FORTIN OPERATOR AND DISCRETE COMPACTNESS FOR
EDGE ELEMENTS

DANIELE BOFFI

ABSTRACT. The basic properties of the edge elements are proven in the orig-
inal papers by Nédélec [22, 23]. In the two-dimensional case the edge ele-
ments are isomorphic to the face elements (the well-known Raviart—Thomas
elements [24]), so that all known results concerning face elements can be easily
formulated for edge elements. In three-dimensional domains this is not the
case. The aim of the present paper is to show how to construct a Fortin op-
erator which converges uniformly to the identity in the spirit of [5, 4]. The
construction is given for any order tetrahedral edge elements in general geome-
tries. We relate this result to the well-known commuting diagram property and
apply it to improve the error estimate for a mixed problem which involves edge
elements. Finally we show that this result can be applied to the analysis of
the approximation of the time-harmonic Maxwell’s system.

1. INTRODUCTION

The so-called edge elements are widely used in the approximation of problems
which arise from electromagnetics. They are also referred to as Whitney or Nédélec
elements. Actually, the original idea is due to Whitney [25] in the framework of
differential forms, while Nédélec [22] introduced them as a new family of finite
element spaces. They are well-suited for problems involving the curl operator, as
it can be seen in a general way in the framework of differential forms [7].

In the two-dimensional case, the edge elements are nothing else than the classical
Raviart—-Thomas (face) elements [24] rotated by the angle 7/2. So that all known
results on face element can be easily extended to edge elements by changing the role
of the divergence with the curl. For an exhaustive description of Raviart—Thomas
elements, see for instance [24, 9] and the references therein.

In the three-dimensional case, edge and face elements still have some analogies,
but are no longer isomorphic. For instance, the numbers of degrees of freedom are
different (e.g., six and four respectively for the lowest-order elements on tetrahedra).
Some properties of edge elements are contained in the original papers by Nédélec [22,
23]. In particular basic approximation properties are proven, as well as an inf-sup
condition (see [8]) in the case of a convex polyhedral domain; this implies that edge
elements are well-suited for source problems associated with Maxwell’s equations.
See also [16] for a nice abstract setting concerning differential forms, div and curl
operators, face and edge elements.

The main goal of this paper is the construction of a Fortin operator (see [14])
for tetrahedral edge elements of any order in the case of a polyhedral domain. We
shall discuss later the minimal hypotheses on the domain, which, in particular,
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may be non-convex. Moreover, we shall prove that the Fortin operator converges
uniformly to the identity, in a sense which will be made precise. This fills a gap
between face and edge elements in three dimensional domains, in particular for
what the commuting diagram property is concerned (see Sections 2 and 3 for a
parallel between the two families of spaces).

A Fortin operator for edge elements has been already used by other authors (see,
for instance [12, 20, 21, 10, 17] and the references therein), however they usually
need the mesh to be quasiuniform and more regularity hypotheses in order to prove
the convergence of such an operator to the identity. In particular the estimate
of Theorem 1 is new and, as we show in the last section, it is of fundamental
importance for proving the absence of spurious solutions in the approximation of
Maxwell’s eigenproblem.

Girault and Raviart in their book [15] (see (5.50) p. 273) conjectured a similar
property for the Fortin operator; our result is a partial answer to that question in
a more general setting.

In this way, we prove in particular that the edge elements fit the hypotheses
of [5, 4], showing that they are well-suited for eigenvalue problems arising from
Maxwell’s system (see [6]). Results of this nature are usually referred to as discrete
compactness properties (see [18]).

An outline of the paper is as follows. In Section 2 we describe face and edge finite
element spaces in 3D. We try to emphasize analogies and differences. In Section 3
we introduce the differential problem we are dealing with. Once again we shall do a
parallel between face and edge elements. In particular we show why the construction
of a Fortin operator for edge elements cannot be obtained as one usually does for
face elements and we outline some properties related to the existence of a Fortin
operator. In Section 4, we state and prove our main results concerning the Fortin
operator. Finally, in Section 5, we apply the abstract setting to the approximation
of Maxwell’s eigenproblem.

