Summary We consider the Maxwell’s equation with periodic co-
efficients as it is usually done for the modeling of photonic crystals.
Using Bloch/Floquet theory, the problem reduces in a standard way
to a modification of the Maxwell’s cavity eigenproblem with peri-
odic boundary conditions. Following [8], a modification of edge finite
elements is considered for the approximation of the band gap. The
method can be used with meshes of tetrahedrons or parallelepipeds.
A rigorous analysis of convergence is presented, together with some
preliminary numerical results in 2D, which fully confirm the robust-
ness of the method. The analysis uses well established results on the
discrete compactness for edge elements, together with new sharper

interpolation estimates.
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1 Introduction

Photonic crystals are periodic structures composed of dielectric mate-
rials. The reason for the increase of the interest in this subject is that
the spectrum of the Maxwell operator for such media is expected to
have gaps. The presence of gaps means that there are prohibited fre-
quencies of propagation of electromagnetic waves going through such
crystals. This fact has many potential applications, for example, in
optical communications, filters, lasers and microwaves. See [13,20],

for an introduction to photonic crystals, photonic band gap struc-
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tures and some of their applications. The mathematical model can
be written as a modified Maxwell’s system with periodic boundary
conditions. In recent papers [7,8] a finite element method to approx-
imate such problem based on a modification of Nedéléc edge element
spaces was proposed. The convergence of the finite element scheme
was proved under severe regularity restrictions and in the case of
uniform mesh sequences. Here we present a proof which holds under
minimal assumptions on the regularity of the eigensolutions and on
the mesh sequences. In order to do so, we derive new sharper inter-

polation estimates for edge elements.

The outline of the paper is the following. The next section is de-
voted to the presentation of the problem together with some proper-
ties of the analytical framework. Section 3 contains the discretization
of the problem and recalls the abstract setting under which the con-
vergence of the eigensolutions can be proved. In Section 4, the finite
element spaces are described together the properties which yield the
convergence. In particular Lemma 9 implies the discrete compactness
property and Lemma 6 provides new interpolation estimates. In the
last section some numerical examples are presented, which confirm

the good behavior of the modified edge element scheme.
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Fig. 1. Two dimensional crystal lattices and corresponding lattice vectors

2 Setting of the problem

In this section we recall some known results concerning the mathe-
matical formulation of a model problem involving a photonic crystal.

We consider the Maxwell’s equations in R3

VXE —iwuH =0
(1)

VxH+ iweE = 0.
where E and H are the electric and the magnetic fields. We assume
that the magnetic permeability is constant with u = 1. The dielec-
tric permittivity ¢ is assumed to be piecewise constant and uniformly
bounded away from zero. In the case of photonic crystals, the medium
has a certain periodicity. This means that the function ¢ is invariant
under any translation equal to an integral multiple of suitably chosen
lattice vectors. The general situation is presented (in 2D for simplic-

ity) in Fig. 1, where the two lattice vectors are denoted by a; and as.

The periodicity can be stated mathematically as

e(x + Ak) = e(x) vx € R? (2)
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where A is the 3-by-3 matrix whose columns are given by a;, i = 1,2, 3
and k € Z3 denotes a generic vector of relative integers. Moreover,

we denote by R the equivalence relation

2Ry <= y=ux+ Ak for some k € Z3.

In Fig. 1 the black regions denote the presence of a material with
higher permittivity. One of the main feature of a photonic crystal
is the presence of the so called band gap, which is guaranteed by
suitable choice of the materials. For more information, we refer the
interested reader, for instance, to [11,10].

Eliminating E from equation (1) we obtain

Vxe 1VxH=w?H in R?
(3)
V-H=0 in R3.

Let £2 be the periodic domain R3/R which is isomorphic to the cell

C={xeR’:x=uza +ya+2a3, (v,y,2) € [0, 1’} (4

with the identifications of its opposite faces.

