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1 Introduction

In this paper we shall consider the finite element approximation to the
Maxwell equations. In Section 2 the convergence theory for the finite element
approximation of the time harmonic Maxwell equations is recalled. Although
the short proof we present has never been written in one single paper, it
is essentially known and it is based on the results of [15, 9, 4, 5]. The first
analysis of this problem has been given in [16] under certain restrictions on
the domain, on the coeflicients and on the mesh sequence.

The analysis relies on the convergence of the discrete Maxwell eigenmodes
towards the continuous ones. In Section 3 simple test cases are studied in
order to compare the accuracy of the edge element method to a penalized
approach which makes use of standard nodal elements. Standard penalization
with nodal elements is very efficient with smooth or convex domains (and
regular coefficients), while it is known to produce very bad results in presence
of singularities (see [12]). For this reason, we consider a method, which has
been introduced in [3] for a different problem and used for the approximation
of Maxwell system in [8].

2 Finite elements for the time harmonic Maxwell
equations

Let us consider the time-harmonic Maxwell equations: given w suitably chosen
in R and f : 2 — R? such that divf = 0, we look for u : 2 = R? such that

curl (p !t curlu) — w?eu =fin 02,
div(eu) =0 in 2, (1)
uxn=20 on 912.

Here 2 is a bounded Lipschitz polyhedron in R®, 812 its boundary, p and
€ are the usual electromagnetic tensors; the hypotheses on them are quite



2 Daniele Boffi and Lucia Gastaldi

general. Notice that problem (1) is solvable only when w is not a Maxwell
eigenvalue (see Theorem 1 below).

Let us recall the definition of some functional spaces which will be useful
in the following;:

H(curl; 2) ={veL?()?| curlv € L*(2)%}
Hy(curl; 2) ={ve H(curl;2)|vxn=0on dN}
H(div; 2;e) = {v e L?(N)?]| div(ev) € L*(2)} (2)

H(div®; 2;¢) = {v € H(div; 2;¢) | div(ev) = 0 in 2}
Ho(div®; 2;¢) = {v € H(div’; 2;¢) [v-n = 0 on 812}

For all u € Ho(curl; 2), ¢ € H(div;2;¢) and q € H}(2) we define the
norms:

N

[[ulleart = (Ilull§ + [l curlulg)*,
lellaw = (lll§ + [l divie@)I)* , (3)
llall: = (lall§ + ll grad qlI3) > -

Then the variational formulation of problem (1) can be written as follows:

Find (u,p) € Ho(curl; 2) x H}($2) such that
(p~tcurlu,curl v) — w?(eu,v) + (ev,grad p) = (f,v) Vv € Hy(curl; 2)
(eu,gradq) =0 Vg € H} ().
(4)

Our analysis is based on some results on the following eigenvalue problem:

find A € R such that 3w € Hy(curl; 2) with w # 0: ()
(p~teurlw, curlv) = Aew,v) Vv € Ho(curl; 2)

It is well known that the eigenproblem (5) admits the eigenvalue Ag = 0 and
a nondecreasing sequence of positive eigenvalues \;, for ¢ = 1,2,..., going
to infinity. The eigenspace associated to Ag = 0 is infinite dimensional and
coincides with the subset of Hy(curl; £2) of the vector functions with vanishing
curl, that is grad(Hg (£2)). The positive eigenvalues \; have finite multiplicity
and the associated eigenfunctions are divergence free. Using the Fredholm
alternative theorem, one can prove the following theorem:

Theorem 1. Let \;, for i = 1,2,--- be the positive eigenvalues of prob-
lem (5). Then, if w? # X;, for alli = 1,2,---, there exists a unique solution
to problem (4), with the following stability estimate:

1 1+
(||u||2ur1 + ||p||%) 2 < max (1 +w?, 722, i=1,2,-- ) [If]lo-  (6)
|Ai — w?|
The proof of Th. 1 is given in [15].
Let us introduce finite dimensional subspaces Ey, C Hy(curl; 2) and Qp C
HJ (). Then the discretization of problem (4) reads:
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Find (up,pr) € Er X Qp such that
{ (u~t curlup, curl vy) — w?(eun, vi) + (evn, gradpp) = (f,vi) Vv, € Ep,
(eun,gradgn) =0 Van € Qh(- )
7
Following [15], the same analysis, used for the continuous problem (4) (see
Th. 1), can be performed also for the discrete one (7), provided the discrete
spaces satisfy the following condition:

q € Qp < gradq € Ey. (8)
The following convergence estimate holds

llw = wp|lZun + llp — pall} < 52 inf (la = vallZu + llp = anll?) (9)
(Vh,qn)EER XQn

with the stability constant given by:

1+ Ain .
<1 14w —— i=1,2,--- |. 10
B < +max( +w o — | i ) (10)

Here A\;; denotes the discrete eigenvalues resulting from the approximation
of problem (5):

find Ay € R such that Iwy, € Ep, with wy, # 0:
(p=t curl wp, curl vi) = Ay (eWn, Vi) Vv, € Ey,.

