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1 Introduction

Finite element methods in which two spaces are used to approximate two different
variables receive the general denomination of mixed methods. In some cases, the sec-
ond variable is introduced in the formulation of the problem because of its physical
interest and it is usually related with some derivatives of the original variable. This is
the case, for example, in the elasticity equations, where the stress can be introduced
to be approximated at the same time as the displacement. In other cases there are two
natural independent variables and so, the mixed formulation is the natural one. This
is the case of the Stokes equations, where the two variables are the velocity and the
pressure.

The mathematical analysis and applications of mixed finite element methods
have been widely developed since the seventies. A general analysis for this kind of
methods was first developed by Brezzi [13]. We also have to mention the papers by
Babuska [9] and by Crouzeix and Raviart [22] which, although for particular prob-
lems, introduced some of the fundamental ideas for the analysis of mixed methods.
We also refer the reader to [32, 31], where general results were obtained, and to the
books [17, 45, 37].

The rest of this work is organized as follows: in Sect.2 we review some basic
tools for the analysis of finite element methods. Section 3 deals with the mixed for-
mulation of second order elliptic problems and their finite element approximation.
We introduce the Raviart—-Thomas spaces [44, 49, 41] and their generalization to
higher dimensions, prove some of their basic properties, and construct the Raviart—
Thomas interpolation operator which is a basic tool for the analysis of mixed meth-
ods. Then, we prove optimal order error estimates and a superconvergence result for
the scalar variable. We follow the ideas developed in several papers (see for exam-
ple [24, 16]). Although for simplicity we consider the Raviart-Thomas spaces, the
error analysis depends only on some basic properties of the spaces and the interpo-
lation operator, and therefore, analogous results hold for approximations obtained
with other finite element spaces. We end the section recalling other known fami-
lies of spaces and giving some references. In Sect.4 we introduce an a posteriori



2 R.G. Duran

error estimator and prove its equivalence with an appropriate norm of the error up to
higher order terms. For simplicity, we present the a posteriori error analysis only in
the 2-d case. Finally, in Sect. 5, we introduce the general abstract setting for mixed
formulations and prove general existence and approximation results.

2 Preliminary Results

In this section we recall some basic results for the analysis of finite element approx-
imations.

We will use the standard notation for Sobolev spaces and their norms, namely,
given a domain {2 C IR™ and any positive integer k

HY)={p € L*(2): D¢ c L*(2) V |a| <k},
where

alolg

Oé:<O[1,"',Oén>7 |CY|:Oé1+"'+Oén and Da(b:W
RER n

and the derivatives are taken in the distributional or weak sense.
HF¥($2) is a Hilbert space with the norm given by

||¢H§Jk(9) = Z \|Da¢||2L2(Q)~

o] <k

Given ¢ € H*(£2) and j € IN such 1 < j < k we define V/¢ by

IV7g]> = Y |DgP.
la|=j
Analogous notations will be used for vector fields, i.e., if v.= (vq, - ,v,) then

D*v = (D%vy,--- ,D%v,) and
n ) n ]
Vo) = S loilZn gy and (VI[P =37 [Viuf.

i=1 i=1
We will also work with the following subspaces of H!({2):

Hy($2) = {¢ € H'(2) : ¢lon = 0},

HY(2)={p e H'(2): / ¢dx = 0}.
Q
Also, we will use the standard notation Py, for the space of polynomials of degree

less than or equal to k and, if x € IR"™ and « is a multi-index, we will set z% =

a1 (o5
Xy T,m.
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The letter C' will denote a generic constant not necessarily the same at each
occurrence.

Given a function in a Sobolev space of a domain (2 it is important to know
whether it can be restricted to {2, and conversely, when can a function defined on
0f2 be extended to {2 in such a way that it belongs to the original Sobolev space. We
will use the following trace theorem. We refer the reader for example to [38, 33] for
the proof of this theorem and for the definition of the fractional-order Sobolev space

Hz(012).

Theorem 2.1. Given ¢ € H*({2), where £2 C IR™ is a Lipschitz domain, there exists
a constant C' depending only on {2 such that

191113 o) < ClSlar1con.

In particular,

Dll200) < Cllol 1 (2)- (1)

Moreover, if g € H? (092), there exists ¢ € H'(£2) such that $|p = g and
16111y < Cllgll 3

One of the most important results in the analysis of variational methods for ellip-

tic problems is the Friedrichs—Poincaré inequality for functions with vanishing mean
average, that we state below (see for example [36] for the case of Lipschitz domains
and [43] for another proof in the case of convex domains). Assume that (2 is a Lip-

schitz domain. Then, there exists a constant C' depending only on the domain (2 such
that for any f € H'(£2),

I fllz2c2) < CIV fllz2(o)- (2)

The Friedrichs—Poincaré inequality can be seen as a particular case of the next
result on polynomial approximation which is basic in the analysis of finite element
methods.

