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Abstract

We analyze a finite element method for band structure calculations
in dielectric photonic crystals. The method is based on a modifica-
tion of Nedéléc edge elements. We prove convergence of approximated
eigensolutions to those of the continuous problem under general as-
sumptions on the mesh. The main result requires minimal regularity
hypotheses on the coefficients.

1 Introduction

Photonic crystals are periodic structures composed of dielectric materials.
The reason for the increase of the interest in this subject is that the spec-
trum of the Maxwell operator for such media is expected to have gaps. The
presence of gaps means that there are prohibited frequencies of propagation
of electromagnetic waves going through such crystals. This fact has many
potential applications, for example, in optical communications, filters, lasers
and microwaves. See [7, 11], for an introduction to photonic crystals, pho-
tonic band gap structures and some of their applications. The mathematical
model can be written as a modified Maxwell’s system with periodic boundary



conditions. In recent papers [5, 6] a finite element method to approximate
such problem based on a modification of Nedéléc edge element spaces was
proposed. The convergence of the finite element scheme was proved under
severe regularity restrictions and in the case of uniform mesh sequences. Here
we present a proof which holds under minimal assumptions on the regularity
of the eigensolutions and on the mesh sequences.

The outline of the paper is the following. The next section is devoted to
the presentation of the problem together with some properties of the ana-
lytical framework. Section 3 contains the discretization of the problem and
recalls the abstract setting under which the convergence of the eigensolutions
can be proved. In the last section, the finite element spaces are described
together those properties which yield the convergence.

2 Setting of the problem
We consider, in R?, the classical Maxwell’s equations

VXE —iwpH =0 (1)
VxH + iweE = 0.

where E and H are the electric and the magnetic fields. We assume that the
magnetic permeability is constant with 4 = 1. The dielectric tensor ¢ is real,
symmetric and elliptic, in the sense that

3
Y e(x)6E > ol€f? VEER, Vx € R,

,j=1

The medium is assumed to have unit periodicity on a cubic lattice. Thus
denoting by Z the set of relative integer numbers, and defining the lattice
A = Z3, we have

e(x+k)=¢g(x) VxeR andVk € A.

See Fig. 1 for possible structure of the medium.
Eliminating E from equation (1) we obtain

Vxe 'VxH=w?H in R? (@)
V-H=0 in R3.

We define the periodic domain 2 = R3/A which can be identified with the
unit cube (0,1)® with periodic boundary conditions. Let K = [—m, 7> be
the first Brillouin zone. We consider the Bloch waves satisfying H(x) =



Figure 1: Four cells of circular and square rod structure. White area repre-
sents air.

e'**u(x), where u is periodic in x and a € K. Hence, for each a € K we
look for u, solution of the following problem

Vaoxe 'Vyxu=w?u inQ 3)
Vou=0 in

Here V, =V +ia.
In order to introduce the variational formulation of (3) we define the
periodic versions of usual Hilbert spaces. Let L?(Q2) = (L?(2))3.

H}(Q) ={vel?Q): Vvel?)}

H,(cur; Q) ={vel?Q): Vxvel*Q)} (4)
H,(div;Q) ={vel?Q): V-veL*0)}

H,(div2; Q) = {veH,(div;Q): V, v =0}

Note that the domain €2 has no boundary. For the above definitions, functions
defined on 2 are implicitly periodic and the derivative operators respect
the periodicity of the domain. Enforcing the constraint in (3) by Lagrange
multipliers, problem (3) can be rewritten in the following mixed form:

find w? € R, (u,p) € Hy(curl; Q) x H (Q), with (u,p) # (0,0), such that
a(u,v) + b(p,v) = w?(u,v) Vv € Hy(curl; Q)
b(g,u) =0 Vg € Hy(Q).

(5)
For all u,v € Hy(curl; Q) and ¢ € H}(2), the sesquilinear forms in (5) are
defined as follows:
a(u,v) = [e ' Voxu- Voxvde,
b(q,'lI) :fQVQQ'ﬁdiC, (6)
(w,v) = [yu-Vdz
Moreover we introduce the kernel of V-, defined as follows

K = {v e Hy(curl; Q) : b(q,v) = 0 Vg € H (Q)}. (7)



Let T € L(L*(R2),L?(€2)) be the resolvent operator associated with (5) and
defined as follows. For all f € L?(Q), Tf = u € L*(Q), where u is the first
component of the solution of the following problem:

find (u,p) € Hp(curl; Q) x H, (), such that
a(u,v) +b(p,v) = (f,v) Vv e Hy(curl; Q) (8)
b(g,u) =0 Vg € H)(Q).

