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Theorem 4.4. If the restriction of a to any T ∈ Th is constant, there exists a constant

C4 such that, for any T ∈ Th,

ηsc,T ≤ C4{|T |
1

2 �u− uh�L2(DT ) + �p− ph�L2(DT )}. (78)

Proof. This result is an immediate consequence of Lemmas 4.4 and 4.5.

Putting together the results for both estimators we have the following a posteriori

error estimate for the mixed finite element approximation.

We define

η2
T = η2

vect,T + η2
sc,T and η2 =

�

T∈Th

η2
T .

Theorem 4.5. If Ω is simply connected and the restriction of a to any T ∈ Th is

constant, there exist constants C5 and C6 such that

ηT ≤ C5{�u− uh�L2(DT ) + �p− ph�L2(DT )}

and

�u− uh�L2(Ω) + �p− ph�L2(Ω) ≤ C6{η + h�f − Phf�L2(Ω)}.

Proof. This result is an immediate consequence of Theorems 4.1, 4.2, 4.3 and 4.4.

5 The General Abstract Setting

The problem considered in the previous sections is a particular case of a general

class of problems that we are going to analyze in this section. The theory presented

here was first developed by Brezzi [13]. Some of the ideas were also introduced for

particular problems by Babuška [9] and by Crouzeix and Raviart [22]. We also refer

the reader to [32, 31] and to the books [17, 45, 37].

Let V and Q be two Hilbert spaces and suppose that a( , ) and b( , ) are continu-
ous bilinear forms on V × V and V ×Q respectively, i.e.,

|a(u, v)| ≤ �a��u�V �v�V ∀u ∈ V, ∀v ∈ V

and

|b(v, q)| ≤ �b��v�V �q�Q ∀v ∈ V, ∀q ∈ Q.

Consider the problem: given f ∈ V � and g ∈ Q� find (u, p) ∈ V ×Q solution of

�

a(u, v) + b(v, p) = �f, v� ∀v ∈ V
b(u, q) = �g, q� ∀q ∈ Q

(79)

where � . , . � denotes the duality product between a space and its dual one.
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For example, the mixed formulation of second order elliptic problems considered

in the previous sections can be written in this way with

V = H(div, Ω), Q = L2(Ω)

and

a(u,v) =

�

Ω

µu · v dx, b(v, p) =

�

Ω

p div v dx .

The general problem (79) can be written in the standard way

c((u, p), (v, q)) = �f, v�+ �g, q� ∀(v, q) ∈ V ×Q (80)

where c is the continuous bilinear form on V ×Q defined by

c((u, p), (v, q)) = a(u, v) + b(v, p) + b(u, q).

However, the bilinear form is not coercive and therefore the usual finite element error

analysis can not be applied.

We will give sufficient conditions (indeed, they are also necessary although we

are not going to prove it here, we refer to [17, 37]) on the forms a and b for the

existence and uniqueness of a solution of problem (79). Below, we will also show that

their discrete version ensures the stability and optimal order error estimates for the

Galerkin approximations. These results were obtained by Brezzi [13] (see also [17]

were more general results are proved).

Introducing the continuous operators A : V → V �, B : V → Q� and its adjoint

B∗ : Q → V � defined by,

�Au, v�V �×V = a(u, v)

and

�Bv, q�Q�×Q = b(v, q) = �v,B∗q�V×V �

problem (79) can also be written as
�

Au + B∗p = f in V �

Bu = g in Q�.
(81)

Let us introduce W = KerB ⊂ V and, for g ∈ Q�,

W (g) = {v ∈ V : Bv = g}.

Now, if (u, p) ∈ V ×Q is a solution of (79) then, it is easy to see that u is a solution

of the problem

u ∈ W (g), a(u, v) = �f, v� ∀v ∈ W. (82)

We will find conditions under which both problems (79) and (82) are equivalent, in

the sense that for a solution u ∈ W (g) of (82) there exists a unique p ∈ Q such that

(u, p) is a solution of (79).
In what follows we will use the following well-known result of functional analy-

sis. Given a Hilbert space V and S ⊂ V we define S0 ⊂ V � by

S0 = {L ∈ V � : �L , v� = 0, ∀v ∈ S}.
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Theorem 5.1. Let V1 and V2 be Hilbert spaces and A : V1 → V �
2 be a continuous

linear operator. Then,

(KerA)0 = ImA∗ (83)

and

(KerA∗)0 = ImA. (84)

Proof. It is easy to see that ImA∗ ⊂ (Ker A)0 and that (KerA)0 is a closed

subspace of V �
1 . Therefore

ImA∗ ⊂ (KerA)0 .