2. FACE AND EDGE ELEMENTS IN THREE DIMENSIONS

In this section we recall the definitions and the basic properties of face and edge
elements on tetrahedra. For convenience of the reader we state all results we are
using in the next sections. As basic references concerning these results let us quote,
for instance, [15, 9, 24, 22].

Let © be a Lipschitz polyhedral (possibly non-convex) domain in R?, 99 its
boundary and n the outward unit normal vector.

Let k > 0 be a fixed integer number and given an open set K C IR® let us denote
by P (K) the space of polynomials of degree at most k.

Let us introduce a tetrahedral triangulation 75 of 2 which we suppose to be
reqular. In particular we do not assume the mesh to be quasiuniform. With an
abuse of notation, as usual the parameter h is related to the maximum diameter of
the elements of 7.

Let us recall the definition of the Raviart-Thomas face discretization of H (div; )
which we denote by F}, (the letter F stands for “face”). The restriction of an element
of F}, to a given tetrahedron K is of the form p(z) + r(z)z with p € Px(K)? and
r € Pr(K). The degrees of freedom of p € F}, are the moments of the normal
component of p of degree at most k on each face of K and the moments of p of
degree at most kK — 1 (k > 0) on the tetrahedron K.
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Ej, will denote the Nédélec edge discretization of H(curl; Q) of index k. The
restriction of an element of Ej, to a given tetrahedron K is of the form p(z) + r(z)
with p € Pr(K)? and 1 € Pry1(K)? such that r - z = 0. The degrees of freedom of
o € E}, are the moments of the tangential component of g of degree at most k on
each edge of K, the moments of the tangential component of ¢ of degree at most
k—1 (k > 0) on each face of K and the moments of ¢ of degree at most k — 2
(k > 1) on the tetrahedron K.

Let us denote with 7} and ¥ the interpolation operators which act to F, and
E},, respectively, using the appropriate degrees of freedom.

The following approximation properties hold true (see [1])

llp = w7 pllo < Ch2|pls 1/2<s<k+1
(1) llo = 7Eal|lo < Ch®|als 1/2<s<k+1
|| divp — divaf p|lo < Ch*|divpls 0<t<k+1

||curlg — curlwFallo < Cht|curlg|; 0<t<k+1.
The following relation between face and edge elements is of great importance
(2) curl By, C F.

The following relation expresses the so-called commuting diagram property for
edge elements

(3) curl ng = Wf curlg.

Let us denote with P¢, ; the space of continuous piecewise polynomials of degree
at most k + 1 and with P}, the space of arbitrary piecewise polynomials of degree
at most k. The standard interpolation operator for P, will be denoted with 7 .

The following relation characterizes the divergences of face elements

(4) div Fh = Pk

and the following expression gives the commuting diagram property for face ele-
ments

(5) divry p = m, divp.

According to the boundary condition of the problem we shall deal with, we
introduce the notation Ej denoting the subspace of Ej, consisting of vector fields
o such that o x n = 0 on 8. In a similar way, Fj, will denote the subspace of Fj,
containing vector fields p with p-n = 0 on the boundary.

We shall also make use of the space P,j 1 of continuous piecewise polynomials of
degree at most k+ 1 which vanish on the boundary 02 and of the space @, defined
by Qn = div F}, C Py.

Another useful space is Wy, = curl B, C F},.

The following inclusion is well-known

(6) grad P, , C By,

and the following discrete Helmholtz decomposition has been used by many authors
(see [2] for a nice and simple approach)

A={r € By: (r,gradp) = 0 Vp € Pg,,},

@ E,=A®grad P, ,.
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3. SETTING OF THE PROBLEM

In order to fix our notation, let us recall the definitions of the spaces we are
using.