Several different arguments have been given for the proof of the next lemma. See
for example [12, 25, 26, 51]. Here we give a nice argument which, to our knowledge,
is due to M. Dobrowolski for the lowest order case on convex domains (and as far
as we know has not been published). The proof given here for the case of domains
which are star-shaped with respect to a subset of positive measure and any degree of
approximation is an immediate extension of Dobrowolski’s argument. For simplicity
we present the proof for the L2-case (which is the case that we will use), but the
reader can check that an analogous argument applies for L? based Sobolev spaces
1<p<o0).

Assume that (2 is star-shaped with respect to a set B C (2 of positive measure.
Given an integer k& > 0 and f € H**'(£2) we introduce the averaged Taylor poly-
nomial approximation of f, Qi pf € Py, defined by

Qunf(x) = ﬁ /B Tof(y, ) dy
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where T}, f (y, z) is the Taylor expansion of f centered at y, namely,
@ m —y)°
T = Y D) E "
la|<k :

Lemma 2.1. Let 2 C IR™ be a domain with diameter d which is star-shaped with
respect to a set of positive measure B C (2. Given an integer k > 0 and f €
H**1(02), there exists a constant C = C(k,n) such that, for 0 < |B| < k + 1,

1D ~ Qka)||L2(n)<C:B|1/2 ANV ) G

In particular, if §2 is convex,

IDP(f — Qr.0f)l2(a) < Cd =BV £l 12 (0. 4)

Proof. By density we can assume that f € C°°({2). Then we can write

[e3

F@) = Tif(y.x) = (k+1) Y %

|a|=k+1

/1 DO f(ty + (1 — t)x) t" dt.

0

Integrating this inequality over B (in the variable y) and dividing by |B| we have

F(2) - Qupf () = k“ // =9 pafity + (1 tyr) i+ dt dy

la|=k+1

and so,

/ |f(z) — QB f(2)|* dx

d2(k+1) X
<O g 3 / // 1D f(ty + (1 — t)a)|t dtdy) dz
|| =k+1
d2 (k+1)
<C—— BP ///\Da (ty+(1 —t)z |2dtdy //t%dtdy
|| =k+1
Therefore,

/Q F(@)=Qunf(@) do
d2(k+1
=Cp]

(&)

> /// |D*f(ty + (1 — t)z)|* dt dy dz.

|a|=k+1



Mixed Finite Element Methods 5

Now, for each «,

L] D Sy (1 - t)w)lfdt dy dr
:/Q/B/j D% F(ty + (1 — t)a)[2dt dy dr
—1—/9/3/11|Do‘f(ty+(1—t)a;)|2dtdydm::I+II.

Let us call g, the extension by zero of D f to IR™. Then, by Fubini’s theorem and
two changes of variables we have

Jg/B/j/n |ga(ty+(1—t)x)Qda:dtdy:/B/Oé/n 19 (1= 1)2)|2 da dt dy

://5/ |ga(z)|2(1—t)_"dzdtdy§2"‘1|B|/ D F(2)[2 de.
B JO n 2

Analogously,

1 1
T N N R R O N R
Q% n Q% n

1
:/// \ga(z)|2t_"dzdtdx§2"_1|Q|/ | D% f(2)|? dz.
2JL JRr Q

Therefore, replacing these bounds in (5) we obtain (3) for 3 = 0.
On the other hand, an elementary computation shows that

DPQupf(x) = Qr_ip.a(D°fx) VBl <k

and therefore, the estimate (3) for |3| > 0 follows from the case 5 = 0 applied to
DP¥.

Important consequences of this result are the following error estimates for the
L?-projection onto P,,.

Corollary 2.1. Let 2 C IR"™ be a domain with diameter d star-shaped with respect
to a set of positive measure B C (2. Given an integer m > 0, let P : L*(£2) — Py,
be the L*-orthogonal projection. There exists a constant C' = C(j,n) such that, for
0<j<m+1iff € H (L), then

| ‘1/2

(9]
1f=Pfllrze) < C|B|1/2

&V flr2(0)-
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Remark 2.1. Analogous results to Lemma 3 and its corollary hold for bounded Lip-
schitz domains because this kind of domains can be written as a finite union of star-
shaped domains (see [25] for details).

The following result is fundamental in the analysis of mixed finite element ap-
proximations.

Lemma 2.2. Let 2 C IR™ be a bounded domain. Given f € L*(2) there exists
v € HY(2)" such that
divv=f in{2 (6)

and
IVllz2) < Cllfll22) 7
with a constant C' depending only on (2.

Proof. Let B € IR™ be a ball containing {2 and ¢ be the solution of the boundary
problem
Ap=f inB
{ ¢=0 ondB ®)

It is known that ¢ satisfies the following a priori estimate (see for example [36])

9l 22y < CllfllL2(2)
and therefore v = V¢ satisfies (6) and (7).