Suppose now that there exists L0 ∈ V �
1 such that L0 ∈ (KerA)0 \ ImA∗. Then, by

the Hahn-Banach theorem there exists a linear continuous functional defined on V �
1

which vanishes on ImA∗ and is different from zero on L0. In other words, using the

standard identification between V ��
1 and V1, there exists v0 ∈ V1 such that

�L0, v0� �= 0 and �L, v0� = 0 ∀L ∈ ImA∗.

In particular, for all v ∈ V2

�Av0, v� = �v0, A
∗v� = 0

and so v0 ∈ KerA which, since L0 ∈ (KerA)0, contradicts �L0, v0� �= 0. There-
fore, (KerA)0 ⊂ ImA∗ and so (83) holds. Finally, (84) is an immediate conse-

quence of (83) because (A∗)∗ = A.

Lemma 5.1. The following properties are equivalent:

(a) There exists β > 0 such that

sup
v∈V

b(v, q)

�v�V

≥ β�q�Q ∀q ∈ Q. (85)

(b) B∗ is an isomorphism from Q onto W 0 and,

�B∗q�V � ≥ β�q�Q ∀q ∈ Q. (86)

(c) B is an isomorphism from W⊥ onto Q� and,

�Bv�Q� ≥ β�v�V ∀v ∈ W⊥. (87)

Proof. Assume that (a) holds then, (86) is satisfied and so B∗ is injective. Moreover

ImB∗ is a closed subspace of V �, indeed, suppose that B∗qn → w then, it follows

from (86) that

�B∗(qn − qm)�V � ≥ β�qn − qm�Q

and, therefore, {qn} is a Cauchy sequence and so it converges to some q ∈ Q and,

by continuity of B∗, w = B∗q ∈ ImB∗. Consequently, using (83) we obtain that

ImB∗ = W 0 and therefore (b) holds.
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Now, we observe that W 0 can be isometrically identified with (W⊥)�. Indeed,
denoting with P⊥ : V → W⊥ the orthogonal projection, for any g ∈ (W⊥)� we
define g̃ ∈ W 0 by g̃ = g ◦ P⊥ and it is easy to check that g → g̃ is an isometric

bijection from (W⊥)� ontoW 0 and then, we can identify these two spaces. Therefore

(b) and (c) are equivalent.

Corollary 5.1. If the form b satisfies (85) then, problems (79) and (82) are equiva-

lent, that is, there exists a unique solution of (79) if and only if there exists a unique

solution of (82).

Proof. If (u, p) is a solution of (79) we know that u is a solution of (82). It rests

only to check that for a solution u of (82) there exists a unique p ∈ Q such that

B∗p = f − Au but, this follows from (b) of the previous lemma since, as it is easy

to check, f −Au ∈ W 0.

Now we can prove the fundamental existence and uniqueness theorem for prob-

lem (79).

Lemma 5.2. If there exists α > 0 such that a satisfies

sup
v∈W

a(u, v)

�v�V

≥ α�u�V ∀u ∈ W (88)

sup
u∈W

a(u, v)

�u�V

≥ α�v�V ∀v ∈ W (89)

then, for any g ∈ W � there exists w ∈ W such that

a(w, v) = �g, v� ∀v ∈ W

and moreover

�w�W ≤
1

α
�g�W � . (90)

Proof. Considering the operators

A : W → W � and A∗ : W → W �

defined by

�Au, v�W �×W = a(u, v) and �u,A∗v�W×W � = a(u, v),

conditions (88) and (89) can be written as

�Au�W � ≥ α�u�W ∀u ∈ W (91)

and

�A∗v�W � ≥ α�v�W ∀v ∈ W (92)
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respectively. Therefore, it follows from (89) that

Ker A∗ = {0}.