L*(Q) ={v: Qo R| [Hv? < +oo}
O = {ee @) fyo=0)
H'(Q) ={v e L?(Q)| gradv € L?(Q)3}
HL(Q) ={ve H'(Q)|v =0 on 80}
H(cur; Q) = {ve L?(Q)?| curlv € L?(2)3}

(8) Hy(curl; ) = {v € H(curl;Q)|v xn =0 on 00N}
H(div; ) = {ve L2(Q)?|dive € L*(Q)}

Ho(div; Q) ={ve H(div;Q)|v-n =0 on 00}
H(div% Q) = {ve€ H(div;Q)| dive = 0 in Q}
Ho(div®’; Q) = Hy(div; Q) N H(div’; Q)

We observe that it is standard to show, using suitable Green’s formulae, that the
traces involved in the definition of H}(Q), Ho(curl; Q) and Ho(div; Q) exist in the
sense of [19]. Moreover, we remark that the spaces recalled in (8) are endowed with
their usual norms, which we denote, in a natural way by || - |[o (for both L?(f)
and L2(2)%), || - |l1, || - |lcurt @nd || - |laiv ; we shall denote the scalar product of
L2(Q)™ (n = 1,3), as usual, by (-,-). In addition to the spaces introduced in (8),
we shall make use of the fractional Sobolev spaces H*(Q2) (s > 0), whose norm will
be denoted by || - ||s- For a definition of those spaces, see for instance [19].

Throughout the paper we implicitly assume that a curl-free vector field is a
gradient. This is true, for instance, if  is simply connected. In presence of cavities
within Q our analysis can be extended following the guidelines of [1].

Let us introduce the following notation

E = Hy(curl; Q), W = Hy(div’; Q)

and consider the following two problems:

given f € Q, find (p,u) € F x @ such that
(10) (p,q) + (divg,u) =0 VgeF
(divp,v) = —(f,v) Yv € Q.

and

given g € W, find (g,u) € E x W such that
(11) (g,7) + (curlt,u) =0 Vr € E
(curlg,v) = —(g,v) YveW.

It is not difficult to see that if the solutions of (10) and (11) are regular enough
then they satisfy the following equations in strong form with the corresponding
Neumann-type boundary conditions (where in order to obtain the second one we
used the identity — A - = curl curl - — grad div - and the fact that divu = 0)

—Au=f inQ ~Au=g  inQ

[ u=0 divuy =0 in Q
(12) 8_%:0 on 90 u-n=0 on 99

on curlu xn=0 on 9N

p=gradu in Q o= —culy inQ
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The analogies between problems (10) and (11) are evident; the same is true for
their associated equations (12). In particular in two dimensions they are basically
the same problem; actually in two variables the curl and the div operator are
isomorphic.

The main goal of this section is to show that this is not the case when ) is a
three-dimensional domain; besides the analogies some major differences arise which
make the analysis of the corresponding approximating schemes not equivalent.

In particular the face elements and their divergences are well-suited for the ap-
proximation of problem (10) and the involved numerical analysis consists of results
which can be considered classical in this framework (see for instance [9] for a review
of them).

On the other hand the edge elements and their curls could be used for the
approximation of (11); the analysis of the corresponding numerical scheme has not
been yet completed and in some case, as we shall see, it cannot follow the lines used
for analyzing face elements.

Using the notation of the previous section, let us introduce the discrete problems
which correspond to (10) and (11), respectively.

given f € L§(), find (p,,un) € Fy x Qp such that

(13) { (Qh,g) + (divg,up) =0 Vg € Fy
(divp,,v) = —(f,v) Yv € Qp.
and
given g € Ho(divo; 0), find (o, u,) € Ep x W, such that

(14) { (oh,7) + (curlT,up) =0 V€ E,

(curlgy,v) = —(g,v) Vo € Wh,.

Let us describe now some of the known properties concerning problems (13)

and (14). For the face element we refer to [9] and to the references therein, for the
edge elements we shall give the appropriate reference for each property.