Remark 2.2. To treat Neumann boundary conditions we would need the existence of
a solution of divv = f satisfying (7) and the boundary condition v - n = 0 on 0{2.
Such a v can be obtained by solving a Neumann problem in {2 for smooth domains
or convex polygonal or polyhedral domains. For more general domains, including
arbitrary polygonal or polyhedral domains, the existence of v satisfying (6) and (7)
can be proved in different ways. In fact v can be taken such that all its components
vanish on 02 (see for example [2, 7, 30]).

A usual technique to obtain error estimates for finite element approximations is to
work in a reference element and then change variables to prove results for a general
element. Let us introduce some notations and recall some basic estimates.

Fix a reference simplgx T C IR™. Given a simplex T C IR", there exists an
invertible affine map F' : T'— T, F(&) = Az + b, with A € IR"*™ and b € R™.

We call hp the diameter of T" and pr the diameter of the largest ball inscribed in
T (see Fig. 1). We will use the regularity assumption on the elements, namely, many
of our estimates will depend on a constant ¢ such that

h
L <o ©)
PT
It is known that (see [19]), for the matrix norm associated with the euclidean
vector norm, the following estimates hold:
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F "
—
Fig. 1.
h/\
Al<™ e ay < (10)
Pg PT

With any ¢ € L%(T) we associate ¢ € L2(T) in the usual way, namely,
(z) = d(2) (1)

where x = F(&).
We end this section by recalling the so-called inverse estimates which are a fun-

damental tool in finite element analysis. We give only a particular case which will be

needed for our proofs (see for example [19] for more general inverse estimates).

Lemma 2.3. Given a simplex T there exists a constant C = C(o, k,n, T\) such that,
Sforany p € Pi(T),

C
IVPl2ery < 7= lIpllzzr.
T

Proof. Since Py, (IA“) is a finite-dimensional space, all the norms defined on it are
equivalent. In particular, there exists a constant C' depending on & and 7" such that

19500, < Cliol oz, (12)
for any € Py (T).
An easy computation shows that
Vp=A"TVp

where A7 is the transpose matrix of A~!. Therefore, using the bound for || A~ ||

given in (10) together with (12) and (9) we have

/|Vp|2dx:/A|A_T§ﬁ|2|det Aldi < ||A_1H2/A|§ﬁ|2\det Aldi
T T T

% hZ h2.
<O [1Pldet Al =CF [ o< Co? ik [ i an
PrJT Pt Jr h2 Jr
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3 Mixed Approximation of Second Order Elliptic Problems

In this section we introduce the mixed finite element approximation of second order
elliptic problems and we develop the a priori error analysis. We consider the so called
h-version of the finite element method, namely, fixing a degree of approximation we
prove error estimates in terms of the mesh size. We present the error analysis for the
case of L? based norms (following essentially [24]) and refer to [27, 34, 35] for error
estimates in other norms.

As it is usually done, we prove error estimates for any degree of approximation
under the hypothesis that the solution is regular enough in order to show the best
possible order of a method. However, the reader has to be aware that, in practice, for
polygonal or polyhedral domains (which is the case considered here!) the solution
is in general not smooth due to singularities at the angles and therefore the order of
convergence is limited by the regularity of the solution of each particular problem
considered. On the other hand, for domains with smooth boundary where the solu-
tions might be very regular, a further error analysis considering the approximation of
the boundary is needed.

Consider the elliptic problem

—div(aVp) = f in {2
{ p=0 ondf? (13)

where {2 C IR is a polyhedral domain and a = a(z) is a function bounded by above
and below by positive constants.
In many applications the variable of interest is

u=—aVp

and then, it could be desirable to use a mixed finite element method which approxi-
mates u and p simultaneously. With this purpose, problem (13) is decomposed into
a first order system as follows:

u+aVp=0 in{2
divu=f in (14)
p=0 ondf.

To write an appropriate weak formulation of this problem we introduce the space
H(div, 2) = {v € L*(2)" : divv € L*(2)}

which is a Hilbert space with norm given by

2

”V”H(diV,Q)

= ||V||%2(Q) + | diVV||%2(n)~
Defining p(x) = 1/a(x), the first equation in (14) can be rewritten as

pu+Vp =0 in (2.
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Multiplying by test functions and integrating by parts we obtain the standard weak
mixed formulation of problem (14), namely,

/,uu-vdx—/pdivvdx:O Vv € H(div, £2)
2 7

(15)
/qdivudx:/ fqdz Vg € L*(92).
o) o)

Observe that the Dirichlet boundary condition is implicit in the weak formulation
(i.e., it is the type of condition usually called natural). Instead, Neumann boundary
conditions would have to be imposed on the space (essential conditions). This is
exactly opposite to what happens in the case of standard formulations.

The weak formulation (15) involves the divergence of the solution and of the test
functions but not arbitrary first derivatives. This fact allows us to work on the space
H(div, £2) instead of the smaller H'(§2)" and this will be important for the fi-
nite element approximation because piecewise polynomials vector functions do not
need to have both components continuous to be in H (div, {2), but only their normal
component.

In order to define finite element approximations to the solution (u, p) of (15) we
need to introduce finite-dimensional subspaces of H (div, {2) and L?({2) made of
piecewise polynomial functions.

