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We consider the penalized formulation of Maxwell’s eigenproblem. It is well-known
that nodal finite elements fails in approximating this problem in the case of non-
convex polyhedral (or polygonal) domains. Here we introduce two non standard
finite element methods: the first one is based on nonconforming elements, while
the second one on a projection procedure. We shall show that the nonconforming
method is not consistent with this problem. The projected method instead gives
good numerical results.

1 Introduction

Let us consider the Maxwell’s cavity eigenproblem:

curl (' rotu) = Aew  in Q
div(eu) =0 in O (1)
u-t=0 on 0N

where t is the counterclockwise oriented tangent versor to the boundary 0.

The unknowns A\ and u represent respectively the angular frequency and
the electric field phasor; p and € are known and stand respectively for the
magnetic permeability and the electric permittivity. For simplicity, we shall
consider from now on y = ¢ = 1. Here 2 is a two-dimensional polygon which
in particular may be non-convex.

One of the main difficulties in discretizing the eigenvalue problem associ-
ated with Maxwell’s equations is to deal with the divergence-free constraint.
Over the years many attempts to circumvent this trouble have been proposed;
among other strategies, several authors have suggested the following penal-
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ization procedure (s > 0 is a suitably chosen parameter):

find A € R and u # 0 such that

curlroty — sVdivu = Au in Q )
uxn=>0 on 00
divu =0 on 012,

It was soon realized that this idea gives good results on convex domains, while
in non-convex domains it turned out to be not completely satisfactory !.

In the next section, we associate with (2) a variational formulation; a
crucial role will be played by the functional space in which the eigenfunctions
are looked for. Note that the natural energy norm associated with problem (2)
is (|| curl(-)||2 + | div(-)|[3)'/?, which is equivalent to the norm of Hy(rot; Q)N
H(div; ) thanks to the boundary conditions.

Recently Costabel and Dauge 2 studied the eigensolutions of (2) depend-
ing on the chosen functional setting, thus explaining the reason why the ap-
proximating eigensolutions of the penalized problem do not behave correctly
if the domain contains a reentrant corner. In fact in this case a vector field
which has both divergence and rotational bounded in L?(f2) does not neces-
sarily have the gradient bounded in L?(Q), that is H'(Q) N Hy(rot; Q) is a
proper subspace of Hy(rot; Q) N H(div; Q). Moreover, H*(2) N Hy(rot; Q) is
closed in Hy(rot; Q) N H(div; Q) with respect to the energy norm. Therefore
if we consider a finite element space which is contained in H', then we cannot
approximate those “singular” elements of Hy(rot; Q)N H (div; Q) which do not
have the gradient bounded in L?({2).

On the other hand a piecewise polynomial vector field which has both
divergence and rotational in L?(Q) must belong to H'(Q), because its normal
and tangential components are continuous along the interelement sides.

Therefore we have to consider non-standard finite element methods to
discretize problem (2). With the aim of weakening in some sense the conti-
nuity constraint along the interelement boundaries, we propose two different
schemes: the first one is based on nonconforming piecewise linear polynomi-
als while the second one on a projection of the curl and the divergence. We
shall show that the nonconforming method is not consistent with the problem,
while the projection method gives quite good results.

In the following section we introduce the variational formulation asso-
ciated with (2). The next two sections are devoted to the description and
the analysis of the nonconforming finite element method and the projection
method respectively.
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2 Setting of the problem

We are interested in the approximation of problem (1) via the penalization
formulation (2). We shall deal with the following variational formulation of
problem (2). Given a Hilbert space V, which will be fixed later on, our
problem reads:

find A € R and u € V, with u # 0 such that
(curlw, curlv) + s(divu,dive) = A(u,v) Vv €V,

3)

where (-, -) denotes the inner product of L2(Q).

The natural functional setting is V = Hy(rot; Q)N H(div; ). Indeed, in 2
it has been proved that with this choice the eigenvalues of (3) tend to those
of (1) as s increases. In particular the eigensolutions of (3) can be separated
in two families: the first one contains eigenfunctions with zero divergence, the
values of their corresponding frequencies are independent of s and coincide
with those of the eigensolutions of (1); while the eigenvalues of the second one
increase linearly as s tends to infinity.

If the domain Q is convex it is well-known that the space Hy(rot; ) N
H (div; Q) coincides with H!(Q)NHy(rot; Q) and that the corresponding norms
are equivalent. Moreover in 2 it has been proved that the bilinear form in the
left-hand side of (3) is coercive in H'(2) N Hy(rot; ) also if the domain is
non-convex. Hence one might think to choose V' = H'(Q2) N Hy(rot; Q) in (3).
However this choice, as shown in 2, leads to a problem which is completely
different from (1) when the domain is not regular. This is due to the fact that
H(Q) N Hy(rot; Q) is closed in Hy(rot; Q) N H(div; Q).