3.1. The ellipticity in the kernel. The ellipticity in the kernel for problems (13)
and (14) are immediate to obtain. Let us define the two kernels

K, ={p€ Fy,: (divp,u) =0 Vu € Qn}

Ky, ={o € Ep : (curlg,u) =0 Vu € W, }.

It is clear by the definitions of the discrete spaces that vectors in K; are divergence
free while vectors in K» have vanishing curl, so that

(16) (]_952) = ||£H?hv VB € Kj,
(Qa Q) = ||g||2ur1 VQ € K2-

(15)

3.2. The inf-sup condition. The following inf-sup condition is standard for face
elements

) (div p,u)
(17) inf sup ——————— > C.
u€Qn peF, |[pllaivullo

The corresponding inf-sup condition for edge elements
curl
(18) inf sup (curlg,u) >C
u€Wn ge iy, ||al]eurt]|ullo

has been proven by Nédélec [22] in the case when Q is convex and follows from
Proposition 4.6 of [1] in the general case (see also [2]).
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3.3. The Fortin operator. Given f € L§(2) and g € Hy (div®; Q) let us consider
the spaces F° and E° containing all p and ¢ which solve problems (10) and (11),
respectively. We endow F° and E° with their natural norms.

A Fortin operator II; for problem (13) has to satisfy

II; : FO Fh
(19) (div(p —T1p),u) =0 Vu € Qp, Vp € F°
[[M1p||aiv < Cllp|lpo Vp € F°.

It is well-known that the interpolation operator mrf fulfills conditions (19), so that
can be chosen as a Fortin operator for problem (13). Moreover, if F° is contained
in H*(Q)? for s > 1/2 then we can easily obtain the estimate

(20) |lp = ipllo < Ch*(|p|ls

where ¢ = min(s, k + 1).
Let us now consider the corresponding Fortin operator Il associated with prob-
lem (14) which has to satisfy

m, : E° - B,
(21) (curl(c — My0),u) =0 Yu € Wy, Vo € E°
IMag|lcun < Cllgllme VYo € E°.

It turns out that the interpolation operator 77,‘? does not meet the conditions de-
scribed in (21), in particular one has for a general ¢ € E° and u € W},

(22) (curl(g — 74 a),u) # 0

as can be verified by integration by parts. On the other hand the discrete prob-
lem (14) can be used in order to define a Fortin operator IIy. Given ¢ € E° let
g = —curlg and define [I,o = g}, where g, solves (14). We state this construction
in the following

Definition 1. Given ¢ € E°, let llooc € Ej, be the first component o, of the
solution of problem (14) with g = — curlg, that is for some w, € Wy, it holds true

{ (Ilzo,7) + (curlT,u,) =0 Vz e Ey

(23) (curlllyo,v) = (curlg,v) Vv € Wy,

Let us check that II, satisfies (21). Indeed from the second equation of (23) it
follows the first property in (21). The second bound of (21) is a consequence of the
stability of (23). Moreover it can be shown that II,g is the unique solution g, of
the following problem

find g, € A such that

(24) (curlgy,curlt) = (curlg, curlT) V7 € A.

In a similar way (making explicit the definition of A) it can be shown that Ilyo
is the first component g;, of the solution of the following stable mixed problem

find (o},,pn) € Ep ¥ P,jﬂ such that
(25) (curlgy,curlt) + (7, gradpy) = (curlg,curlt) V€ Ep
(h,gradg) =0 Vge Pt
Remark 1. The definition of the Fortin operator I, relies on the well-posedness

of problem (23). This is quite unusual; actually, it is more common to construct
a Fortin operator in order to prove a mixed problem to be well-posed. On the
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other hand our analysis shows the necessity for a Fortin operator to exist whenever
a mixed problem is stable. And the existence of a Fortin operator is needed, for
instance, in order to analyze the eigenvalue problem (51) (see the final section).

Let us now try to prove the analogous of (20) for the operator II, using the
standard error estimates for problems (14) and (25).