For simplicity we will consider the case of triangular elements (or its generaliza-
tions to higher dimensions) and the associated Raviart—-Thomas spaces which are the
best-known spaces for this problem. This family of spaces was introduced in [44]
in the 2-d case, while its extension to three dimensions was first considered in [41].
Since no essential technical difficulties arise in the general case, we prefer to present
the spaces and the analysis of their properties in the general n-dimensional case (al-
though, of course, we are mainly interested in the cases n = 2 and n = 3). Below
we will comment and give references on different variants of spaces.

First we introduce the local spaces, analyze their properties and construct the
Raviart-Thomas interpolation.

Given a simplex 7" € IR", the local Raviart-Thomas space [44, 41] of order
k > 0 is defined by

RT(T) = Prp(T)" + 2 Pr(T) (16)
In the following lemma we give some basic properties of the spaces RT'(T).
We denote with F;, i = 1,--- ,n + 1, the faces of a simplex 7" and with n; their

corresponding exterior normals.

Lemma 3.1. (@) dim RT,,(T) = n(*1") + (*7771),

(b) If v.e RT(T) then, v -n; € Py(F;) for i=1,--- ,n+ 1
(c) If v.€ RT\(T) is such that divv = 0 then, v € P}..

Proof. Any v € RT(T') can be written as
V=w-+2zx Z aar® 17
o=k

with w € Pp.
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Recall that dim P, = (k‘};") and that the number of multi-indeces « such that
la| = kis ("777"). Then, (a) follows from (17).
Now, the face Fj is on a hyperplane of equation z-n; = s with s € IR. Therefore,

if v.=w+axpwithw € P}’ and p € Py, we have
ven,=w-n,+zr-mup=w-n;,+specPy

which proves (b).
Finally, if div v = 0 we take the divergence in the expression (17) and conclude
easily that a,, = 0 for all « and therefore (¢) holds.

Our next goal is to construct an interpolation operator
Iy : HY(T)" — RT}

which will be fundamental for the error analysis. We fix k and to simplify notation
we omit the index k in the operator.

For simplicity we define the interpolation for functions in H* (7)™ although it is
possible (and necessary in many cases!) to do the same construction for less regular
functions. Indeed, the reader who is familiar with fractional order Sobolev spaces
and trace theorems will realize that the degrees of freedom defining the interpolation
are well defined for functions in H*(T")", with s > 1/2.

The local interpolation operator is defined in the following lemma.

Lemma 3.2. Given v € H'(T)", where T € IR™ is a simplex, there exists a unique
IIpv € RT(T) such that

/HTv-nipkds:/ v-n;ppds Vpr, € Pp(Fy), i=1,--- ,n+1 (18)
F; F;

i

and, if k > 1,

/HTv~pk,1 dr = / vV pi_1dz Vpr_1 € P (T). (19)
T T

Proof. First, we want to see that the number of conditions defining I17v equals the
dimension of RT',(T). This is easily verified for the case & = 0, so let us consider
the case k > 1.

Since dim Py (F;) = (Hzfl), the number of conditions in (18) is

# of faces x dim Py (F;) = (n + 1)<k+n — 1).

k
On the other hand, the number of conditions in (19) is

k-l—n—l)

PR (T) —
dimP;_{(T) n( ko1
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Then, the total number of conditions defining 17V is

(n+1)(k+zl) +n(k2f11>.

Therefore, in view of (a) of lemma (3.1), we have to check that

n(k—ktn>+<k+z—l> =(n+1)<k+z_1>+n<k—£ﬁ;1>

or equivalently,
k+n\ (k+n-1 . k+n—1
k B k k—1

which can be easily verified.
Therefore, in order to show the existence of I/7v, it is enough to prove unique-
ness. So, take v € RT(T) such that

/V-nipdeZO Vpr € Pp(Fi), i=1,--- ,n+1 (20)
F;

and
/ VPt de =0 Ypy_y € PPy (T). @)
T

From (b) of Lemma 3.1 and (20) it follows that v - n; = 0 on Fj;. Then, using
now (21) we have

/(divv)de:—/V-V(divv)dac:O
T T

because V(divv) € Pj_,(T). Consequently divv = 0 and so, from (c) of
Lemma 3.1 we know that v € P} (T).

Therefore, foreachi = 1,--- ,n+ 1, the component v - n; is a polynomial of de-
gree k on T" which vanishes on F;. Therefore, calling \; the barycentric coordinates
associated with T" (i.e., \; () = 0 on F;), we have

Ven; = Aiqr—1

with gz—1 € Pr—1(T). But, from (21) we know that

/ v-n;pp_1de =0 Vpp_1 € Pr_1(T)
T

and choosing px_1 = q;—1 we obtain

/ Nigi_y dx = 0.
T

Therefore, since \; does not change sign on 7', it follows that g;—; = 0 and con-
sequently v-n; = 0in 7T for¢ = 1,--- ,n + 1. In particular, there are n linearly
independent directions in which v has vanishing components and, therefore, v = 0
as we wanted to see.
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! oo

Fig. 2. Degrees of freedom for RT and RT'; in IR?