Following the Bloch theory (see, for instance, [15]), to a given lat-
tice as in Fig. 1, we can always associate its first irreducible Brillouin
zone (see Fig. 2). We denote this zone by K. Then the Bloch waves

satisfy H(x) = e’®*u(x), where u is periodic in x and o € K. Hence,
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TWa Tva

-Tva -Ta

Fig. 2. First Brillouin zones corresponding to the configurations in Fig. 1. The

shaded regions are the irreducible zones

for each o € K, our equation reads

Voxe 1Voxu=w?u in N

Voau=0 in 2.

Here V, = V +ial (I being the identity operator). In practical
applications, equation (5) allows us to compute the band gap of the
device. Indeed, for suitable choices of o, one computes the eigenmodes
(w,u) (with u # 0) corresponding to (5). This provides a plot in which
different values of w are drawn as functions of a. The regions which

are not touched by the plotted curves are band gaps.
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In order to introduce the variational formulation of (5) we define
the periodic versions of usual Hilbert spaces. Let L2(£2) = (L?(£2))3.
H)(2)={vel*2): Vvel*()}
Hy(curl; 2) = {v e L*(2) : Vxv e L*(2)}
H,(div; ) = {ve L(2): V-vec L*N)}
H,(div2; 2) = {v € Hy(div; 2) : V, v =0}
Note that the domain {2 has no boundary. For the above definitions,
functions defined on {2 can be viewed as functions defined on the
cell C' with suitable periodic boundary conditions on the identified
faces. Hence, the spaces in (6) contain functions which are implicitly
periodic; moreover, the derivative operators respect the periodicity
of the domain.
For all u,v € Hy(curl; 2) and ¢ € Hé(!?), we define the sesquilin-
ear forms

a(u,v) :/ el Voxu-Voxvdz,
Q

b(g,u) = /QVaq-ﬁd:n, (7)

(u,v) :/gu-vd:c

Problem (5) can be rewritten in the following mixed form: find w? €

R, (u,p) € Hp(curl; £2) x H}(£2), with (u, p) # (0,0), such that

a(u,v) +b(p,v) = w?(u,v) Vv € Hy(curl; 2) )
b(qg,u) =0 Yq € HII)(Q),
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where the new variable p plays the role of a Lagrange multiplier in
order to enforce the constraint V,-u = 0.

For the analysis of (8), it is convenient to introduce the kernel of

V-, that is
K = {v € Hy(curl; £2) : b(q,v) = 0 Vg € H)(2)}. (9)

Let T € L(L%(£2),L2(£2)) be the resolvent operator associated with (8)
and defined as follows. For all f € L2(£2), Tf = u € L?({2), where u
is the first component of the solution of the following problem:

find (u,p) € Hy(curl; £2) x H}(£2), such that

a(u,v) 4+ b(p,v) = (f,v) Vv € Hy(curl; 2) (10)
b(g,u) =0 Vg € H)(12).
If a = (0,0,0), it is well-known that 7" is compact. Before stating the

compactness of T for all & € K, we recall some results of [8].

Theorem 1 Let o € K with o # (0,0,0). Given u € L%(§2), there

exists unique functions w € (H(£2))* and ¢ € HL(£2) satisfying
u=Voxw+Vyp with Vgiw=0,

Wi+ el < Cllullo-

Lemma 1 The sequence

0 — H)(2) Y2 Hy(cwl; 2) Y25 Hy(div; 2) Y25 L2(2) — 0

(11)

15 exact.
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The following lemma states the compactness of T

Lemma 2 The operator T is compact and self-adjoint from L2(§2)

into itself.

Proof. Thanks to Lemma 1, the second equation in (10) implies that
u € Hy(divY; 2). The sesquilinear form a(u,v) is hermitian, con-
tinuous and coercive on Hy(curl; ) N Hy(divY; 2). Hence there ex-
ists a unique u € Hy(curl; 2) N Hy(div®; £2) solution of (10). Since
H,, (curl; 2) NH,(divY; 2) is compactly embedded in L2(£2), the op-
erator 1" is compact and self-adjoint. ]

As a consequence of that, T" admits an increasing sequence of real,

positive eigenvalues

0<w? <ws < <wi< e,

each associated with a finite dimensional eigenspace.