Let us consider problems (11) and (14) with g = —curlg. It is then clear that

o solves problem (11) with u such that curlu = —g. Since IIyg by definition solves
problem (14) from the standard a priori error estimate of mixed methods (see [8])
we have
26)  lle=Tagllo < |l ~Magllcun < __inf (i = Zllewn +|lu = tllo):
It turns out that the second term in the right hand side of (26) can be estimated
in an uniform way by using the regularity of u. On the other hand in order to
deal with the first term we cannot use any extra regularity of g. In particular if o
belongs to E° then its curl by definition is in L?(2)® and we cannot use estimate (1)
to obtain an uniform bound for ||g — H20||curl-

Analogous troubles arise of course when we try to use the error estimate of
problem (25).

Actually, we cannot hope to do better if we consider the H(curl)-norm of the
difference ¢ — II;o. The same problem arises when estimating the H (div)-norm of
the difference p — II;p. However, if we confine ourselves to the L2-norm then we
would like to get an estimate of the type

(27) |l — Myallo < Cllg — mx allo

This is usually obtained by using the commuting diagram property that we are going
to analyze in the next subsection.

3.4. The commuting diagram. The commuting diagram property for face ele-
ments is summarized in the equation

(28) divrpp=mf divp  Vp “smooth enough”
From this property one can obtain the fundamental error estimate for problem (13)
(29) llp—p,llo < Cllp — 7 pllo-

Moreover it is clear that property (28) is strictly related to the fact that the
Fortin operator II; can be chosen to be equal to the interpolation operator 7r,1f .

Let us see what happens when edge elements are considered for the approxima-
tion of problem (11). We would like to obtain the analogous of (29) which reads

(30) lle = aullo < Cllg — 77 allo-

Unfortunately (30) cannot be obtained in general as it has been pointed out in [2].
In order to get (30) we would need the following commuting diagram property
which is false:

(31) curlnrfo = W}‘;Vh curl o,
where W}I:Vh denotes the projection onto the space Wp, that is

(32) () *u,0) = (w,v) Yo € Wy
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Actually the following commuting diagram property holds true for edge elements
(33) curl Wf o= 7r,15 curlg,

In [2] however it has been proven the following estimate for problem (14) (actu-
ally, estimate (34) has been obtained in [2] under the hypothesis on Q2 to be convex,
but the same proof also works in our case)

(34) llo = aullo < llo — kallo,  when g € Wj.

We shall make use of the previous estimate in the next section in order to prove
that the Fortin operator IIy converges uniformly to the identity in the L2-norm.

4. FORTIN OPERATOR FOR EDGE ELEMENTS

This section contains the main result of the present paper concerning the Fortin
operator.

From the previous section (see subsection 3.3) we know that there exists an
operator II, : E° — E}, such that

(curl(c — Tz0),v,) =0 Vo € E°, Yo, € Wy,

(33) |20 |curt < C|la||go Yo € E°.

We know moreover that IIs can be defined from E° to A as the solution a;, of
the following problem

given ¢ € E° find g, € A such that

(36) (curlgy,curlT) = (curlg,curlr) Vre A

We recall (see (26)) that we have the following pointwise approximation property:
(37) ||Q - H2g||curl =0 VQ € EO-

The aim of the main theorem of this section is to prove that if we replace the
H (curl; Q)-norm with the L2(Q)-one then the convergence becomes uniform.

Remark 2. As it has been pointed out in the previous section, if we know some
specific regularity on ¢ and curlg, then the following result is basically known in
the case of quasiuniform meshes (see e.g. [12, 20, 10]) and easy to obtain without
the quasiuniformity assumption using for instance the standard error estimate for
mixed problems applied to problem (14). However our result holds true under the
very weak hypothesis that ¢ belongs to H*(Q2)? for some s > 1/2 and curlg is in
L2(2)3. As we shall see in Section 5, this is a crucial point when we are interested
in the approximation of eigenvalue problems. In that case if we do not show the
uniform convergence of Il to the identity without any additional regularity on
curl o then we cannot prove the absence of spectrum pollution.