Then, from (84), we have

(KerA∗)0 = ImA

and so

ImA = W �.

Using now (91) and the same argument used in (85) to prove that ImB∗ is closed,

we can show that ImA is a closed subspace of W � and consequently ImA = W �

as we wanted to show. Finally (90) follows immediately from (91).

Theorem 5.2. If a satisfies (88) and (89), and b satisfies (85) then, there exists a

unique solution (u, p) ∈ V ×Q of problem (79) and moreover,

�u�V ≤
1

α
�f�V � +

1

β

�

1 +
�a�

α

�

�g�Q� (93)

and,

�p�Q ≤
1

β

�

1 +
�a�

α

�

�f�V � +
�a�

β2

�

1 +
�a�

α

�

�g�Q� . (94)

Proof. First we show that there exists a solution u of problem (82). Since (85) holds

we know from Lemma 5.1 that there exists a unique u0 ∈ W⊥ such thatBu0 =g and

�u0�V ≤
1

β
�g�Q� (95)

then, the existence of u solution of (82) is equivalent to the existence ofw = u−u0 ∈
W such that

a(w, v) = �f, v� − a(u0, v) ∀v ∈ W

but, from Lemma 5.2, it follows that such a w exists and moreover,

�w�V ≤
1

α
{�f�V � + �a��u0�V } ≤

1

α
{�f�V � +

�a�

β
�g�Q�}

where we have used (95).

Therefore, u = w + u0 is a solution of (82) and satisfies (93).

Now, from Corollary 5.1 it follows that there exists a unique p ∈ Q such that

(u, p) is a solution of (79). On the other hand, from Lemma 5.1 it follows that (86)

holds and using it, it is easy to check that

�p�Q ≤
1

β
{�f�V � + �a��u�V }

which combined with (93) yields (94). Finally, the uniqueness of solution follows

from (93) and (94).
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Assume now that we have two families of subspaces Vh ⊂ V and Qh ⊂ Q.

The Galerkin approximation (uh, ph) ∈ Vh ×Qh to the solution (u, p) ∈ V ×Q of

problem (79), is defined by

�

a(uh, v) + b(v, ph) = �f, v� ∀v ∈ Vh

b(uh, q) = �g, q� ∀q ∈ Qh.
(96)

For the error analysis it is convenient to introduce the associated operator Bh :
Vh → Q�

h defined by

�Bhv, q�Q�

h
×Qh

= b(v, q)

and the subsets of Vh, Wh = KerBh and

Wh(g) = {v ∈ Vh : Bhv = g in Q�
h}

where g is restricted to Qh.

In order to have the Galerkin approximation well defined we need to know that

there exists a unique solution (uh, ph) ∈ Vh × Qh of problem (96). In view of

Theorem 5.2, this will be true if there exist α∗ > 0 and β∗ > 0 such that

sup
v∈Wh

a(u, v)

�v�V

≥ α∗�u�V ∀u ∈ Wh (97)

sup
u∈Wh

a(u, v)

�u�V

≥ α∗�v�V ∀v ∈ Wh (98)

and,

sup
v∈Vh

b(v, q)

�v�V

≥ β∗�q�Q ∀q ∈ Qh. (99)

In fact, (98) follows from (97) since Wh is finite dimensional.

Now, we can prove the fundamental general error estimates due to Brezzi [13].

Theorem 5.3. If the forms a and b satisfy (97), (98) and (99), problem (96) has a

unique solution and there exists a constant C, depending only on α∗, β∗, �a� and

�b� such that the following estimates hold. In particular, if the constants α∗ and β∗

are independent of h then, C is independent of h.

�u− uh�V + �p− ph�Q ≤ C{ inf
v∈Vh

�u− v�V + inf
q∈Qh

�p− q�Q} (100)

and, when KerBh ⊂ KerB ,

�u− uh�V ≤ C inf
v∈Vh

�u− v�V . (101)

Proof. From Theorem 5.2, there exists a unique solution (uh, ph) ∈ Vh×Qh of (96).