Moreover, the following regularity result holds for solutions of

problem (10), see [6].

Lemma 3 There exists s > 1/2, such that Hy(curl; £2) N H,(div; £2)
is continuously embedded in (H*(£2))3. Moreover for all f € L2(12)

the solution u of problem (10) satisfies

uc (H7(0))3, for some r satisfying 0 <r <1/2.  (12)
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In the above lemma the value of » depends on the ratio between the

different values of €.

3 Discretization of the problem

Let E, € Hy(curl; 2) and Qp C Hé((?) be finite dimensional spaces.
Then the discretization of (8) reads:

find w? € R, (up,pp) € Ep x Qp, with (up, ps) # (0,0), such that

a(up, vi) + b(pp, vi) = wi(ay, vi) Vvy, € By

b(gn,up) =0 Yan € Q.
(13)

Problem (13) can be reduced to an algebraic generalized eigenvalue
problem of the form
A BH u MO u

=w? (14)
BO ) 0 0 p

with A the hermitian matrix associated to the sesquilinear form a, B
the rectangular matrix associated to b and M the hermitian matrix
associated to the scalar product in L2(£2). To have an idea of the
practical computation of the eigenvalues of this generalized eigensys-
tem see [19].

If the matrix B has full rank, then system (14) has exactly N(h) =

dim(E},) real and positive eigenvalues:

2 2 2
0<wipSwyp < < W) ae
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In order to analyze the convergence of the discrete eigensolutions
to the continuous ones we apply the abstract theory developed in [5].
Let us first introduce the discretization of the resolvent operator T}, :
L2(02) — E; C L2(02): for all f € L2(2), T),f = u;, € Ej,, where uy,

is the first component of the solution of the problem:

find (up,pr) € En X Qp, such that
a(up, vy) + b(pn, vi) = (£, vp) Vv, € Ep, (15)
b(gn, up) =0 Van € Qn-
We recall that for compact and self-adjoint operator like 7', a suffi-

cient and necessary condition in order to have the convergence of the

spectrum is the uniform convergence in the operator norm, that is:

Lim |75 = Tl £z (@)2(0)) = 0. (16)

Let us introduce the following assumptions on the finite element

space, see [5] for the abstract setting.

H1 Ellipticity on the discrete kernel - There exists a > 0, indepen-

dent of h, such that
a(up, up) > allug|Zn Vg € Ky (H1)
where the discrete kernel K}, is defined as

Ky = {uy, € E} such that b(gn,un) =0 Vg, € Qp}-
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H2 Weak approzimability - There exists p1(h), tending to zero as h

goes to zero, such that for any p € Hé((?) it holds

b(p,Vh)
sup ———>%
viLeKy, HVthurl

< pr(W)lplls- (H2)

H3 Strong approzimability - There exists pa(h), tending to zero as h
goes to zero, such that, for all u € Hy(curl; 2)N(H*7(£2))? with

u € K, there exists u! € K, satisfying

lu = ' flcun < p2(h)||ull14r- (H3)
Then the following theorem has been proved in [5]:

Theorem 2 Let us assume that assumptions H1-H3 are verified. Then
the sequence Ty, converges uniformly to T in L(L*(£2), Hy(curl; 2)),

that is there exists p3(h), tending to zero as h goes to zero, such that

ITE — Thfllowt < p3(R)|[Elo,  for all £ € L2(£2). (17)

4 Finite element spaces and convergence

Before introducing the finite element spaces we are using for the ap-
proximation of problem (8), we recall the approximation properties
of standard edge finite elements. Let 73 be a triangulation of (2. To
fix ideas, we shall consider a mesh of tetrahedrons and the first family
of Nédélec finite elements [17]. We denote by & the k-th order ele-

ment of such family and by I ,f the corresponding interpolant. Other
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families can be handled similarly; difficulties arising when general
hexahedral meshes are used are out of the topic of the present pa-
per (see [2], for a two dimensional discussion). Standard interpolation

estimates (see [12,16] for a review) read

v —IEv]o < Ch* ([v]s + | Vx v]s) 1/2<s<k+1,
| Vxv—VxIIiv]o < Ch*|Vxv|, 0<s<k+1.