Before stating the theorem concerning the Fortin operator, we make some remark
and some hypotheses concerning the solution of problem (11) and its approxima-
tion (14).

We recall that E° is the space containing all the vector fields ¢ which solve (11)
with g € Hy(div®; Q), that is

(38) E° = {0 € Hy(curl; Q) : divg = 0}.
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In a similar way we denote by W the space of u solving (11) with g € Ho(div’; Q),
that is
(39) WO ={ue€ Hy(div’;Q) : — Au € L}(Q)?, curlu x n = 0 on 90}.
We shall make the following assumption

E° C H*(Q)3,
WO C H?(Q)3,

for s > 1/2 and with continuous embeddings.

(40) [REG]

Remark 3. In [1] it has been proven that [REG] holds true if Q is a polyhedral
domain.

Theorem 1. Let Q2 be a polyhedral domain or more generally let us assume that
[REG] is fulfilled with 1/2 < s < 1. Then there ezists C independent of h such that

(41) llg —agllo < CR?[|a]]s-

Proof. Since IIyo € A, equation (36) implies that there exists w, € W}, such that
(Mya,uy,) solves (14) with right-hand side g = — curlg.

Let us consider the solution (&, ) of (11) with g = curlII,g. We have
(42) llglls < Cf| curlIlzgllo < C|curlglo

and from (1), (34) and (42) it follows (since of course IIyg solves (14) with RHS
g=- curl T, o):

(43) llg — Mzallo < Cllg — 7'l < Ch°||Glls < Ch?|| curl gfo.

Remark 4. Actually, estimate (43) is not formally correct. Indeed, according to [1],
the interpolant 7}°& is defined if ¢ € H*()3, s > 1/2 and curlg € LP(Q)3, p > 2.
In our case curl & is a priori bounded only in L?(Q)3. However, taking advantage
of the relation curlg = Ilo, it is possible to adapt in a straightforward way the
technique used in page 856 of [1] to get the required estimate.

So we have to estimate the difference ||a — g||o in order to conclude the proof by
triangular inequality.
Let us introduce the following functions:

(44) p=0c-6, Y=u—4g,

where we considered u so that (g,u) solves (11) with g = curlg. It follows that:
curly = ¢

(45) []ls < Cl[ollo

curl ¢ = curl(g — &) = curl(g — I»0).
We are now in position to conclude with the final estimate

[181§ = (¢, curlep) = (curl ¢, ¢))
(46) = (curl(g — My0),9) = (curl(e — Ma0), 4 — wf 9)
< Ch?|| curl(g — Mag)|fo||¥||s < Ch?|| curlalfo]|¢llo,

where we used the properties of the Fortin operator Il; together with the fact that
divey = 0, so that Wf 1) belongs to W}, due to the commuting diagram property. [
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Remark 5. The result obtained in Theorem 1 is not optimal. In the case of face
elements the interpolation operator is a Fortin operator (see (19)) and we would
like to obatin also for edge element the following approximation property:

(47) llo — aallo < |le — 74 allo

Our proof however relies on the solution & of problem (11) with g = curlIlg.
The regularity of g is just L2(2)3, so that we cannot hope in general & to be more
regular than H'(Q)3 even in the case of a convex domain. This means that the
constraint on s to be not bigger than 1 cannot be avoided.

5. APPLICATION TO EIGENVALUE PROBLEMS

In this section we apply the Fortin operator analyzed in Theorem 1 to the study
of the approximation of the following eigenvalue problem which arises from prob-
lem (11). This result fits the framework of [5] and [4] and is an improvement of the
one which has been announced in [6].

