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ABSTRACT. The aim of this paper is to review the mathematical analysis of
the eigenvalue problem associated with the Maxwell’s system. Our analysis
is quite general and can be applied to several families of edge finite element
methods. Moreover we discuss the links between different conditions that
guarantee the good approximations of the eigensolutions. In particular we
prove that the commutativity of the de Rham complex implies the discrete
compactness introduced by Kikuchi in [12].

1. INTRODUCTION

The approximation of the eigenvalue problem associated with the Maxwell’s
system has been the object of a wide study by engineers and mathematicians.
However only recently the mathematical analysis of this problem has been carried
out in a rigorous way.

In this paper we link in the spirit of [2, 3, 12] the de Rham complex and the
discrete compactness property for finite element spaces. Indeed we show that several
finite element methods proposed in the literature to face the approximation of the
Maxwell’s system satisfy the discrete compactness property introduced by Kikuchi
n [12]. In particular basically all of the so called “edge” finite element spaces are
well-suited for the approximation of the problem.

Results in this direction have been obtained in [5] and [3] where the analysis of
any order tetrahedral Nédélec elements [15] has been proposed. Demkowicz, Monk,
and Vardapetyan [14] proved that the discrete compactness introduced in [12] is
satisfied by any order Nédélec elements. In order to do that, they use an inverse
inequality; therefore thay have to assume the mesh to be quasiuniform (actually the
quasiuniformity could be weakened in a sense described in the paper which does not
allow however the mesh to be refined locally in a geometric way). Caorsi, Fernandes
and Raffetto [9] studied the implications between discrete compactness property
and the convergence of the approximation. Finally, let us quote that recently
Kikuchi [13] proved the discrete compactness property for any order Nédélec edge
element using the results presented in [3] and [1] and hence without any uniformity
assumption on the mesh.

The outline of the paper is as follows. In the next section we present the eigen-
value problem and the functional spaces we are dealing with. In Section 3 we define
the de Rham diagram property and recall the discrete compactness property. Fi-
nally, in Section 4 we state and prove our new result linking de Rham diagram and
discrete compactness property.
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2. THE MAXWELL’S CAVITY EIGENPROBLEM

Let Q be a simply connected polyhedron in RR? (for more general situations
see [5]). The eigenvalue problem we shall deal with reads as follows:

find (X, p) with p # 0 s.t.
(1) curlcurlp = Ap in Q2
divp=20 in 0

P xn=0 on Of).

Since the problem is symmetric we can confine ourselves to real eigenpairs. It is
well known that problem (1) is compact and zero is not a frequency.
A variational formulation of (1) reads as follows. Consider the space

@) X = Hy(curl; Q) N H(div’; Q)
= {ge L?(Q)® :curlg € L*(Q)?, divg=0, ¢ x n =0 on 90}

3) find (A,p) € R xX with p Z 0 s.t.
(curlp, curlg) = A(p,q) Vg€ X,

where (-, -) denotes the inner product of L?(Q2)3.

This is not however a good formulation as far as the numerical approximation is
concerned. Indeed a conforming approximation of (3) requires the divergence free
constraint to be imposed exactly in the approximate scheme. This can be done
(studies in this direction have been done for the Stokes problem, for instance),
but in general it may be complicated and one of the most widely used strategy to
approximate (1) is to consider the following variational formulation.

Consider the space

(4) Q = Hy(curl; Q)
= {ge L?*(Q)?:curlg € L*(Q)*, ¢ xn =0 on 90}

find (A,p) € R x@Q with p #Z 0 s.t.
(curlp, curlq) = A(p,q) Vg € Q.

It turns out that (5) is no longer equivalent to (1). However it is well known that
the only difference, as far as the eigenvalues are concerned, is that in (5) a zero
frequency is added which is associated with the infinite dimensional eigenspace
grad H}(Q). What is usually done in the numerical approximation of (1) is to
discretize (5) and to discard the zero eigenvalues. So that the discretization of (5)
reads (here @), is a finite element approximation of Q):

(6) find (/\h,]_?h) € R xQp with P, Z 0 s.t.
(curl}_)h,curlg) = )\h(;gh,g) Vg € Qp-

It became apparent soon that the discrete space has to be chosen very carefully
in order to avoid the presence of spurious modes which could be of two different
kinds. The first very annoying possibility is that the zero frequency spreads out
polluting the whole spectrum. The second family of spurious modes has nothing
to do with the zero frequency, but is generated by the numerical method. For a
discussion about this point and an example of this second possibility we refer to [5].
In [4] a proof of the existence of spurious eigenvalues of the second kind is given.