According to the regularity result of Lemma 3, the first interpolation
estimate cannot be applied to the solution of (10). We now derive a
sharper L?-estimate which requires less regularity on Vx v (in par-
ticular, no additional requirements when s > 1). The arguments used
for the proof are not new, nevertheless we believe such an estimate

is not present in the literature.
Proposition 1 The following estimates hold true

1
Iv = IEvlo < Ch* (vl + | Vx Vi) 5 <s<1p>2 k20

v — IIEv|o < Ch¥|v]s 1<s<k+1, k>0
(18)

for all functions v for which the right hand sides of (18) are bounded.

Proof As usual, we work element by element. Let K denote the refer-

ence tetrahedron, K the actual element, and © = Fg (&) = BrZ + d,
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the corresponding affine mapping. We recall the covariant transfor-

mation vo Fyg = Bl_(sz and some useful scalings

IVl 2y < 1det(Br) I BRMIRN 2y < CRY I 2y
913 (K) < B "2  det(Br)| ! V] s i) < CR 2|V s i)
IV XV oy < 1det(Bie) VP IBEM IV X vl oy

(K)

< CR* P VX V]| 1o i)
(19)

In [1] the following continuity for the interpolation operator II ,‘f on

the reference element has been proved (q > 2)

V¥ 20y < C (19 gy + 19 % 0l ooy + 1 VX ¥ iy ) -
(20)
Let us start with the first estimate in (18) and suppose that v
belongs to H*(f2) (1/2 < s < 1) and Vx v is in LP(£2) for some
p > 2. In this case we consider k = 0. Using trace theorem and

Sobolev embedding, from (20) we get
V¥ a0y < C (90 goiey + 1 VX i) - (21)
Bramble—Hilbert theorem gives

A E A A . A R 2 A s R
o =LE¥l 2y <€ int (19 = Blngiy + 19X = By

< Cpeigjfop IV = Bll 2 i) + Cl¥ e iy + CI VX Vo i



Modified edge finite elements for photonic crystals 15

where Py is the space of constants on K and the last inequality takes
into account the fact that [p| Ha (k) and VX p vanish. Then, from

Proposition 6.1 of [9] (see also [12], Theorem 3.14) we obtain
||V_Hhv||L2 <C’V‘H9(K +C”VXV||L1>

Finally, from the scalings (19) we get
IV = vl 2y < CRY2 |19 = T o
< OB (19 o ey + 1 9 vnmm)
< Chl/? <h571/2‘V‘HS(K) + h?73/P) W x VHLP(K)>
<C <hs|V|HS(K) + hP273IP) W x VHLP(K))
which gives the required approximation order (p > 2 implies s < 1 <
5/2 —3/p).
We now consider s > 1 and a general k < s. If v belongs to H*(£2),
then there exists p > 2 such that V x v belongs to L”({2). From (21)
we get

15V 2y < CI¥ g i

Then by classical arguments we obtain

= IS, 000 < C  inf  ||[v — &) < Clys 292
I h ||L2(K)f f>€(7’k)3” pHH ’ ’H (22)

where Py, denotes the space of the restrictions to K of polynomials of
degree less than or equal to k. We explicitly remark that, in (22), the

first inequality is a consequence of Bramble-Hilbert theorem (since
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(Pr)? C €) and the second inequality follows from classical Deny—
Lions theorem in the case when s is integer. The case of fractional

exponents is covered by Theorem 6.1 of [9].

Finally, from the scalings (19) we get the second estimate of (18).

Following the ideas of [8], we introduce a modification of standard
edge elements satisfying the commuting diagram property with re-
spect to the differential operators V, V,x and V.

Let 7}, be a triangulation of {2. We consider a mesh of tetrahedrons
(affine meshes of parallelepipeds can be handled similarly, general
hexahedral elements are beyond the aims of this paper) and any order
Nédélec elements of the first type [18] (the second family can be

studied with similar arguments).