(11)

In order to conclude the above analysis we need to know that the discrete
eigenvalues converge to the continuous ones. This guarantees that, if w? # \;
then, for h sufficiently small, also w? # A, for all i. The convergence of the
eigensolutions of problem (11) to the continuous ones has been considered
in [9]. The analysis is based on the study of the following auxiliary eigen-
problem in mixed form:

find A € R such that 3(w, ) € Ho(curl; 2) x Ho(div®; 2; u2) with w # 0
(ew,v) + (u~ /2 curlv, @) = 0 Vv € Hy(curl; 2)
{ (V2 curlw, ) = M, ) Vab € Ho(div®; 2; u3).
(12)
The pair (A\,w) € R x Hp(curl; 2) is an eigensolution of problem (5), with
X\ # 0, if and only if, there exists ¢ € Ho(div’; ();,u%) such that (\,w, ) €
R x Ho(curl; 2) x Ho(div®; 2; u2) is an eigensolution of (12).
Let F}, denote the following finite dimensional subspace of Ho(div’; £2; p2)

Fy, = p_% curl(Ep). (13)
Consider the following mixed discrete eigenproblem:

find Ap such that I(wp, ,) € Ep x Fp, with wp, # 0:
{ (ewn,vi) + (u= 2 curl vy, ;) = 0 Vvy, € B, (14)
(lfl/2 curl wi, ¥,) = An(@p,¥y) Vb, € Fh.
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Let us denote by E and F the range of the operators which associate to every

element f € Ho(divo; £; p%) the first and the second component, respectively,

of the solution of the source problem corresponding to the eigenproblem (12).
Moreover, the discrete kernel K is defined by

K = {vh € By : (u" Y curlvy,v,) = 0 Vap,, € Fi}. (15)

The following hypotheses have been introduced in [6] in an abstract frame-
work in order to obtain the convergence of solutions of eigenproblems in
mixed form.

H1 The weak approzimability of F is satisfied if there exists wy(h) tending
to zero as h goes to zero such that for every ¢ € F and for every v, € K

(u*1/2 curl v, @) < wi(h)||vallol|lenllF- (16)

H2 The strong approxzimability of F is satisfied if there exists wo(h) tending
to zero as h goes to zero such that for every ¢ € F there exists ! € Fj,
such that

e = @' llaiv < wa(h)[lellr- (17)
H3 I, : E — Ej, is called Fortin operator if it satisfies

(u 1?2 curl(w — ITpw),4,) = 0Vw € E, Vap,, € Fy, (18)

[ Zpw||cun < C|lW]|E Vw € E.

H4 A Fortin operator IT, converges uniformly to the identity if there exists
ws(h) tending to zero as h goes to zero such that

lw — Dpwllo < ws(h)|lwllz ¥w € E. (19)

In [7, 6] it has been proved that the assumptions H1-H4 imply that the
discrete eigenvalues of problem (14) converge to the continuous ones, that is

Ve, VN € N 3hg such that Vh < hg
max A — Ain| <¢,
=1, ,m(N)

A

0(En,Enn) <&

where 8(A, B), for A and B linear subspaces of L2(£2), denotes the gap be-
tween A and B. For N € N, m(N) denotes the number of the eigenvalues
less or equal to A,,(n), and En denotes the subspace of L2(0) of dimen-
sion m(N) spanned by the eigenfunctions associated to the eigenvalues \;
with 4 = 1,--- ,m(N). Similarly, Exp stands for the subspace of Fj of di-
mension m(N) spanned by the discrete eigenfunctions associated to \;; for
i=1,---,m(N).

Hence it remains to prove the validity of the hypotheses H1-H4. The
paper [4] deals with the check of these assumptions. The main result regards
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hypothesis H3, which has been shown under two assumptions: the commuting
diagram property of the finite element spaces and the following regularity
assumption. Assume that (2, p and e are such that for some s > 1/2 it holds

ECH QP FCH (2, (20)

with continuous embeddings.

This is the main assumption on the coefficients and on the domain. We
point out that the data of most applications meet this requirement [11]. In
addition to that, (20) is the minimal hypothesis for the standard edge element
interpolant to be defined [1].

The convergence result is summarized in the following statement.

Theorem 2. If Qp, En and Fy, enjoy the commuting diagram property and
if hypotheses (20) are fulfilled, then, for h small enough, there exists a unique
solution of problem (7) which satisfies the error estimate (9).

To conclude, let us recall that on tetrahedra, the first and second type
Nédélec finite elements [17, 18] as well as the Demkowicz—Vardapetyan ele-
ments [14] has been proved to satisfy the commuting diagram property. The
analysis of the general hexahedral case is not so immediate as for the tetra-
hedral one. In particular, it is apparent that for the second type Nédélec
elements the diagram cannot be written. On the other hand, Demkowicz—
Vardapetyan and first type Nédélec elements satisfy the commuting diagram
property on meshes of parallelepipeds.