Figure 2 shows the degrees of freedom defining /I for k = O and k¥ = 1 in
the 2-d case. The arrows indicate normal components values and the filled circle,
moments of the components of v (and so it corresponds to two degrees of freedom).

To obtain error estimates for the mixed finite element approximations we need
to know the approximation properties of the Raviart-Thomas interpolation I/7. The
analysis given in [44, 49] makes use of general standard arguments for polynomial-
preserving operators (see [19]). The main difference with the error analysis for La-
grange interpolation is that here we have to use an appropriate transformation, known
as the Piola transform, which preserves the degrees of freedom defining II7v.

The Piola transform is defined as follows. Given two domains {2, {2 C IR™ and
a smooth bijective map F' : 2 — (2, let DF be the Jacobian matrix of F' and
J = de/‘g DF'. Assume that J does not vanish at any point, then, we define for
ve L))"

1~
v(z) = |J(£)|DF(x)v(x)
where © = F(&). Here and in what follows, the hat over differential operators indi-
cates that the derivatives are taken with respect to Z.

We recall that scalar functions are transformed as indicated in (11) (we are us-
ing the same notation for the transformation of vector and scalar functions since no
confusion is possible).

In the particular case that F' is an affine map given by A% + b we have J = det A
and 1

v(z) = — Av(Z). (22)
/]

In the next lemma we give some fundamental properties of the Piola transform.
For simplicity, we prove the results only for affine transformations, which is the use-
ful case for our purposes. However, it is important to remark that analogous results
hold for general transformations and this is important, for example, to work with
general quadrilateral elements.

Lemma 3.3. If v € H(div,T) and ¢ € H*(T) then

/divvo;dx:/A&;vésdfc, (23)
T T
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/v-wdg::/j.%df (24)
T T
and
/ v-n¢>ds=/j-ﬁ¢3d§. (25)
oT oT
Proof. From the definition of the Piola transform (22) we have
1 R 1 1  ~. . 1 1~ . .1
Dv(z) = mAD(V o F7 ) (x) = mADV(a:)DF (x) = mADV(x)A .
Then,
divv =tr Dv L trf(ADvVA™Y) L tr DV L dive
ivv = = — = — = —div
/| || ||

and therefore (23) follows by a change of variable.
To prove (24) recall that o
Vo =A"TV¢.
Then,
/ v -Vodr = /AAO ATV di = /Av Vo di.
T T T
Finally, (25) follows from (23) and (24) applying the divergence theorem.

Remark 3.1. The integral over T in the previous lemma has to be understood as a
. 1 1
duality product between v-n € H~2(9T) and ¢ € Hz (0T).

We can now prove the invariance of the Raviart-Thomas interpolation under the
Piola transform.

Lemma 3.4. Given a simplex T € R™ and v € H*(T)" we have
;% = v, (26)
Proof. We have to check that I/]T\v satisfies the conditions defining 17, jqff, namely,
/A ﬁT\v~ﬁiﬁkd§:/A\7«ﬁiﬁkd§ Vo € Pu(Fy), i=1,--,n+1, (7)
F; F;
where F; = F~1(F}), and
/?17T\V “Pr-1di = /?‘7 Pr_1dd Vpr_1 € PP (T). (28)

Given py, € Pk(ﬁi) we have

/Afwﬁiﬁkdé:/ v -0 p ds. (29)
F,

Fi k3
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Indeed, this follows from (25) by a density argument. We can not apply (25) directly
because the function obtained by extending pj by zero to the other faces of 7' is
not in H 3 (0T') and, therefore, it is not the restriction to the boundary of a function
¢ € H'(T). However, we can take a sequence of functions ¢; € C§°(F;) such that
q; — px in L?(F;) and, since the extension by zero to 9T of g; is in H 2 (9T, there
exists ¢; € H'(T) such that the restriction of ¢; to F; is equal to g;. Therefore,
applying (25) we obtain,

ﬁ\\%ﬁi(jjdé:/ v-n;q;ds
7 F,

i

and therefore, since v - n; € LQ(Fi), we can pass to the limit to obtain (29). Analo-
gously we have

/Aﬁ;?-ﬁiﬁkdg:/ v - n; py, ds.

and therefore (27) follows from condition (18) in tlle definition of IIrv.
To check (28) observe that, for py_1 € P}, (T), we have

/A]7T\v~f)k_1di:/ \J|A v - |J|A  pre_s|J| " da
T T
:/HTV'|J|A7TA71Pk—1dI
T
:/v-\J|A*TA*1pk_1dx:/Av-pk_ld:;;
T T
where we have used condition (19) and that | J|A=T A~ p,_y € P, (T).

We can now prove the optimal order error estimates for the Raviart-Thomas
interpolation.

