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Complex geometry

X compact complex manifold.
Local holomorphic coordinates zi = xi +

√
−1yi .

Get tensor J ∈ End(TX ) with J(∂xi ) = ∂yi , J(∂yi ) = −∂xi . Note
J2 = −I.
Given J, split TX ⊗ C = T 1,0X ⊕ T 0,1X , ±

√
−1 J-eigenspaces.

Similarly split forms Ak (X ) = ⊕p,qAp,q(X ).
Get ∂J = Πp+1,qd |Ap,q(X), ∂̄J = Πp,q+1d |Ap,q(X).

Integrability: J comes from complex structure iff ∂̄2
J = 0.
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Hermitian and Kähler metrics

g Riemannian metric on X .
g Hermitian if J is g-isometry.
Then ωg = g(J−,−) is a 2-form.
Strongest compatibility: ∇g(J) = 0.
It holds iff dωg = 0. This is the Kähler condition.
E.g.: ωFS =

√
−1∂∂̄ log(

∑
i |Zi |2) on Pn.

E.g.: ι∗XωFS for ι : X ↪→ Pn a smooth projective variety.
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Curvature of Kähler metrics

g Riemannian so get curvature tensor Riem(g).
Ricci curvature is equivalent to Ricci form

Ric(ωg) = −
√
−1∂∂̄ log det(g)

= −
√
−1∂i ∂̄j log det(gk l̄)dzi ∧ dz̄j .

Scalar curvature is given by

s(g) = −
√
−1g i j̄∂i ∂̄j log det(g).
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Kähler-Einstein metrics

g is Riemannian Einstein iff

Ric(ωg) = λωg .

Can assume λ ∈ {−1,0,1}.
Taking cohomology

H2(M,Z) 3 c1(X ) = (2π)−1[Ric(ωg)] = (2π)−1λ[ωg].

So X must be general type (λ = −1), Calabi-Yau (λ = 0) or
Fano (λ = 1).
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Complex Monge-Ampere

Use ∂∂̄-Lemma.
KE equation is equivalent to the CMA for Kähler potential
ϕ ∈ C∞(X ):

(ω0 +
√
−1∂∂̄ϕ)n = eF−λϕωn

0

where Ric(ω0)− λω0 =
√
−1∂∂̄F .
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Continuity methods

If λ = −1 we consider the continuity method

(ω0 +
√
−1∂∂̄ϕt )

n = etF+ϕtωn
0 ,

ω0 +
√
−1∂∂̄ϕt > 0, t ∈ [0,1].

If λ = 0 we consider

(ω0 +
√
−1∂∂̄ϕt )

n = etF+ctωn
0 ,

ω0 +
√
−1∂∂̄ϕt > 0, t ∈ [0,1].

for t ∈ [0,1] and uniquely defined constants ct .
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Continuity methods and Yau’s theorems

If λ = 1 we consider

(ω0 +
√
−1∂∂̄ϕt )

n = eF−tϕtωn
0 ,

ω0 +
√
−1∂∂̄ϕt > 0, t ∈ [0,1].

Theorem (Yau, 80s)
In all cases the set of times for which there is a solution is open
and contains t = 0. It is closed iff a C0 estimate on ϕt holds
along the continuity path.

Theorem (Yau, 80s)

For λ = −1,0, the C0 estimate on ϕt holds along the continuity
path.
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The Fano case

The C0 estimate can fail when λ = 1!
E.g.: Take X = Blp P2. Then ϕt blows up for some explicit
0 < t̄ < 1 along the continuity path. In fact there is no KE
metric.

Theorem (Chen-Donaldson-Sun 2012; Datar-Szekelyhidi 2014)

In the Fano case, the C0 estimate estimate along the continuity
path (and so the existence of a KE metric) is a purely
algebro-geometric condition, known from previous work,
namely K-polystability.
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Test-configurations

Fix a complex polarised variety (X ,L).
(In the Fano case (X ,−KX )).
Let C∗ act in the standard way on C.

Definition
A test-configuration (X ,L) for (X ,L) with exponent r is a
C∗-equivariant flat morphism π : X → C, together with a
π-ample line bundle L and a linearisation of the action of C∗ on
L, such that the fibre over 1 is isomorphic to (X ,L⊗r ).
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Properties of test-configurations

We say that (X ,L) is
very ample, if L is π-very ample;
a product, if it is isomorphic to (X × C,L⊗r �OC), where
the action of C∗ on X × C is induced by a one-parameter
subgroup λ of Aut(X ,L) by λ(τ) · (x , z) = (λ(τ) · x , τz);
trivial, if it is a product and, moreover, λ is trivial;
normal, if the total space X is normal;
equivariant with respect to a subgroup H ⊂ Aut(X ,L), if the
action of C∗ can be extended to an action of C∗ × H such
that the action of {1} × H is the natural action of H on
(X ,L⊗r );
in the Fano case, a test-configuration is a special
degeneration if X is normal, all the fibres are klt and a
positive rational multiple of L equals −KX .
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DF invariant and L2 norm

Let h(k) = h0(X0,L⊗k
0 ), Ak = the infinitesimal generator of

induced action on H0(X0,L⊗k
0 ).