We are dealing with the following eigenvalue problem

find (\,u) € € xHy(div®; Q), with u # 0, such that 3o € Hy(curl; Q):
(48) (g,7) + (curlT,u) =0 V7 € Hy(curl; Q)
{ (curlg,v) = —A(u,v) Vo € Hy(div%; Q).
It is clear that the operator which maps g to u (see (11)) is self-adjoint and
moreover, due to the compact embedding of Hy(curl; Q) N H(div’; Q) into L?(Q)3
(see, for instance, for general compactness results [13]), it is also compact. Hence

the eigenvalues of (48) are real and can be ordered in an increasing sequence, which
tends to the infinity. We denote them by A; (¢ € IN), in such a way that

(49) 0<A <A <eer<Ajees

and all the eigenvalues have multiplicity equal to one (notice that, with our nota-
tion, to a multiple eigenvalue correspond several distinct A; with the same value).
Moreover we denote by &; the eigenspace associated with A;.

Following [5], the following map m : IN — IN will be useful to analyze the
eigenvalues convergence.
m(l) = dlm{GB,& T\ = /\1},
m(N + ].) = m(N) + dun{@zé’, T = )‘m(N)—i-l}'
Hence, Ap(1), - -+ » Am(v) Will be the first N distinct eigenvalues of (48).

Given two sequences of finite dimensional subspaces ¥; and W}, of Hp(curl; Q)
and Hy(div®; Q), respectively, the finite element discretization of (48) reads as fol-
lows:

(50)

find A, € R and u;, € W}, with u, # 0, such that 3o, € Xj:
(51) (ap,Tp) + (curly,up) =0V, €5y
(curloy,vp,) = =An(up,vy) Vo, € Wh.
We denote the eigenvalues of (51) by Ap,; (¢ € IN) so that they are ordered in an
increasing sequence

(52) 0<AMm1 <A< <A <ene,
the corresponding discrete eigenspace will be denoted by & ;.

Before recalling the hypotheses introduced in [4] for the convergence of eigenval-
ues/eigenvectors of (51) to those of (48), let us set some notation.



FORTIN OPERATOR FOR EDGE ELEMENTS 11

We recall the definition of E° and WP as the spaces of the solutions ¢ and u of
problem (11), with g varying in Ho(div’; Q). If Q is a general (possibly non-convex)
polyhedral domain then is has been proven in [1] that E° and W© are contained in

H?#(Q)3. We shall denote by || - ||go and || - ||yvo their natural norms.
The discrete kernel IK is defined by
(53) IK = {1}, € Iy : (curlzy,v,) = 0 Vo, € Wi}

The following hypotheses have been introduced in [4] in an abstract framework
(see definitions 3, 4 and 5).

H1: the weak approzimability of W0 is satisfied if there exists w; (h) tending to
zero as h goes to zero such that for every u € Wy and for every 7, € IK

(54) (curl 7y, w) < wi(h)||Znllof|ullwe-

H2: the strong approzimability of W0 is satisfied if there exists wo(h) tending
to zero as h goes to zero such that for every u € WP there exists u! € W},
such that

(55) Il — ' faiv < wa(B)llullwo.

H3: 10, : E° — % is called Fortin operator (see also the previous section) if it
satisfies:
(curl(e — Myo),v,) =0 Va € E°, Yu, € Wp,

(56) Ihgllewn < Cllollzo Vo € E°.

H4: A Fortin operator Il converges uniformly to the identity if there exists
w3 (h) tending to zero as h goes to zero such that

(57) llo — nallo < ws(h)||e|lgoe Vo € E°.

In [5, 4] it has been proven that H1-H4 imply that the discrete eigenvalues
converge to the continuous ones, that is

Ve >0, VN € IN dhg > 0 such that Vh < hg
(58) max;—1,_.. m(N) | — Ani| <€,

S@rMe,arMen,) <e,

yenn

where S(A, B), for A and B linear subspaces of L2(Q2), denotes as usual the gap
between A and B.

Using the notation of Section 3 let us now define ¥, = Ej. In the previous section
it has been proved the validity of H3 and H4 under weak regularity hypotheses.

In order to apply the abstract theory of [4] it remains to check hypotheses H1
and H2.