Theorem 3.1. There exists a constant C depending on k, n and the regularity con-
stant o such that, forany v € H™(T)" and 1 < m <k + 1,

||V — HTV”LQ(T) < Ch}n”VmVHLQ(T). (30)

Proof. First we prove an estimate on the reference element T. We will denote with
C' a generic constant which depends only on k, n and 7'. For each face F; of 1" let

A~ o~

{p’ }1<j<n be abasis of Py(F;) and let {py, } 1<m<ns be a basis of P, (T'). Then,

associated with this basis we can introduce the Lagrange-type basis of RT; (f),
{6}, ¥} defined by

ﬁ\qb;'nipg:éirajsv /A¢§"pm:0,
F; T
] 1 N

A4 i,r = ,"',7’L—|—17 .]'75:17...7 , m=1.--

) )

M



Mixed Finite Element Methods 15
and
/fi/)m “Pe=0me;, Ym-m=0
Y mtl=1,---M, i=1,--n+1.
Then,

ii(/ v nlp])gﬁl (%) +Z(/v pm)wm( )

m=1

Now, from the trace theorem (1) on T we have

~ i PATTIN
‘/ﬁv.nipj‘ < Cl¥l 4 7y
Clearly, we also have
’/T‘A’ : pm’ < C”‘A’HLz(f)'

In both estimates the constant C depends on bounds for the polynomials p} and p,,

and then, it depends only on k, n and T.

Therefore, using now that ||’ | L2(D) and ||y, ]| L2(T) &€ also bounded by a con-

(T)
stant C' we obtain

”HfV”LQ(T) < C”"H}p(f)‘ (31)
Using now the relation (26) and making a change of variables we have
[ e ds = [ 1172 Amgs Pl de < 1A [ g da.
T T T
Then, using the bound for || A (10) and (31) we obtain
/|HTV|2dx<\J| 1hr /|v|2da;+/ |Dv\2dx (32)

but, since v = |J|A~'v and Dv = |J|A~'DvA, using the bounds for ||A|| and
A=Y (10,

ha . h~h
Wl <|J|-Z|v|] and  |Dv| < |J|-Z=L|Dv]|
T PT Pp

and so, it follows from (32), changing variables again, that

2 h4
v <c{ o2 W IEacry + 21 DVIacr)
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Therefore, from the regularity hypothesis (9) we obtain
VT2l acry < C{IVleer) + hr | DVilsan } (33)

where the constant depends only on JA“, k, n and the regularity constant o.
Now we use a standard argument. Since P;(T) C RTy(T) we know that
IItq = qforall g € P7(T) and then

v —1Irv| 2y = IV —a— (v —a)ll (1)

< C{llv —dll2(r) + hr|D(v — )|l 2 () }
where the constant depends on that in (33). Therefore, we conclude the proof apply-
ing Lemma 2.1.

Let us now introduce the global Raviart-Thomas finite element spaces. Assume
that we have a family of triangulations {73} of {2, i.e., 2 = Upc, T, such that the
intersection of two elements in 7}, is either empty, or a vertex, or a common edge or
face and h is a measure of the mesh-size, namely, h = maxrc7, hr.

We assume that the family of triangulations is regular, i.e., for any 1" € 7;, and
any h, the regularity condition (9) is satisfied with a uniform o.

Associated with the triangulation 7;, we introduce the global space

RT(Tp) = {v € H(div, 2) : v|r € RT(T) VT € Tp,} (34)

When no confusion arises we will drop the 7}, from the definition and call RT'y, the
global space. A fundamental tool in the error analysis is the operator

I, : H(div,2)n [[ H ()" — RT}
TeTy
defined by
v\ = lpv vT € Ty,.

We have to check that 1T, v € RT. Since by definition I[Irv € RTy(T), it only
remains to see that IT,v € H(div, £2).

First we observe that a piecewise polynomial vector function is in H (div, {2)
if and only if it has continuous normal component across the elements (this can
be verified by applying the divergence theorem). But, since v € H(div, {2), the
continuity of the normal component of 17, v follows from (b) of Lemma 3.1 in view
of the degrees of freedom (18) in the definition of I17.

The finite element space for the approximation of the scalar variable p is the
standard space of, not necessarily continuous, piecewise polynomials of degree k,
namely,

PUTL) = {q € L*(2) : qlr € Pu(T) : VT € Tp,} (35)

where the d stands for “discontinuous”. Also in this case we will write only P,‘j when
no confusion arises. Observe that, since no derivative of the scalar variable appears
in the weak form, we do not require any continuity in the approximation space for
this variable.

In the following lemma we give two fundamental properties for the error analysis.



Mixed Finite Element Methods 17

Lemma 3.5. The operator I1}, satisfies
/ div(v — IIv) gdz =0 (36)
(0]

Vv e H(div,2) N [[peq, H(T)" andVq € P Moreover,
divRT), = P{. (37)

Proof. Using (18) and (19) it follows that, for any v € H'(T)™ and any q € Py (T),

/ div(v — Ipv)qde = 7/(v —IIrv) - quer/ (v—Irv) - ng=0
T T T
thus, (36) holds.