(5)
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3. PRELIMINARY DEFINITIONS

Following [2] we introduce the following notation.
W = H}(Q) = {w € L*(Q) : gradw € L*(R), w = 0 on 9N},
(7) Q = Hy(curl; Q),
V = Ho(div; Q) = {v € L%(Q)3 : divw € L*(Q), v-n = 0 on 80},
S = L2().
The exactness of the following sequence expresses the de Rham complex diagram.

curl div

(8) 0w 2 gl y I /R -0

Given a regular sequence of meshes T, let us now introduce finite element sub-
spaces Wx, Qpn, Vi, and Sy. If we are using standard piecewise polynomials it is
clear that the continuity requirements in order to have a conforming approximation
are the following (n denotes the normal of the interfaces between two elements):

w € Wy :  w continuous,

9) ¢ € Qr: g Xn continuous,
v€Vy: wv-n continuous,
SES: s may be discontinuous.

Let us denote by W, Q, V, and S smooth dense subspaces of W, Q, V, and S,
respectively, that allow the definition of suitable interpolation operators

W,‘:V:W—)Wh,

(10) ’IT,? : Q — Qh,
my V = Vh,
7r;? : S — 5.
We introduce now the following diagram
0- W B g oy 4y gp g
(11) by L Ly by

ad 1
0— Wh ﬂ—) Qh iﬂ—) Vh

and the following definition.

A Sy/R -0

Definition 1. We say that the commuting diagram property is fulfilled if

e the two rows of (11) are exact
e the whole diagram (11) commutes.

Remark 1. Let us emphasize that not only the exactness of the second row in (11)
is important, but also the fact that the horizontal arrows commute with the ver-
tical ones turns out to be a fundamental property for the approximation of the
eigenvalues of (1).

Remark 2. There are basically two known families of finite element spaces that meet
the commuting diagram property. The first one is the Raviart-INédélec-Thomas
one [17, 15, 6, 2] (first and second kind on tetrahedra and first kind on hexahe-
dra) known also as face-edge element family. The second one has been introduced
more recently by Demkowicz and Vardapetyan (see [18, 11]) and turns out to be a
generalization of the two-dimensional mixed BDM element [7] and of the Nédélec
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element of the second kind [16] for tetrahedra or of the first kind [15] for hexahedra.
The second family seems to be more flexible, since it allows local refinements in p
and h.

Let us now fix our attention to the spaces W}, and ), and recall the definition
of discrete compactness [12, 10].

Definition 2. We say that the pair (W, Q) satisfies the discrete compactness
property if given a sequence q, € Q@ such that

. (gradwh,gh) =0 VYwp € Wy

* llg,lle <1
then there ezist a subsequence 4, converging strongly in L*(Q).

Remark 3. Tt is clear that the corresponding property for (W, Q) replaced by
(W, @) holds true due to the compact embedding

(12) X — L*(0)

Remark 4. Using the exactness of the second row in (11), the first hypothesis on
{gh} in the previous definition says that g, is orthogonal to the kernel of the curl
operator acting from @, to Vj,.

4. DE RHAM DIAGRAM AND DISCRETE COMPACTNESS

We shall make use of the following mixed problem
given g € V, find (p,u) € @ x curl(Q) such that

(13) (p,q@) + (curlg,u) =0 VgeQ
(curlp,v) = (g,v) Yu € curl(Q)
and the corresponding approximation
given g € V, find (p,,u,) € Qn X curl(Qr) such that
(14) { (Qh,gh) + (curlgh,gh) =0 Vgh €Qn
(curlp, ,v,) = (g,v5) Yoy, € curl(@n).

Problem (13) has been intensively studied in these last years. It turns out that
it is well posed and that its approximation (14) is stable as a mixed problem [§]
provided the commuting diagram property is satisfied. Moreover, in [2] the follow-

ing important estimate has been proven (actually, the inequality has been proved
assuming ) convex, but it can be easily extended to the more general situation).