This fact shows why no standard finite element approximation of (3)
can give reasonable results when the space H!(Q) N Hy(rot; Q) is a proper
subspace of Hg(rot; Q) N H(div; ) (and this is the case, for instance, when
has a reentrant corner). In fact it is not difficult to prove that any conforming
finite element subspace of Hy(rot; Q)N H (div; Q) necessarily belongs to H(Q)
too.

These remarks open the question about the construction of non-
standard finite elements which are able to approximate a singular function
of Hy(rot; Q) N H(div; Q) which is not in H*(f).

3 A nonconforming method

Let Q be a polygon and let 75 be a regular finite element partition of it in
triangles. We define the finite element space V}, we shall deal with in the
following way: an element v, of V} restricted to a triangle of 7T is a linear
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polynomial in each component and v, is continuous at the midpoints of the
interelement sides. Moreover the boundary conditions are prescribed on the
tangential component of v, at the midpoints of the boundary edges.

As it is usual with nonconforming discretizations, since V}, is not contained
in Hy(rot; Q) N H(div; ), we use a discrete version of (3) which is obtained
triangle by triangle as follows:

find Ap € R and u,, € V}, with u;, # 0 such that
ETGT;L {(curluy,, curlw, ) + s(divay,, dive,)r} = An(uy,v,) Vo, € Vi,
(4)
where (¢, V)T = [ ¢y
In order to make the notation easier, we call a(u,v) and ap(uy,v;) the
left-hand sides of (3) and (4), respectively.
Next we define:

ulp = an(w,u),  lulli = llull§ + lul;- ()

Notice that if u belongs to V' then ap,(u, ) coincides with a(u,u) and, thanks
to the boundary conditions, |u| is a norm equivalent to ||ul|y.

On the other hand the following proposition, which can be easily proved
by induction, shows that (5) defines only a seminorm on V.
Proposition 1 Let T, be a triangulation of Q which contains ng triangles
and denote by IK}, the kernel of ap(-,-), that is

Ky = {vy, € Vi : an(vy,vy) = 0}. (6)

Then the dimension of IKy, is ng + 1.

An immediate consequence of the previous proposition is that the zero fre-
quency is a solution of problem (4) with multiplicity n;+ 1, the corresponding
eigenspace being IKj,.

Let V be the orthogonal complement (with respect to L?(Q)) of K} in
Vi, that is

V=KoV, V 1IK,. (7)

The following two proposition can be proved relating the elements in V with
the Raviart-Thomas elements of lowest degree (approximating H (div; ?)) and
their rotated counterpart (approximating Ho(rot; 2)). The first one states the
coerciveness of the discrete bilinear fogm ap on V, while the second one is an
approximation property of the space V with respect to the seminorm (5).
Proposition 2 There exists v > 0 independent of h such that for every v, €
V the following ellipticity property holds true:

an(up,24) 2 g llz- (®)
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Proposition 3 Let us suppose that divu and curlu belong to HY(Q). Then
there exists v, € V such that

. 1/2
lu—vpln < Ch(||divull] + |[rot ull}) . (9)

Hence if we consider problem (4) with V}, substituted by V, it admits only
solutions with nonvanishing frequency which should approximate the eigen-
solutions of problem (3).

All these properties induce us to think that the nonconforming finite ele-
ment method could avoid the troubles related to the approximation of singular
functions (see the previous section). Indeed the qualitative behavior of the
computed eigenvalues on an L-shaped domain agrees with the one observed
for the continuous problem (see fig. 1). On the other hand fig. 2 shows that
the computed eigensolution are not well approximated, in particular the diver-
gence free constraint induced by the penalization forces the field to be aligned
with the sides of the triangles of the mesh.

1=1.2269

Fig.1 Eigenvalues on Fig.2 Computed singular
the L-shaped domain eigensolution.

A deeper analysis of the approximation properties for the space V shows
that in general there is no convergence in L?(2).

Let us consider a square domain of side 1 subdivided into n? equal sub-
squares each of them divided into two triangles. The side of each subsquare is
h =1/n. Then let us consider u € Ho(rot; Q) N H(div; Q) such that u = (u, 0)
with the first component u which is constant with respect to the variable z.
Hence it is clear that divu = 0. Figs. 3 and 4 show the projections u, and u,
of u onto IK), and V, respectively, in the case of u = (sin 7y, 0).

Since the basis functions of the nonconforming space are orthogonal, it
is not difficult to calculate the norm of the projections and then pass to the
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Fig.3 Projection onto IK} Fig.4 Projection onto V'
limit as h goes to zero. This computation gives:

limp o ||ug|

. 10
limp, || | (10)

|2_
0=
|2_
0=
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Suown

I N

The limits in (10) show that the subspace V of nonconforming finite elements
cannot approximate a smooth function with respect to the L?(2)-norm.

4 A projection method

Another way to weaken the continuity conditions required to finite elements
belonging to Hy(rot; Q) N H(div; ) is to consider a mixed formulation of

problem (3), which has ben introduced for fluid-structure interaction problems

in ® and analyzed also in 6.