On the other hand, given (v, q) ∈ Vh ×Qh, we have

a(uh − v, w) + b(w, ph − q) = a(u− v, w) + b(w, p− q) ∀w ∈ Vh (102)
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and

b(uh − v, r) = b(u− v, r) ∀r ∈ Qh. (103)

Now, for fixed (v, q) , the right hand sides of (102) and (103) define linear functionals
on Vh and Qh which are continuous with norms bounded by

�a��u− v�V + �b��p− q�Q and �b��u− v�V

respectively. Then, it follows from Theorem 5.2 that, for any (v, q) ∈ Vh ×Qh,

�uh − v�V + �ph − q�Q ≤ C{�u− v�V + �p− q�Q}

and therefore (100) follows by the triangular inequality.

On the other hand, we know that uh ∈ Wh(g) is a solution of

a(uh, v) = �f, v� ∀v ∈ Wh (104)

and, since Wh ⊂ W , subtracting (104) from (82) we have,

a(u− uh, v) = 0 ∀v ∈ Wh. (105)

Now, for w ∈ Wh(g), uh − w ∈ Wh and so from (97) and (105) we have

α∗�uh − w�V ≤ sup
v∈Wh

a(uh − w, v)

�v�V

= sup
v∈Wh

a(u− w, v)

�v�V

≤ �a��u− w�V

and therefore,

�u− uh�V ≤

�

1 +
�a�

α∗

�

inf
w∈Wh(g)

�u− w�V .

To conclude the proof we will see that, if (99) holds then,

inf
w∈Wh(g)

�u− w�V ≤

�

1 +
�b�

β∗

�

inf
v∈Vh

�u− v�V . (106)

Given v ∈ Vh, from Lemma 5.1 we know that there exists a unique z ∈ W⊥
h

such that

b(z, q) = b(u− v, q) ∀q ∈ Qh

and

�z�V ≤
�b�

β∗
�u− v�V

thus, w = z + v ∈ Vh satisfies Bhw = g, that is, w ∈ Wh(g). But

�u− w�V ≤ �u− v�V + �z�V ≤ (1 +
�b�

β∗
)�u− v�V

and so (106) holds.
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In the applications, a very useful criterion to check the inf–sup condition (99) is

the following result due to Fortin [32].

Theorem 5.4. Assume that (85) holds. Then, the discrete inf–sup condition (99)

holds with a constant β∗ > 0 independent of h, if and only if, there exists an operator

Πh : V → Vh

such that

b(v −Πhv, q) = 0 ∀v ∈ V , ∀q ∈ Qh (107)

and,

�Πhv�V ≤ C�v�V ∀v ∈ V (108)

with a constant C > 0 independent of h.

Proof. Assume that such an operatorΠh exists. Then, from (107), (108) and (85) we

have, for q ∈ Qh,

β�q�Q ≤ sup
v∈V

b(v, q)

�v�V

= sup
v∈V

b(Πhv, q)

�v�V

≤ C sup
v∈V

b(Πhv, q)

�Πhv�V

and therefore, (99) holds with β∗ = β/C.

Conversely, suppose that (99) holds with β∗ independent of h. Then, from (87)

we know that for any v ∈ V there exists a unique vh ∈ W⊥
h such that

b(vh, q) = b(v, q) ∀q ∈ Qh

and,

�vh�V ≤
�b�

β∗
�v�V .

Therefore, Πhv = vh defines the required operator.

Remark 5.1. In practice, it is sometimes enough to show the existence of the opera-

tor Πh on a subspace S ⊂ V , where the exact solution belongs, verifying (107) and

(108) for v ∈ S and the norm on the right hand side of (108) replaced by a strongest

norm (that of the space S). This is in some cases easier because the explicit con-

struction of the operator Πh requires regularity assumptions which do not hold for a

general function in V . For example, in the problem analyzed in the previous sections

we have constructed this operator on a subspace of V = H(div, Ω) because the de-
grees of freedom defining the operator do not make sense in H(div, T ), indeed, we
need more regularity for v (for example v ∈ H1(T )n) in order to have the integral

of the normal component of v against a polynomial on a face F of T well defined.

It is possible to show the existence of Πh defined on H(div, Ω) satisfying (107) and
(108) (see [32, 46]). However, as we have seen, this is not really necessary to obtain

optimal error estimates.
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