Proposition 1. Suppose that the commuting diagram property (see definition 1)
is satisfied and that QQ can be chosen such that if p solves (13) then it belongs to Q.
Then if g belongs to V3

(15) llp—p,llo < Ilp — 7pllo-
We are now in position to state and prove the new result concerning the discrete

compactness property.

Theorem 1. Let Wy, Qn, Vi, and Sy be such that the commuting diagram prop-
erty is satisfied (see definition 1). Assume moreover that () can be chosen such that
if p solves (13) then it belongs to Q with the a priori bound

(16) llpllg < Cllgllv
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and that the interpolation operator W,? approzimates the identity in norm, that is
(17) llp = 72pllo < p(h)l[pllg;

with p(h) going to zero as h tends to zero. Then (Wp, Q) satisfies the discrete
compactness property (see definition 2).

Proof. Let {g, } be a sequence in Q, as in definition 2. We call p(h) the first com-
ponent of the solution to problem (13) with g = curlg, (the notation emphasizes
the dependence on h). From the a priori estimate for problem (13) it follows

(18) llp(h)llg < Cllgllv = Cllcurlg, |lv = C||curlg, |lo < Cllg,[lo < C.

Moreover the first equation of (13) says that divp(h) = 0. It follows that {p(h)} is
bounded uniformly in X = Hy(curl; Q) N H(div’; Q). Due to the compactness of X
in L?(Q) there exists a subsequence {p(h,)} converging strongly to some p € L*(1),
that is

(19) p(hp) = p in L?(Q).

We will show that {g, } converges strongly to p in L2(Q).

For simplicity, let us denote the subsequence h,, still by h. We observe that there
exists u;, € curl(Q) such that (p, ,u,,) is the solution of (14) with g = curlp, and
P, =4, Indeed the second equation is trivial; given P, =4, the first equation
provides the definition of u; as follows:

1) find o, € Qp such that
(20) (curlay,curl B,) = —(q,,8,) VB, € Qn,
2) define u, = curl g,

It turns out that everything in (20) makes sense. In particular the equation involved
in the first step is solvable because of the compatibility (gh, gradwyp) = 0 Vwy € W,
Actually, o, is defined up to the gradient of an element in W}, which however does
not influence the definition of u,,.

In conclusion, p(h) solves (13) with g = curlg, and g, solves (14) with the same
datum. Therefore we can use (15), (17), and the definition of p(h) and ¢, to get

(21)
lp(h) = g,llo < llp(h) — xZp(R)ll0 < p(R)lIp(R)llg < Cp(h)|| curlg,|lv < Cp(h).

Putting together (19) and (21) and using the triangular inequality we obtain the
convergence of g, to p in L*(Q). O

Remark 5. The proof above contains the main argument showing the relationship
between commuting diagram and the discrete compact property. However it cannot
be applied directly to the edge element families. Indeed the a priori estimate (16) in
general does not hold true. In fact, if g is only in V' in general the first component
p of the solution of problem (13) does not meet the requirement stated in [1] for

the interpolant 77,? to be well-defined. In particular we would need curlp to be in

LP(Q) (p > 2), while it only belongs to L2(f2).

On the other hand it is clear that hypothesis (16) is used only to get the es-
timate (18). Actually, it turns out that the bound (18) is true in general even if
the a priori estimate (16) may be false. This can be easily seen observing that in
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this case g is regular enough in order to define w,?p(h); then the same argument as
in [1] (p. 856), which has been already used in this framework in [3] and [13], can
be applied to this situation.

We state the related result in the following corollary. Note that the edge finite
elements of second type on hexahedra [16] do not satisfy the commuting diagram
property; hence they have not been included in the present result. On the other
hand, to the best author’s knowledge, there is no numerical evidence in the literature
about the convergence of this element when applied to eigenvalue problems.

Corollary 1. The edge finite element spaces of the Raviart—-Nédélec—Thomas (first
and second type on tetrahedra and first kind on hexahedra) and of the Demkowicz—
Vardapetyan family satisfy the discrete compactness property.
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