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Abstract

We present a novel variational approach to gradient-flow evolution in metric spaces. In particular, we advance a
functional defined on entire trajectories, whose minimizers converge to curves of maximal slope for geodesically convex
energies. The crucial step of the argument is the reformulation of the variational approach in terms of a dynamic
programming principle, and the use of the corresponding Hamilton-Jacobi equation. The result is applicable to a
large class of nonlinear evolution PDEs including nonlinear drift-diffusion, Fokker-Planck, and heat flows on metric-
measure spaces.
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Résumé

Un principe variationnel pour les équations de flot gradient dans les espaces métriques. Nous présentons
une nouvelle approche variationnelle pour l’étude d’évolution de flot gradient dans des espaces métriques. En par-
ticulier, nous proposons une fonctionnelle définie sur des trajectoires entières. Nous démontrons que les minimums
de cette fonctionnelle convergent vers des courbes de descente maximale dans le cas d’une énergie géodésiquement
convexe. Le point crucial de l’argument est la reformulation de l’approche variationnelle en terms du principe de la
programmation dynamique. Ce resultat peut s’appliquer à une large classe d’évolution nonlineaires qui peuvent être
reformulées comme des flots gradient dans des espaces métriques de Wasserstein.
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1. The variational principle

Gradient flows are the paradigm of parabolic evolution and, as such, have received constant attention since
the end of the 60s. They arise almost ubiquitously in connection with applications such as heat conduction,
the Stefan problem, the Hele-Shaw cell, porous media, parabolic variational inequalities, some classes of
ODEs with obstacles, degenerate parabolic PDEs, and the mean curvature flow for Cartesian graphs, just
to mention a few. More recently, following the pioneering work by Otto [10], an even larger class of PDE
problems including transport, nonlinear drift-diffusion, and Fokker-Planck equations have been translated
into gradient flows, in the framework of probability spaces endowed with the Wasserstein metric. In this
connection, the reader is referred to the monograph by Ambrosio, Gigli, & Savaré [2] for a collection of
results.
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The aim of this note is to illustrate a novel variational view at gradient flows in metric spaces. Let (X, d)
be a complete and separable metric space and the functional

φ : X → (−∞,∞] be proper, geodesically convex, and with compact sublevels. (1)

Geodesic convexity means that every couple of points in D(φ) := {φ < ∞} can be connected by a minimal
and constant speed geodesic γ : [0, 1] → X (thus satisfying d(γ(s), γ(t)) = (t−s)d(γ(0), γ(1))), such that
φ(γ(t)) ≤ (1− t)φ(γ(0))+tφ(γ(1)) for all t ∈ [0, 1]. Note that most of the assumptions in (1) are here chosen
for the sake of presentation simplicity and may be relaxed. In particular, the geodesic convexity requirement
in (1) can be weakened, and geodesically λ-convex functional can be considered, see [9].

We shall consider the global-in-time functionals Iε : AC2(R+;X)→ (−∞,∞] given, for ε > 0, by

Iε(u) =
∫ ∞

0

e−t/ε
(

1
2
|u′|2(t)+

1
ε
φ(u(t))

)
dt. (2)

Here, R+ := [0,∞), and AC2(R+;X) is the set of absolutely continuous curves t ∈ R+ 7→ u(t) ∈ X, for
which the metric derivative t 7→ |u′|(t) := lims→t d(u(t), u(s))/|t− s| exists a.e. and belongs to L2(R+) [2].

One can check that, for all ε > 0 and ū ∈ D(φ) the problem

min
u∈K(ū)

Iε(u) with K(ū) := {u ∈ AC2(R+;X) : u(0) = ū}, (3)

admits a solution, see [9]. Our aim is to show the connection between this minimization problem and curves
of maximal slope (for the functional φ, with respect to the upper gradient |∂φ| and originating from ū). The
latter are trajectories u ∈ AC2(R+;X) such that u(0) = ū and

φ(u(t)) +
1
2

∫ t

0

|u′|2(t)dt+
1
2

∫ t

0

|∂φ|2(u(t))dt = φ(ū) for all t ≥ 0. (4)