If &« = (0,0,0), it is well-known that 7" is compact. In order to prove the
compactness of 7" for all & € K, let us recall some results proved in [6].

Theorem 1 Let o € K with o # (0,0,0). Given u € L*(Q), there exists
unique functions w € (H}(Q))? and ¢ € HY(Q) satisfying

u=V.,xw+V,p with V,w=0,
Wl + [lelli < Clluflo.

Lemma 1 The sequence

0 — HL(Q) 2 Hy(curl; Q) Y25 Hy(div; ) =5 L2(Q) =0 (9)
18 exact.
Lemma 2 The operator T is compact and self-adjoint from L?(Q) into itself.

Proof. Thanks to Lemma 1, the second equation in (8) implies that u €
H,(div2; Q). The sesquilinear form a(u,v) is hermitian, continuous and
coercive on Hy(curl; ) N H,(div); Q). Hence there exists a unique u €
H, (curl; Q) N H,(div?; Q) solution of (8). Since H,(curl; Q) N H,(div2; Q) is
compactly embedded in L?(f2), the operator T is compact and self-adjoint. O
As a consequence of that, T admits an increasing sequence of real, positive
eigenvalues
0<w <ws < -<w? <o,

each associated with a finite dimensional eigenspace.
Moreover, the following regularity result holds for solutions of problem (8),
see [4].

Lemma 3 There ezists s > 1/2, such that Hy(curl; Q) N Hy(div; Q) is con-
tinuously embedded in (H*(Q))3.
Moreover for all £ € L2(Q) the solution u of problem (8) satisfies

ue (H*(Q)?, with r > 1/2. (10)

In the above lemma the value of » depends on the ratio between the different
values of ¢.



3 Discretization of the problem

Let E) C Hy(curl; Q) and @, C H}(2) be finite dimensional spaces. Then
the discretization of (5) reads:

find w? € R, (up,pr) € Ep X Qp, with (us,pp) # (0,0), such that
{ a(up, Vi) 4+ 0(pr, Vi) = wh(up, vi) Vv, € By (11)
b(gn,up) =0 Van € Qh-

Problem (11) can be reduced to an algebraic generalized eigenvalue problem

of the form 1 B ur
BE 0 p )=\ o o)\p 12
(o) (5) =40 0)(5) oo

with A the hermitian matrix associated to the sesquilinear form a, B the
rectangular matrix associated to b and M the hermitian matrix associated
to the scalar product in L2(2). To have an idea of the practical computation
of the eigenvalues of this generalized eigensystem see [10].

If the matrix B has full rank, then system (12) has exactly N(h) =
dim(E}) real and positive eigenvalues:

2 2 2
0 <wipSwyp <o < Win)he

In order to analyze the convergence of the discrete eigensolutions to the
continuous ones we apply the abstract theory developed in [3]. Let us first
introduce the discretization of the resolvent operator T, : L?*(Q2) — E; C
L?(Q): for all f € L*(Q), Tnf = uy, € Ej, where uy, is the first component of
the solution of the problem:

find (up,pn) € En X Qp, such that
{ a(up, vi) + b(pn, vi) = (£,vsa) Vvi € By (13)
b(gn, up) =0 Van € Q.
We recall that for compact and self-adjoint operator like 7', a sufficient and

necessary condition in order to have the convergence of the spectrum is the
uniform convergence in the operator norm, that is:

}Ll_)I% |Th — Tl cu20),12(0)) = 0. (14)

Let us introduce the following assumptions on the finite element space,
see [3] for the abstract setting.