It is easy to see that div RT), C P In order to see the other inclusion recall
that from Lemma 2.2 we know that div : H ()" — L?(2) is surjective. Therefore,
given g € P{ there exists v € H'({2)" such that divv = q. Then, it follows from
(36) that div I, v = ¢ and so (37) is proved.

Introducing the orthogonal L?-projection P, : L?(£2) — P4, properties (36) and

(37) can be summarized in the following commutative diagram
HY(Q)" 2% 12(0)
1, | | P (38)
RT, &% pd 0

where, to simplify notation, we have replaced H (div, £2) N [Tyc,, H'(T)" by its
subspace H'(£2)".

Our next goal is to give error estimates for the mixed finite element approxima-
tion of problem (13), namely, (up, pr) € RT) X P,‘j defined by

/uuh~vdx—/ph divvdzr =0 Vv € RTYy,

/qdivuhdx:/fqu vqu;j.
0 0

It is important to remark that, although we are considering the particular case
of the Raviart—-Thomas spaces on simplicial elements, the error analysis only makes
use of the fundamental commutative diagram property (38) and of the approximation
properties of the projections I1;, and F},. Therefore, similar results can be obtained
for other finite element spaces.

Lemma 3.6. If u and uy, are the solutions of (15) and (39) then,

[u—unllz2(0) < (L + [|allpe @) lpllzo () [un — Hpul|z2(0)-
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Proof. Subtracting (39) from (15) we obtain the error equations

/,u(u—uh)-vda;—/(p—ph) divvdr =0 Vv € RT}, (40)
Q Q
and,
/ q div(u —uyp)dez =0 Vg € P (41)
Q

Using (36) and (41) we obtain
/ q div(ITyu — u,) dz =0 Vg € P?
Q

and, since (37) holds, we can take ¢ = div(II,u — uy,) to conclude that
diV(Hhu — uh) =0.

Therefore, taking v = I, u — uy, in (40) we obtain

/ pwa—uyp) - (IIyu—up)de =0
Q
and so,

T = w3y < llallie o) [ (I = (I = wy) da
(9]

< lall ooy |l oo () [HTna = a2y [[HTpa — w20
and we conclude the proof by using the triangle inequality.

As a consequence, we have the following optimal order error estimate for the
approximation of the vector variable u.

Theorem 3.2. If the solution u of problem (14) belongs to H™(£2)", 1 < m < k+1,
there exists a constant C depending on ||a| 1 (), ||1t]| Lo (), k. n and the regularity
constant o, such that

||11 — uh||L2(m S Chm”VmuHLz(Q).

Proof. The result is an immediate consequence of Lemma 3.6 and Theorem 3.1.

In the next theorem we obtain error estimates for the scalar variable p. We will
use that
||V—HhVHL2(_Q) < ChHVHHl(Q) Vv € Hl(Q) 42)

which follows from a particular case of Theorem 3.1. In particular,

Thv | L2(0) < CllvIE (02)- (43)
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Lemma 3.7. If (u, p) and (uy, py) are the solutions of (15) and (39), there exists a
constant C depending on ||a|| L (o), ||pt]| Lo (), k. 7 and the regularity constant o,
such that

lp = pullezo) < C{llp — Pupllre(o) + lu — Hpul[22(0)}- (44)

Proof. From (37) we know that for any ¢ € P,‘f there exists wj, € RT'j such that
div wj, = q. Moreover, it is easy to see that wj, can be taken such that

[WhllL2(2) < CllgllLe(2)- (45)

Indeed, recall that w, = II,w where w € H'(§2) satisfies divw = ¢ and
Wz (o) < Cllgllz2(o) (from Lemma 2.2 we know that such a w exists). Then,
(45) follows from (43).

Now, from the error equation (40) we have

/ (Prp —pp) divvde = / (u—uy)vde Vv € RT,
o o

and so, taking v € V}, such that divv = P,p — pp, and
[Vllz2(@) < CllPup — prllL2(2),
we obtain
1Pup = pill72(0) < Cllu—anll 20| Pap — prllL2 ()
which combined with Lemma 3.6 and the triangular inequality yields (44).

As a consequence, we obtain an error estimate for the approximation of the scalar
variable p.

Theorem 3.3. If the solution (u,p) of problem 14 belongs to H™(£2)™ x H™({2),
1 <m <k + 1, there exists a constant C depending on ||a|| L (o), ||l Lo (02, k. 1
and the regularity constant o, such that

Ip = pullzze) < CA™{[IV™ul[L2(0) + V"Dl L2(2) }- (46)

Proof. The result follows immediately from Theorem 3.2, Lemma 3.7 and the error
estimates for the L2-projection given in (2.1).