We define the following finite element spaces:

Qn={q¢€ H;(Q) : gk = e '*%G, with § € Pry1(K) VK € Tp}
Ep ={veH,(curl; Q) : v|g = e "**%, with v € &(K) VK € Tp,}
F, = {w € Hy(div; 2) : w|x = e "**W, with W € F(K) VK € T;,}

Sy ={vel?(): v|lg=e"**p with o € Py(K) VK € Tp,}
(23)

where Py(K) is the set of the restrictions to K of polynomials of

degree less than or equal to k; the elements of (K) have the form
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a(x) +b(x) x x with a,b € P}; the space Fj(K) contains the vector

fields of the form a(x) + b(x)x, with a € P} and b € Py.

Remark 1 Explicit computations show that the following relations
hold between the original operators V, Vx, V- and the modified
operators Vo, VX, and V-, when applied to discrete functions
Vaqg=e %XV
Voxv=e "**Vxv (24)

Vo w=e"**V.-w.

The interpolation operators onto the finite element spaces defined
in (23) are the following ones. The degrees of freedom for the space
@y, are the nodal values, hence the interpolation operator II ,? is the
usual nodal interpolation operator.

The edge interpolation operator IT ,{5 associates to each function
v of H%(£2)? the element IIFv € Ej, using the following degrees of
freedom on the tetrahedron K € 7j:

/pe [eio"(x_"e)(v —IIEv). t] ds =0 Vpe € Pr(e),

6 Ve edge of K,

/fpf- [em'(x_xf)(v — HEV) X n} do=0 Vp;se (Pe_1(f))?,

Vf face of K,

/K PK - [eia'(x—xK)(v _ Hi?v)} dx =0 Vpx € (Pr-2(K))?,
(25)



18 D. Boffi et al.
where x., Xy, and xg are the barycenter of e, f, and K, respectively,
t is the tangential unit vector of e and n is the outward normal unit

vector of f.

Analogously, the face interpolation operator I7 ,f associates to any
smooth enough vector field w a discrete element I1 f w € F}, by using

the following degrees of freedom on the tetrahedron K € 7j:

J o e o i) ] do =0 vy e (Pt

Vf face of K,

/KPK e ) (w - T w)| dx =0 Wi € (P (K))
(26)

At the end, the degrees of freedom used in order to define the

interpolation operator I ;? are:

/ PK [eio"(x_xK)(v — H;?v)] dx=0  Vpg € Pp(K), VK € T
K

(27)

Adapting the idea of the analogous result in [8], we can prove that

the finite element spaces defined in (23) enjoy the following property:



Modified edge finite elements for photonic crystals 19

Lemma 4 The spaces Qp, Ey, Fn and Sy, satisfy the commuting di-

agram property:

Va

E VaX

0-Q F Y, g/R 0

La¢ | of | oF LTy (28)

0-Qn Y5E, Y5F YO8 /R0

In the above diagram, the spaces Q, E, F, S are suitable smooth
dense subspaces of HL(£2), Hp(curl; £2), Hy(div; 2) and L*(£2), re-

spectively.

Arguing again as in [8], the approximation properties for the inter-
polation operators in the modified spaces can be easily deduced from

the corresponding ones in the standard spaces.

Lemma 5 There exists C, independent of h, such that the following

interpolation error estimates hold true for sufficiently reqular func-
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tions:

lg — IT2qlly < Ch*~glls 1<s<k+2 (29
[ Vax v —Vox ITFPv]g < Ch¥|Vaxv], 0<s<k+1, (30
|v — I} v|o < Ch|v]s 1/2<s<k+1, (31)
| Vo v — Vo IIEv]g < Ch¥| Vo vl 0<s<k+1, (32

v — ITPv|o < Ch®|v]|s 0<s<k+1. (33

Moreover, from Proposition 1, we have the following estimate.

Lemma 6 There exists C, independent of h, such that the following
interpolation error estimates hold true for sufficiently reqular func-

tions:

1
Iv = ITEV]o < CR* (Ivls + | VX Vi) 5 <s <1 p>2 k20

v — Iy v]lo < Ch®|v]s l<s<k+1, k>0,
(34)

A consequence of Lemma 4 is the following discrete version of Theo-

rem 1.