Consider the quantities w(k) = tr(Ak ), d(k) = tr(A2
k ). Expand

h(k) = h0(X ,L⊗k ) = a0kn + a1kn−1 + · · ·
w(k) = b0kn+1 + b1kn + · · ·
d(k) = c0kn+2 + c1kn+1 + · · ·

One defines the Donaldson-Futaki invariant (or weight) and the
L2 norm as

DF(X ,L) =
a1b0 − a0b1

a2
0

, ||(X ,L)||2L2 = c0 −
b2

0
a0
.
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K-(semi, poly)stability

Definition
(X ,L) is

K-semistable if DF(X ,L) ≥ 0 for all (X ,L);
K-stable if DF(X ,L) > 0 for all (X ,L) with normal total
space;
K-polystable if for all (X ,L) with normal total space we
have DF(X ,L) ≥ 0, with equality if and only if (X ,L) is a
product.

Some dislike the word “polystable" and just say “stable (with
automorphisms)".
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Beyond KE

KE constrains [ωg] (except for CYs). Moving beyond this, one
looks at cscK metrics

s(g) = ŝ

and more generally at extremal metrics

∂̄∇1,0s(g) = 0.

They are critical points for all the functionals∫
(s(g))2,

∫
||Ric(g) ||2g ,

∫
||Riem(g) ||2g .

Jacopo Stoppa Some recent developments in Kähler geometry



Continuity method

There is no reduction to CMA!
So fix α > 0, [α] = [ωg] and look at twisted cscK equation (Fine,
S., ...)

s(g)− Λωgα = c

and continuity path for ωgt = ωg +
√
−1∂∂̄ϕt

ts(gt )− (1− t)Λωgt
α = ct ,

α ∈ [ωg], t ∈ [0,1].

Theorem (Chen-Cheng 2018)

The set of times for which there is a solution is open and
contains t = 0. It is closed iff a C0 bound on ϕt holds along the
continuity path.
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K-stability and canonical metrics

The C0 bound can certainly fail!
E.g. X = Blp P2 with any Kähler class.
For Hodge classes [ωg] = c1(L) is the C0 bound still
algebro-geometric?

Theorem (Donaldson)

If there is a Kähler metric g in the class c1(L) with constant
scalar curvature s(g) = −g i j̄∂i ∂̄j log det gk l̄ then (X ,L) is
K-semistable.

Theorem (S.)

If there is a Kähler metric in the class c1(L) with constant scalar
curvature and Aut(X ,L)/C∗ is discrete then (X ,L) is K-stable.
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K-stability and canonical metrics

The metric g is called extremal if ∇1,0s(g) is holomorphic
(Euler-Lagrange for

∫
s2(g)).

There is a formal (Futaki-Mabuchi) inner product on linearised
C∗-actions.
Let T ⊂ Aut(X ,L) be a maximal algebraic torus.

Theorem (S., Szekelyhidi)

If there is a Kähler metric in c1(L) which is extremal then we
have

DF((X ,L)⊥T ) > 0

for all T -equivariant (X ,L) with normal total space.

(X ,L)⊥T denotes the orthogonal complement with respect to the
formal Futaki-Mabuchi inner product.
DF((X ,L)⊥T ) is also called the relative DF.
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Admissible filtrations

Consider the homogeneous coordinate ring

R = R(X ,L) =
⊕
k≥0

Rk =
⊕
k≥0

H0(X ,L⊗k ).

Definition
We define a filtration χ of R to be sequence of vector
subspaces

H0(X ,O) = F0R ⊂ F1R ⊂ · · ·

which is
exhaustive: for every k there exists a j = j(k) such that
FjRk = H0(X ,L⊗k ),
multiplicative: (FiRl)(FjRm) ⊂ Fi+jRl+m,
homogeneous: f ∈ FiR then each homogeneous piece of f
is in FiR.
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Rees and graded algebra

Definition
Let χ be a filtration. The corresponding Rees algebra is

Rees(χ) =
⊕
i≥0

FiR t i

The graded modules are

gri(H
0(X ,L⊗k )) = Fi(H0(X ,L⊗k ))/Fi−1(H0(X ,L⊗k ))

The graded algebra is

gr(χ) =
⊕
k ,i≥0

gr(H0(X ,Lk ))

The Rees algebra is a subalgebra of R[t ].
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Filtrations and test-configurations

Definition
A filtration is called finitely generated if its Rees algebra is
finitely generated.