Let us introduce the following new variables
p=—curlu € L}(Q), r=—sdivuec L*(Q), (11)

where LZ(Q) is the subspace of L?(Q) of the elements with zero mean value.
Then problem (3) can be rewritten in the following way:

Find X € R such that there exist (p,r) € L2(Q) x L2(Q2) and

u € Hy(rot; Q) N H(div; Q) with u #0:
(lp, q) + (rotu,q) =0 Vg € L§(?) (12)
E(r, t) + (divu,t) =0 Vte L*(Q)
(rotv,p) + (dive,r) = —A(w,v) Vv € Ho(rot; ) N H(div; Q).

Let us consider a quadrilateral mesh and the following finite dimensional sub-
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Table 1. Discrete eigenvalues computed by nonconforming elements on different meshes

exact unstrucured crisscross 8x 8 4x8 4x12 4x16
1.00000 1.99344 1.99570 1.58462 1.54908 1.52755 1.51688
1.00000 2.01716 1.99570 2.77038 2.76339 2.79978 2.81840
2.00000 4.04132 3.98283 3.74459 3.88888 4.05837 4.15651
4.00000 7.81135 7.93045 8.16883 7.15018 6.63358 6.39262
4.00000 8.08403 7.93045 8.45338 8.25400 8.48643 8.61389
5.00000 9.88606 9.89190 9.06584 9.17021 9.45341 9.56733
5.00000 10.1795 9.89190 12.1035 11.3006 11.2833 11.2689
8.00000 15.9128 15.7237 14.0959 14.0350 14.5355 14.1565
9.00000 17.0469 17.6406 17.8526 15.4414 14.5829 14.8470
9.00000 17.4825 17.6406 19.6844 16.3875 16.4799 16.5313

spaces:

Y = {v € Hy(rot; Q) N H(div; ) :

v is a continuous piecewise biquadratic vector field},
Qn = {qn € L3(Q) : gy, is piecewise linear},
Ty = {tn, € L*(Q) : t, is piecewise linear}.

Then the discrete counterpart of problem (12) reads:

Find A, € R such that exist(py,74) € Qn x Ty, and

u, € X with uy, #0:
(lph,qh) + (rotup,qn) =0 Van € Qn (14)
E(T’h,th) + (divgh,th) =0 VtpeTy
(rot vy, pr) + (divey,,rn) = —Aa(uy,v,) Yo, € Zp.

We observe that, with this choice, A, = 0 may be a spurious solution of (14),
corresponding to those u,, such that (divu,,qp) + (rotu,,ts) = 0 for all
qrn € Qp and tp, € Ty. Let us denote by IKj this discrete nullspace. Let
us define the space ¥ obtained by projecting ¥ onto the orthogonal space
of IKp, in ), and consider problem (14) with ¥, = ¥2. It follows that the
resulting eigenvalues are strictly positive and coincides with the nonzero ones
obtained with Xj,.

The discretization scheme we have introduced in (14) can be interpreted
as a reduced integration procedure of (3). With the introduction of L?({2)-
projection operators P; and P> into the finite element subspaces @y and T},
of L3(2) and L?(Q) respectively, we can obtain from the first two equations
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in (14) that p, = —Pyirotu, and r, = —sPadivu,, then substituting these
relations in the last equation we get:

find A\, € R, such that there exists u;, € Xy, with up # 0: (15)
(Pirotuy, Prrotuy) + s(Pydivuy,, Padivyy,) = Ap(uy,vy) Yo, € .

We refer to 7 for a more complete analysis of this method in the case of
fluid-structure interaction system. To end this section we report only the
following picture with some numerical results which confirm the good behavior
of the method. Figs. 5 and 6 show how the the eigenvalues computed with

this projection method depend on the penalization parameter s and the first
singular eigensolution.

1 1 T 1 T 1
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penalty parameter
Fig.5 Eigenvalues on Fig.6 Computed singular
the L-shaped domain eigensolution.

References

1. F. Kikuchi. Mixed and penalty formulations for finite element analysis
of an eigenvalue problem in electromagnetism. Comput. Methods Appl.
Mech. Eng., 64:509-521, 1987.

2. M. Costabel and M. Dauge. Maxwell and Lamé eigenvalues on polyhedra.
MBAS, 1999. to appear.

3. M. Costablel. A coercive bilinear form for Maxwell’s equations. J. Math.
Anal. Appl., 157(2):527-541, 1991.

4. K.-J. Bathe, C. Nitikitpaiboon, and X. Wang. A mixed displacement-
based finite element formulation for acoustic fluid-structure interaction.
Computers € Structures, 56:225-237, 1995.

5. X. Wang and K.-J. Bathe. On mixed elements for acoustic fluid-structure
interactios. M?AS, 1996.

6. L. Gastaldi. Mixed finite element methods in fluid structure systems.
Numer. Math., 74:153-176, 1996.

dl: submitted to World Scientific on October 15, 1999 8




7. D. Boffi, C. Chinosi, and L. Gastaldi. Approximation of the graddiv
operator in non-convex domains. to appear, 1999.

dl: submitted to World Scientific on October 15, 1999 9