H1 Ellipticity on the discrete kernel - There exists a > 0, independent of A,
such that
a(up, up) > aflupleyy  Vun € K, (H1)



where the discrete kernel K;, is defined as

Ky, = {uh € B}, such that b(qh,uh) =0 ‘v’qh € Qh}

H2 Weak approzimability - There exists p;(h), tending to zero as h goes to
zero, such that for any p € H () it holds

b D, Vh
sup 2LV < o 1y . (12)
vy €Ky | |Vh | |curl
H3 Strong approzimability - There exists p,(h), tending to zero as h goes to
zero, such that, for all u € H,(curl; Q) N (H™(Q))?® with u € K, there
exists u! € K, satisfying

[u—u|lcut < p2(h)] [0 lr41- (H3)

Then the following theorem has been proved in [3]:

Theorem 2 Let us assume that assumptions H1-H3 are verified. Then the
sequence Ty, converges uniformly to T in L(L*(Q), Hp(curl; Q)), that is there
exists ps(h), tending to zero as h goes to zero, such that

|Tf — Tif||cun < p3(h)||f]lo, for all f € L(Q). (15)

4 Finite element spaces and convergence

Following the ideas of [6], we introduce a modification of standard edge el-
ements satisfying the commuting diagram property with respect to the dif-
ferential operators V,, V,x and V,-. The commuting diagram property
and suitable approximation properties will be needed in order to verify that
assumptions H1-H3 are fulfilled.

Let 7, be a triangulation of €. For simplicity we consider a mesh of
tetrahedra and lowest order Nédélec elements of the first type |9]. The general
case will be analyzed in a forthcoming paper.

Let us define the following finite element spaces:

Qn={q€ Hy(Q): q|lx = e"**q, for some ¢ € P1(K) VK € T}
E, ={veH,(cur; Q) : v|g = e "**¥, for some v € &(K) VK € T}
F,={veH,(div;Q) : v|x = e ®*¥, for some v € Fo(K) VK € T}
Sp={v e L) : v|g =e >y, for some ¥ € Py(K) VK € Tp}

(16)



where Py (K) is the set of the restrictions to K of polynomials of degree less
than or equal to k; the elements of & (K) have the form a + b x x with
a,b € C?; the space Fy(K) contains the vector fields of the form a+ bx, with
acC®andbeC

Let us define the interpolation operators onto the finite element spaces
defined above. The degrees of freedom for the space @), are again the nodal
values, hence the interpolation operator Hg is the usual nodal interpolation
operator.

The edge interpolation operator ITY associates to each function v of
H®(Q)? the element IIv € Ej using the following degrees of freedom on
the tetrahedron K € Tp:

/eia'(x_Xe)(v —TIPv)-tds=0 Ve edge of K, (17)

€

where x, is the barycenter of e and t its tangential unit vector.
Analogously, the face interpolation operator IT} associates to any smooth

enough vectorfield v a discrete element IIf v € Fj, by using the following

degrees of freedom on the tetrahedron K € 7y:

/ei""(x_xf)(v —IIf'v)-nds=0  Vf face of K, (18)
i)
where x; is the barycenter of f and n its normal unit vector.

At the end, the degrees of freedom used in order to define the interpolation
operator II7 are:

/ 6ia-(x—xK)(U _ H;fv) ds =10 VK € Ty, (19)
K

where xg is the barycenter of K.
Adapting the proofs of the analogous results in [6], we can prove that the
finite element spaces defined in (16) enjoy the following properties:

Lemma 4 The spaces Qp, En, F, and Sy satisfy the commuting diagram
property:

Va

0> @ Yo p @ YeX

Va-
-

F S/IR —0

VITY LTI LIy LTI (20)

0— Qh &) Eh —)VQX Fh V—a) Sh/R —0

In the above diagram, the spaces @, E, F', S are suitable smooth dense sub-
spaces of Hy (), Hy(curl; ), Hy(div; Q) and L*(Q), respectively.



Lemma 5 There exist C, independent of h, such that the following interpo-
lation error estimates hold true for sufficiently regqular functions:

lg — 17qlls < CR Hjgll, 1<r <2,
v —TFv]lo < CR* ([v]s + || Vxv]s) 1/2<s<1,
| Vxv—VxIIFv|, < Ch|Vxv], 0<t<I,
v — I vllo < OB (vl + [ V-v]ls) 1/2<s<1,
|V-v—V-IlIv|]o < CH|V-v|; 0<t<I1,

lo = vllo < CH ol O<r<1.