In (4), the symbol |∂φ|(u) := lim supv→u (φ(u)−φ(v))+/d(u, v), for u ∈ D(φ), stands for the local descending
slope of φ at u [2]. This concept is the natural analogue of the gradient of the energy in a metric setting, where,
in absence of a linear structure, one has to resort to suitable surrogates of gradients and time derivatives. In
particular, under assumptions (1), if X is a Hilbert space endowed with its strong metric, curves of maximal
slopes coincide with classical gradient flows, i.e. solutions of the differential inclusion u′(t) ∈ −∂φ(u(t)) [8].
Our main result reads as follows.
Theorem 1.1 (Variational principle) As ε ↓ 0 the minimizers in (3) admit a subsequence which locally
uniformly converges to a curve of maximal slope.

This convergence result entails the possibility of reformulating the differential problem (4) as a (limit
of a class of) minimization problem(s). In particular, it paves the way to the application of the specific
tools of the Calculus of Variations to (4), especially the Direct Method, relaxation, and Γ-convergence. As
a by-product of Theorem 1.1, we have an alternative existence proof for curves of maximal slope (see [2]).

We recall that the variational approach to gradient flows via the minimization of Iε has been firstly
applied to mean curvature evolution by Ilmanen [5]. Then, two examples of relaxation of gradient flows
via Iε are provided by Conti & Ortiz [4] in the context of microstructure evolution. In the Hilbert case,
Theorem 1.1, along with a number of related results, has been obtained [8]. This variational approach has
been applied to rate-independent evolution by Mielke & Ortiz [6] and further detailed in [7], whereas the
doubly nonlinear case is addressed in [1].

We shift here the attention to the metric case. As already mentioned, our interest for gradient flows in
metric spaces is not at all academical, but rather motivated by possible applications to evolution PDEs with
nonnegative solutions u : Rd × R+ → R+, in the general form

∂tu−∇ ·
(
u∇(δuφ(u))

)
= 0 in Rd × R+. (5)

where δuφ(u) is the suitably defined first variation of an integral functional, resulting from the linear combi-
nation of the terms U(u) =

∫
Rd U(u(x)) dx, V(u) =

∫
Rd V (x)u(x) dx,W(u) =

∫
Rd×Rd W (x−y)u(x)u(y) dxdy

under qualified smoothness and growth assumptions. The functionals U , V, and W are generally referred to
as the internal, the potential, and the interaction energies, respectively. In particular, the choices F = U+V,
U(r) = r log r, and F = U , U(r) = rm/(m − 1), m ≥ 1 − 1/d, respectively yield the Fokker-Planck and
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the nonlinear diffusion equations. Transport and nonlinear drift-diffusion equations (with or without non-
local interactions) can be considered as well. The aforementioned PDE is by now classically reformulated
as a gradient flow equation, in the metric space P2(Rd) of probability measures with finite second moment,
endowed with the Wasserstein 2-metric. Another possible application concerns the heat flow in a Polish
metric-measure space (M,d,m) satisfying the Lott-Sturm-Villani condition CD(K,∞) [3]: in this case X =
P2(M), φ(µ) = Entm(µ) is the relative entropy functional, and the family of minimizers uε converge to the
unique solution µ = ρm, ∂tρ−∆m,dρ = 0 (see [3] for the definition of the operator ∆m,d).

2. The metric inner variation equation

In order to gain some insight into the convergence result of Theorem 1.1, let us present the specific form
of the Euler-Lagrange equation for the minimum problem (3).
Lemma 2.1 (Metric inner variations) Let uε minimize Iε on K(ū). Then, uε fulfills

|u′ε|2(t) +
d
dt

(
φ(uε(t))−

ε

2
|u′ε|2(t)

)
= 0 for a.a. t > 0. (6)

In the limiting case ε = 0, relation (6) represents the balance between the variation in energy (density)
(d/dt)φ(uε(t)) and the dissipated energy (density) −|u′ε|2(t). For ε > 0, the extra term (d/dt)(ε/2)|u′ε|2(t)
corresponds to a nonlocal-in-time correction. If X is a Hilbert space, the Euler-Lagrange equation for Iε

reads [8]
−εu′′ε (t) + u′ε(t) + ∂φ(uε(t)) 3 0 for a.a. t > 0,

so that relation (6) stems by testing the latter by u′ε. Eventually, minimizing Iε basically corresponds in
addressing an elliptic-in-time regularization of the original gradient flow evolution.