Lemma 7 Let uy, € E}, then there exist z, € Ey, and q; € Qp, such

that

uy, = zp + Vagp, and b(qn,zn) =0, (35)
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where zp, € By, can be characterized by means of the following mixed

problem:

find zj, € Ey, and o, € Vo x Ey, C Fj, such that

(Zh,Wh) + (O'h, VaX Wh) =0 VYwy, € E),

(Th,VaX Zh) = (Th,VaX uh) V15, € Vox By, C Fy,.
We have now all the elements which are needed for the proof of the

assumptions H1-H3. This is done in the next three lemmas.

Lemma 8 There exists a constant C' not depending on h such that

for all uy, € Ky, it holds
[upllo < Cl| Vax upfo. (37)

Proof. The proof follows from the analogous results for the V x op-
erator given in [1] (see Proposition 4.6) and from Remark 1. Given

uy, € E),, we find @y, € &, such that 0, = e’**uy,. Then

lapllo = lle”" >0 = [[Gnllo < C|| Vx sl

= C||e"**Vox upllo = C|| Vax unllo.

Let us now verify that assumption H2 holds true.

Lemma 9 For all vi, € Ky, there exists v € K such that

lvi, = v]lo < CR®||Vh|lcurt, with s > 1/2.
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Proof. Since vy, € Ky, it follows that vy, is the solution of a problem
like (36) with datum V,x vp. Let us define v € Hy(curl; 2) as the
solution of the corresponding continuous problem, that is v is such
that

(v,w)+ (6, Voxw) =0 Vw e Hy(curl; £2)

(T, Vaxv) = (T,Vax vy) V7 € Vox Hy(dive; 02).
From the a priori estimate [|v||g,cur;0) < Cll Vax vallo, and from
Vo v = 0, Lemma 3 gives the regularity v € (H*(£2))? for some
s > 1/2 with the uniform bound ||v||s < C|| VaXx villo. Hence we

can apply Theorem 1 of [4] in order to get the required estimate

v =vhllo < CR7[lv]ls < CR7[| Vax vallo-

In order to prove H2, we write:

aup PPV gy MBVRZY) ey

viLEKY HVthurl vrEKy thchrl
where v is given by Lemma 9.

It remains to prove H3.

Lemma 10 For all r > 0 there exists a constant C' such that, for
all u € Hy(curl; 2) N (HY7(£2))? with u € K, there is an element

ul € Ky, satisfying

u = u!||eun < CR||u]1 4 (38)
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Proof. Let us consider u € Hy(curl; £2) N (H*7(£2))3 with u € K.
Then there exists g € H,(div2; £2) such that the couple (u,p = 0)
is solution of problem (10) with datum g. Let us take as u’ the first
component of the solution of (15) with the same datum. We can adapt
to this problem the known error estimates for the standard Maxwell

equations, see e.g. [14] and we obtain
Hu - uIHCurl <C inf ||u - Vthurla (39)
VhEEh

then the interpolation error estimates (34) and (30) give (38). O

As a consequence of the results of [5,3], we have proved the fol-

lowing theorem:

Theorem 3 There exists a constant C' such that for all £ € L2(02) it

holds

ITf = Tpf]lcun < CH'||£]]o, (40)

where t = inf(s,r) =r, and s and r are given in Lemma 3.

Let w? be an eigenvalue of problem (8), with multiplicity m; and
denote by E; the corresponding eigenspace. Then, due to (40), ex-
actly m; discrete eigenvalues w,?l By ,w?m' p, converge to w2. More-

2

over, setting djih = (1/m;) E;”:ll w;. , and denoting by Eh,i the direct

; : 2 2
sum of the eigenspaces corresponding to Wiy o+ Wi s WE have that
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there exists hg such that for 0 < h < hg the following inequalities hold:

wf — &, | < Cejf (41)

5(Ela Eh,i) S Ce;w

where 0(E;, Ehz) denotes the gap between E; and Ej, ;.