(
(
(
(
(
(

A consequence of Lemma 4 is the following discrete version of theorem 1.
Lemma 6 Let u, € E}, then there exist z,, € K}, and q, € Qn such that

u, =z + Vg, and b(gn,zn) = 0, (27)
where z,, € E}, can be characterized by means of the following mized problem:

find (zp, o) € Ep X Fy, such that
(Zh, Wh) =+ (O'h, VX Wh) =0 \V/Wh € by, (28)
(Th,VaXZh):(Th,VaX llh) \V/ThEFh.

We have now all the elements which will be needed for the proof of the
assumptions H1-H3. This will be done in the next three lemmas, whose proofs
is briefly sketched. The complete details will be reported in a forthcoming

paper.

Lemma 7 There exists a constant C' not depending on h such that for all
u, € K, it holds
[[anflo < Cll Vax uo. (29)

Proof. The proof follows the same lines as the analogous one for the V x
operator given in |[1]. Due to Lemma 6 there exist z, € E}, and g, € @), such
that

u, = zp + Va qn, with b(qh, Zh) =0.
Moreover, since Ej, C Hy(curl; Q), there exists z € (H}(2))* and ¢ € H}(Q)
such that the following orthogonal decomposition of u, holds true (see The-

orem 1)
u, =2+ V,q with b(¢g,z) = 0.

Here z satisfies a mixed problem analogous to (28), with datum V,X u,
with the following a priori estimate

12]lo < Cl[ Vax upllo-



Thanks to the commuting diagram property (20) and the regularity proper-
ties, see Lemma 3, one obtains

|z — zallo < CR*|| VX upo.
Due to the orthogonality of u, with V, g, we have:

[unlls = (un, un) = (un, 24) = (s, 24—2)+(un, 2) < Cllunllo(llz—2allo+llzlo)-

Using the last two inequalities one gets the desired bound (29). 0O
Let us now verify that assumption H2 holds true.

Lemma 8 For all v, € K, there exists v € K such that
”Vh - V||0 S ChS”Vh”CUI«], with s > ]_/2

Proof. The proof uses essentially the same tools as the previous one. In fact,
vy, is the solution of a problem like (28) with datum V,x vj. It is enough
to take v as the solution of the corresponding continuous problem. O

In order to prove H2, we write:

sup 2P0 _ gy YBVRZY)

viek Vil viery  |[Valleun

where v is given by Lemma 8.
It remains to prove H3.

Lemma 9 There exists a constant C, such that for all u € Hy(curl; ) N
(H™1(Q))? with u € K, there is an element u! € K}, satisfying

lu = 0l < O [l (30)

Proof. Let us consider u € Hy(curl; Q) N (H™(Q))® with u € K. Then
there exists g € Hy(div>; Q) such that the couple (u,p = 0) is solution of
problem (8) with datum g. Let us take as ul the first component of the
solution of (13) with the same datum. We can adapt to this problem the
known error estimates for the standard Maxwell equations, see e.g. [8] and
we obtain

||u - uI”curl S C inf ||11 - Vh“curla (31)

vrhEER

then the interpolation error estimates (22) and (23) give (30). O

As a consequence of the results of |3, 2|, we have proved the following
theorem:



Theorem 3 There exists a constant C such that for all £ € L*(2) it holds
ITf — Tifllcun < CR'|I£]l0 (32)

where t = inf(s,r), and s and r are given in Lemma 3.

Let w? be an eigenvalue of problem (5), with multiplicity m; and denote
by E; the corresponding eigenspace. Then, due to (32), exactly m; dis-
crete eigenvalues W} 4, ... ,wfmi,h converge to w?. Moreover, setting W*i, h =
(1/my) Z;”:’I w?ij, h and denoting by Eh,i the direct sum of the eigenspaces
corresponding to w?iy, h, ..., w%in,, h, we have that there exists hy such that
for 0 < h < hqy the following inequalities hold:

lw? — &%, h| < Cet

S(E;, Eh,i) < Cel, (33)

where 5(Ei,Eh,¢) denotes the gap between E; and Ej, ;.
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