3. The Dynamic Programming principle

Let us introduce the value function ū ∈ D(φ) 7→ V ε(ū) defined by

V ε(ū) := min
u∈K(ū)

Iε(u) = Iε(uε),

for any minimizer uε of problem (3). We have (cf. [9]) that V ε is l.s.c., bounded from below, and that it
monotonically converges to φ everywhere. In particular, V ε(ū) ≤ φ(ū) for all ū ∈ X. Moreover, we have that(

uε → u, sup
ε
φ(uε) <∞

)
⇒ φ(u) ≤ lim inf

ε↘0
V ε(uε) and

1
2
|∂φ|2(u) ≤ lim inf

ε↘0

1
ε

(
φ(uε)−V ε(uε)

)
. (7)

The crucial tool towards Theorem 1.1 is a metric version of the classical Dynamic Programming principle.
Proposition 3.1 (Dynamic Programming principle) For every T > 0 there holds

V ε(ū) = min
u∈K(ū)

(∫ T

0

e−t/ε
(

1
2
|u′|2(t)+

1
ε
φ(u(t))

)
dt+ V ε(u(T ))e−T/ε

)
. (8)

The core of the proof of Theorem 1.1 consists in working out the relations between the value function V ε

and the energy φ, relying on (8). In particular, one can prove that V ε is continuous on the sublevels of φ,
that the map t 7→ V ε(u(t)) is absolutely continuous, and we have the crucial relation [9, Prop. 2.8]

− d
dt
V ε(uε(t)) =

1
2
|u′ε|2(t) +

1
ε
φ(uε(t))−

1
ε
V ε(uε(t)) for a.a. t > 0. (9)

The role of the value function V ε is further illustrated by observing that the minimizer uε is itself a curve
of maximal slope for V ε, with respect to the conditioned local slope |∂̃V ε|, which is defined at u ∈ D(φ) by

|∂̃V ε|(u) := lim sup
v→u, φ(v)→φ(u)

(V ε(u)−V ε(v))+

d(u, v)
≤ |∂V ε|(u)
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(note that the lim sup is taken along sequences also “converging in energy”). Namely, there holds

V ε(uε(t)) +
1
2

∫ t

0

|u′ε|2(t) dt+
1
2

∫ t

0

|∂̃V ε|2(uε(t)) dt = V ε(ū) for all t > 0.

This is indeed a consequence of (9), combined with the following relation (to be interpreted as a metric
version of the Hamilton-Jacobi equation for V ε):

2V ε(uε(t)) + ε|∂̃V ε|2(uε(t)) = 2φ(uε(t)) for all t > 0.

4. Convergence proof

We comment here the line of the proof of Theorem 1.1, referring to [9] for all details. Let uε be a minimizer
of Iε on K(ū). An important fact is that the function t 7→ φ(uε(t)) is (convex and) nonincreasing in R+.
The convergence proof follows by passing to the limit as ε→ 0 in the integral of (9), namely

V ε(uε(t)) +
1
2

∫ t

0

|u′ε|2(s)ds+
∫ t

0

1
ε

(
φ(uε(s))−V ε(uε(s))

)
ds = V ε(ū) for all t > 0. (10)

In particular, the latter and the fact that V ε(ū) ≤ φ(ū) entail that |u′ε| is uniformly bounded in L2(R+) and
nonincreasing in R+. Hence, by the compactness of the sublevels of φ (see (1)), one extracts a not relabeled
subsequence such that uε(t) → u(t) in X for all t ≥ 0 and |u′ε| ⇀ m weakly in L2(R+), with m ≥ |u′| a.e.
in (0,+∞). In order to pass to the lim inf in (10) we use the second of (7) and the fact that V ε(ū)↗ φ(ū).
Hence, the ’≤’ inequality in (4) is established. The missing ’≥’ inequality follows directly from the fact that,
under assumptions (1), the local slope |∂φ| is a strong upper gradient, see [2, Def. 1.2.1].
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