Remark 1. The regularity hypotheses of Theorem 2 can be weakened accord-
ing to the results presented in [11].

Remark 2. The result stated in Theorem 2 has been obtained also in [10] as
a consequence of a more general theory.

3 Approximation of eigenvalues: edge elements versus
penalized nodal elements

In this section we shall consider the finite element approximation of the
Maxwell eigenvalue problem. For the sake of simplicity our computations
are carried out in two space dimensions. Given a polygonal domain (2, the
problem under consideration reads: find A and u such that

curl y—'rotu = Aeu in £2,

uxn=20 on 912. (21)

In the following examples, p and e will be set equal to the identity matrix.
We shall compare two possible discretizations of (21). The first one con-

sists of the standard edge element method, which has been proved to provide
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optimal results in [9, 4]. We consider the sequence V}, of lowest order trian-
gular edge element spaces (with zero boundary condition on the tangential
component) and, for a given h, we solve the discrete generalized eigenvalue
problem

find Ay and uy € V3, such that up Z 0 and (22)
(rotup,rotv) = Ap(up,v) Vv € Vi
It is known that the first N discrete eigenvalues Aj, of problem (22) are zero,
where N is the number of internal vertices of the mesh and that the remaining
positive eigenvalues provide optimal approximations to the first eigenvalues
of (21) (sorted as an increasing sequence).

Our second discretization is the following one. Given a mesh of quadrilat-
erals, consider the space W}, of continuous piecewise biquadratic vectorfields
with vanishing tangential component on the boundary and define Py, as the
L2 projection onto the space of discontinuous piecewise linear elements; then
solve

find A, and uy, € W}, such that u, #Z 0 and

(Pprotuy, Pprotv) + s(Pp divuy, Ppdivy) = Ap(up,v) Vv € Wy, (23)

where s is a positive parameter to be chosen in a suitable way (we do not
detail the choice of the parameter s, which can be done easily; in general s
need not to be large if one is interested in the approximation of a limited
number of eigenmodes). We shall refer to this method as the Q2 — P, — P;
element. The projection Pj is needed when the domain is not smooth or
convex in order to capture the possible singularities of the eigenfunctions.
There is a wide literature on the use of penalty (or regularized) formulations
for the approximation of problem (21); the interested reader can refer to the
papers [12, 13, 8], for instance. While the use of the projection Pp, makes it
possible to approximate a singular solution, on the other hand it introduces a
number of zero frequencies in the spectrum of problem (23). For this reason,
the qualitative behavior of the approximations provided by the two methods
defined in (22) and (23) are comparable: both present a number of vanishing
eigenvalues (and this number grows up as h goes to zero) and perform well
for smooth solution where an optimal convergence can be observed. On the
other hand the first method is a first order scheme, while the second one is
quadratic.

The aim of our computations is to compare these methods for the ap-
proximation of problems which present singularities. To this aim, we shall
consider an L-shaped cavity and different sequences of meshes. For the edge
element approximation, we introduce the mesh sequences illustrated in Fig. 1:
the first one consists of a standard uniform mesh, while the second one is a
locally refined mesh in the vicinity of the reentrant corner. For the second
scheme, we use the meshes shown in Fig. 2: here again we consider uniform
or locally refined meshes.

We start with the representation of the convergence history for the three
lowest eigenvalues. When uniform meshes are used, we plot the logarithm
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Fig. 1. Triangular meshes of the L-shaped cavity
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Fig. 2. Quadrilateral meshes of the L-shaped cavity

of the meshsize on the z-axis, while in case of refined mesh we consider the
logarithm of the degrees of freedom number. Our first results are shown in
Fig. 3, where the edge elements on uniform meshes are used. The other tests,
represented in Figg. 4, 5 and 6, respectively, show the results obtained with
edge elements on locally refined meshes, and the Q2 — P — P; element on
uniform or refined meshes. It is apparent that the edge element perform
better on locally refined meshes, while the Q2 — P, — P; method provides
better results on uniform meshes. This might seem a strange behavior, but
can be interpreted with the remarks made in [2], where it is observed that
the Q2 — P, — P; method is not optimal with distorted meshes.

Finally, in Figg. 7 and 8, we compare directly the two methods for the
computation of the first and second eigenvalue, respectively. We point out
that the first eigenvalue is associated with a singular eigenfunction, while
the second one corresponds to a regular one. The results are easily under-
stood: in the singular case the methods perform in a similar way, the rate
of convergence being driven by the regularity of the eigenfunction; on the
other hand, the higher accuracy of the Qo — P — P; method with respect
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Fig. 3. Edge element on uniform meshes
10"
107 ]
10° ]
— 1st Eig.
““““ 2nd Eig.
_4|| -~ - avg(3,4) Eig.
105 S "
10 10 10

Fig. 4. Edge element on locally refined meshes

to the edge element scheme can be clearly seen when the regularity of the
eigenfunction does not matter.
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Fig. 6. Q2 — P, — P; element on locally refined meshes
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