It is immediate to see that hypothesis H1 holds true; indeed the left-hand side
in (54) is always equal to zero. Actually, an element 7, in IK satisfies curlt), = 0.
For the proof of hypothesis H2, we use the following standard way. Let us define u!
to be the face interpolant of u, that us u! = 7f’u. Then, thanks to the commuting
diagram property for edge elements (3), divu! = 0 and u! belongs to W},. Thus
estimate (55) follows from the classical approximation properties of face elements
(see (1)), together with the regularity results on u with wa(h) = Ch?®.

It follows that the following convergence theorem holds true (see [3], Thm.’s 11.1
and 11.2 and [5]).
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Theorem 2. Let \; and Ap,; (i € IN) be the eigenvalues of (48) and (51), respec-
tively. Assume that the space E° is contained in H*(2)3 for s > 1/2. For the sake of
simplicity let us suppose that \; corresponds to a simple eigenvalue; this means that
Ai # Aj fori # j. Let us denote by o; and u; the corresponding eigenfunctions (o, ;
and wy, ; the discrete ones), normalized in such a way that ||u;|lo = [lup /o = 1.
Then (58) is fulfilled. Moreover the following estimates hold true

(59)
i = il < Cinfrep, wews (llo; — lI§ + lla; — zlleunlu; — vllo + [lu; — 2I[3)
(lu; = up,illo < infrem, wews, ([l2 = Tlleun + [lu; = 2llo)-

Remark 6. Theorem 2 deals with simple eigenvalues. This has been done in order
to make the presentation simpler, however it is not difficult to extend the result to
the general case according to [3].

Remark 7. As far as the regularity hypothesis E° C H*(Q2)? is concerned, it has
been proven in [1] that it holds true if the domain is a polyhedron. Actually it
seems to be satisfied in most practical application, except when different materials
may be involved (see [11]).

We point out however that this is the least regularity for which the interpolation
operator mF can be defined.

In [6] it has been shown that the eigensolution of problem (48) can be related to
the solution to the Maxwell’s cavity problem.

In the original Maxwell’s eigenproblem, ¢, is the eigenfunction component we
are interested in, so that it would be useful to estimate the error ||g; — g}, ;|[cun and
to give a bound for |A; — Ap ;| only in terms of g;. This is the aim of the following
theorem

Theorem 3. Under the same hypotheses and notation as in Theorem 2, let us
assume that inf,cw, ||u; —vl|o is negligible with respect to inf,cg, ||o; — T||curt, that
18

(60) Jnf i = llo < € inf [lo; = lcun.

Then one has
|Ai = Anil < Cinfrep, ||lg; — 12

curl
llo; = pilleun < Cinfrep, [|o; — 7lcun-

(61)

Proof. The first estimate is a consequence of (59) and (60).

Let us denote by €, the quantity inf,cg, ||o; — T||cur- In order to bound ||o; —
gh,i||cu,1, by triangular inequality we introduce the term IIyg; (I, is the Fortin
operator analyzed in the previous section). The difference ||o; — II20;||cur1 can be
estimated using the stability of the problem (23) which defines IIog. Thanks to (60)
this gives

(62) lla; = ooy |eurt < Cép.
Then we observe that

curlg; = — Ay,

(63) curlgy, ; = —Apitp ;-

Whence we have in particular || curl o; — curl oy, ;||o < Cep.
b
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The remaining term is estimated using the bound of Proposition 4.6 in [1] in the
following way

[[Ma0; — Qh,z’”curl < Ol curl(Il>g; — Qh,z’)HO

(64) < || curl Mg, — curlgy|lo + || curlg; — curl gy 4llo < Cen,

where we made use of (63), (60) and of the fact that curlIlzg; is a good approxi-
mation of curlg;. O

Remark 8. As far as hypothesis (60) is concerned, we point out that it is usually
fulfilled. Actually ¢g; = curlu; and u; is not less regular than o;, so that the L?(f2)
error for u; is usually not larger than the H(curl) one for g;.
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