5 Numerical results

In this section we show some numerical results in 2D. We consider
several periodic structures in z — y plane which extend indefinitely
in z direction. Under this hypothesis we can always consider the
electromagnetic field as a sum of two distinct fields, denoted by TE
(Transverse Electric) and TM (Transverse Magnetic). TE modes have
vanishing longitudinal (z direction) electric field component, whereas
TM modes have vanishing longitudinal magnetic field component. We
thus can compute all the eigenmodes (w, u) of the problem (5) as the
union of TE and TM eigenmodes.!

We solved problems (5) for a set of values of a belonging to the
boundary of the irreducible Brillouin zone. One can show that in or-
der to compute the band structure of a crystal, this values are enough

(see, for instance, [15]).

! for TE cases, first equation of problem (5) becomes Vaox Voxu = w?eu,

where u is the electric field.
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For all the experiment we used first order modified finite edge ele-
ments defined on a unstructured uniform mesh of triangles.

Let us start with one of most common structure treated in litera-
ture, i.e. a set of high refraction index circular rod immersed in air.
Fig. 3 shows a sketch of the structure, the computational cell and the

corresponding first Brillouin zone.

@ @ § 17””””””””"’3

e e e 0 ;

@09 e

a r

Fig. 3. Two dimensional photonic crystal made of a square lattice of circular

dielectric rods (e, = 8.9, r/a = 0.2) in air.

In order to compute the band diagram, we discretized the domain
2 =]0,1[x]0,1[ with a mesh composed of 902 elements and 1393
degrees of freedom. Band structure for both TE and TM polarizations
is plotted in Fig. 4. The graph shows the presence of a TM band-
gap between first and second band, while TE polarization does not
have any. Thanks to the scaling properties of Maxwell equations, the
eigenvalues )\; computed on this domain can be related to the ones
of a structure whose elementary cell has side a with the equation

. — wia
)\2_27rc'
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wal(2mc)

Fig. 4. Band structure of the square lattice of dielectric rods. Solid lines denote

TM modes, dashed lines denotes the TE ones.

Another very common structure is a square lattice of thin dielec-
tric veins (in this case alumina, e, = 8.9) immersed in air. Fig. 5
shows a sketch of the structure, the computational cell and the cor-
responding first Brillouin zone. We note that the Brillouin zone of
this crystal is the the same of the former crystal, because the shape
of the cell is different, but not the kind of periodicity.

The domain 2 =]0, 1[x]0, 1| was discretized with a uniform mesh of
902 triangles (1393 degrees of freedom). In Fig. 6 TE and TM bands
are plotted: in this case we note a TE band-gap between first and

second band.
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Fig. 5. Two dimensional photonic crystal made of a square lattice of dielectric

veins (e, = 8.9, d/a = 0.4) in air.

0.8

wal/(2mc)

Fig. 6. Band structure of the square lattice of dielectric veins in air. Solid lines

denote TM modes, dashed lines denotes the TE ones.

The last photonic crystal we study is obtained by a triangu-
lar lattice of circular holes in a dielectric substrate (in our case
g, = 13). The Brillouin zone in this case is no longer a square, but
a hexagon of apothem 7/a. The irreducible zone is the triangle of
vertex I' = (0,0), M = (0,7/a), K = (7/(a\/3),7/a). Fig. 7 shows

a sketch of the crystal, the computational domain and the Brillouin
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zone.

The computational cell is the rhombus of unitary side, whose diago-

M, K

ojfe}e I
coo Y

Fig. 7. Two dimensional photonic crystal made of a triangular lattice of circular

rods in a dielectric substrate (e, = 13, r/a = 0.48).

nals measure 1 and /3, respectively. We discretized this domain with
a mesh composed of 800 triangles and 1240 degrees of freedom. The

band structure for both the polarizations is plotted in Fig. 8. The
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Fig. 8. Band structure of the triangular lattice of holes. Solid lines denote TM

modes, dashed lines denote the TE ones.
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figure shows a complete band-gap, i.e. a band gap for TE and TM

polarizations.
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