronwall Lemma to (4.16) and recalling that
∑2

j=1 ‖ χ
j ‖L2(0,T ;H2(Ω))≤ c

thanks to (3.23) and to the semicontinuity of norms with respect to the weak topology, we easily
conclude the proof of Theorem 2.4.
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[4] E. Bonetti. Global solution to a Frémond model for shape memory alloys with thermal
memory. Nonlinear Anal., 46(4, Ser. A: Theory Methods):535–565, 2001.

[5] E. Bonetti. Global solvability of a dissipative Frémond model for shape memory alloys. Part
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model for shape memory alloys. Math. Comp., 71(240):1431–1453 (electronic), 2002.