If χ is finitely generated then

(Proj(Rees(χ)),O(1))

is a test-configuration for (X ,L), with central fibre
(Proj(gr(χ)),O(1)).

Theorem (Witt Nystrom, Szekelyhidi)
K-(semi, poly)stability can be checked on test-configurations of
this form.
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DF for general filtrations

There is a canonical notion of finitely-generated approximations
χ(i), and one defines

DF(χ) = lim inf
i→∞

DF(χ(i)), ||χ||L2 = lim inf
i→∞

||χ(i)||L2 .

Another important notion is the asymptotic Chow weight

Chow∞(χ) = lim inf
i→∞

Chow(χ(i)),

where

Chow(χ(i)) =
ib0

a0
−

wχ(i)(i)
hχ(i)(i)

.

It is an open problem to understand how DF(χ), Chow∞(χ) are
related in general.
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General filtrations and canonical metrics

Theorem (Szekelyhidi)

If there is a Kähler metric in c1(L) with constant scalar
curvature and Aut(X ,L)/C∗ is discrete then we have DF(χ) > 0
for all χ with ||χ||L2 > 0.

It is not known if this is actually a stronger obstruction.
It is also not easy to construct non-finitely generated filtrations
which destabilise (at least conjecturally).
If Aut(X ,L) is non-reductive, there is a canonical (Loewy)
filtration which is probably not finitely generated in general, and
which conjecturally destabilises (it does in many examples):
this is due to Codogni-Dervan.
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General filtrations and canonical metrics

Open:
1 remove assumption on Aut(X ,L);
2 prove an analogue of this result for extremal metrics with

non-constant scalar curvature.
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Limits of filtrations

(X ,L) polarised variety, T ⊂ Aut(X ,L) torus, λ : C∗ → T 1PS.
(X ,L) test-configuration, F corresponding (admissible) filtration
of R(X ,L).
Fλ = limτ→0 λ(τ) · F is λ-equivariant filtration.

Theorem
Fλ is a an admissible filtration, and we have

Chow∞(Fλ) ≤ DF(F).

Iterating on a basis of 1PS for T get T -equivariant, admissible
FT with

Chow∞(FT ) ≤ DF(F).
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Limits of filtrations

(X ,L) normal, (X ,L) normal, nontrivial.

Proposition

Suppose FT is finitely generated, corresponding to (X ′,L′).
Then the normalisation (X̂ ′,L′) is a nontrivial, T -equivariant
test-configuration with

DF(X̂ ′,L′) ≤ DF(X ,L).

Moreover if (X̂ ′,L′) is a product then strict inequality holds.

Jacopo Stoppa Some recent developments in Kähler geometry



Limits of filtrations

Lemma

FT is not finitely generated in general (even for X = P1).

Remark
This gives another class of non-finitely generated filtrations
occurring naturally in K-stability.
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Example

Consider the polynomial algebra C[t ][x , y ] over the ring C[t ]
and let A denote the C[t ]-subalgebra generated by

t(x + y), txy , txy2, t2y .

Then A ⊂ R[t ] is the Rees algebra of a homogeneous,
multiplicative, exhaustive finitely generated filtration F of the
homogeneous coordinate ring R = C[x , y ] of the projective line
(P1,OP1(1)).
Consider the 1-parameter subgroup
λ : C∗ → SL(H0(P1,OP1(1))) acting by

λ(τ) · x = τ−1x , λ(τ) · y = τy .

The limit FT is not finitely generated (adapted from
Robbiano-Sweedler).
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A result of Datar-Szekelyhidi

(M,K−1
M ) Fano manifold, G ⊂ Aut(M) compact.

Theorem (Datar-Szekelyhidi)

If (M,K−1
M ) is K-polystable with respect to G-equivariant special

degenerations then it is Kähler-Einstein.

In particular (M,K−1
M ) is K-polystable with respect to all

(normal) test-configurations (by important results of Berman
and Li-Xu). Combining with results of Ilten-Süss gives the first
higher-dimensional, non-toric examples where K-polystability
can be checked explicitly.

Remark
Datar-Szekelyhidi’s theorem follows from their more
fundamental construction of Kähler-Einstein metrics along the
smooth continuity method.
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Equivariance

Question
Can one prove the equivariance property for general polarised
varieties? At least for a (maximal) torus?
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