For the case in which (2 is a convex polygon or a smooth domain and the coeffi-
cient a is smooth enough to have the a priori estimate

o202y < CollfllL2(o) 47)

we also obtain a higher order error estimate for ||P,p — pp||z2() using a duality
argument.
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Lemma 3.8. If a € W1°°(§2) and (47) holds, there exists a constant C depending
on ||allw1.0c (), [|1t] Lo (2), k. n, Co and the regularity constant o such that

| Prp — pullz2(2) < Ch{[[u—up|p2(0) + [[div(a —up) |2 (o) }- (48)

Proof. We use a duality argument. Let ¢ be the solution of

div(aVe@) = Ppp —pp, in 2
¢=0 on Of2.

Using (36), (37), (40), (41), and (42) we have,
1Pl = | (Pup =) div(aVo) do
= / (Prp — pr) div II(aV¢) dx = / (p —pn) div I (aV @) dx
I?) 7]

:/ ,u(u—uh)-(Hh(av¢)—av¢)dx+/(u—uh)~V¢dm
17

7
= / pla—ug) - (I (aVe) —aVe) dax — / div(u —up)(¢ — Pro) dz
o 7
< Ollu — wp|[ 22y hll9ll g2(0) + Clldiv(a — up) | 22y Pl Dl 51 (2)

where for the last inequality we have used that a € W1°°(£2). The proof concludes
by using the a priori estimate (47) for ¢.

Theorem 34. If a € WY(£2), (47) holds, u € H**'(Q2)" and f € H*1(1),
there exists a constant C' depending on ||a||yw1.0 (), ||1t]| Lo (2), k. n. Co and the
regularity constant o such that

1Pup — pallrzco) < CRFP2{IVY | 2oy + IV 2oy }- (49)

Proof. The second equation in (39) can be written as div u, = Py, f. Then we have
diV(ll — uh) = f — th

and, therefore, the theorem follows from Theorem 3.2 and Lemma 3.8 and the error
estimates for the L2-projection given in (2.1).

The estimate for || P,p — pn||£2(s2) given by this theorem is important because it
can be used to construct superconvergent approximations of p, i.e., approximations
which converge at a higher order than p;, (see for example [11, 48])

For the sake of clarity we have presented the error analysis for the Raviart—
Thomas spaces which were the first ones introduced for the mixed approximation
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of second order elliptic problems. However, as we mentioned above, the analysis
makes use only of the existence of a projection I[;, satisfying the commutative dia-
gram property and on approximation properties of I1;, and of the L?-projection on
the finite element space used to approximate the scalar variable p.

For the particular case of the Raviart-Thomas spaces the regularity assumption
(9) can be replaced by the weaker “maximum angle condition” (see [1] for £ = 0
and n = 2, 3, [28] for k = 1 and n = 2 and [29] for general k£ > 0 and n = 2, 3).

The Raviart-Thomas spaces were constructed in order to approximate both vec-
tor and scalar variables with the same order. However, if one is more interested in
the approximation of the vector variable u, one can try to use different order approx-
imations for each variable in order to reduce the degrees of freedom (thus reducing
the computational cost) while preserving the same order of convergence for u pro-
vided by the R, spaces. This is the main idea to define the following spaces which
were introduced by Brezzi, Douglas and Marini [16]. Although with this choice the
order of convergence for p is reduced, estimate (49) allows to improve it by a post-
processing of the computed solution [16].

In the examples below, we will define the local spaces for each variable. It is not
difficult to check that the degrees of freedom defining the spaces approximating the
vector variable guarantee the continuity of the normal component and therefore the
global spaces are subspaces of H (div, 2).

Forn = 2, k > 1 and T a triangle, the space BDM (T) is defined in the
following way:

BDM,(T) = PA(T) (50)

and the corresponding space for the scalar variable is Py_1(T).
Observe that
dim BDM(T) = (k+ 1)(k + 2).

For example, dim BDM(T) = 6 and dimm BDMy(T) = 12. Figure 3 shows the
degrees of freedom for these two spaces. The arrows correspond to degrees of free-
dom of normal components while the circles indicate the internal degrees of freedom
corresponding to the second and third conditions in the definition of I/ below.
In what follows, ¢;, i = 1,2, 3 are the sides of T', by = A{ A2z is a “bubble”
function and, for ¢ € H*(£2),
¢ 0¢

curl¢ = (a—y, —%>

Fig. 3. Degrees of freedom for BDM 1 and BDM o
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The operator 7 for this case is defined as follows:

/HTv~nipkds:/v~nipkds Vpr € Pe(l;), i=1,2,3
¢ ;

£;

/ v -Vpg_1dr = / V- Vpr_1dx Vpp_1 € Pr_1(T)
T T

and, when k£ > 2

/ Ipv - curl (brpy_2) dx = / v - curl (brpg_2) dx Vpg_o € Pr_o(T).
T T

The reader can check that all the conditions for convergence are satisfied in this
case. Property (36) follows from the definition of //7 and the proof of its existence
is similar to that of Lemma 3.2. Consequently, the same arguments used for the
Raviart-Thomas approximation provide the same error estimate for the approxima-
tion of u that we had in Theorem 3.2 while for p we have

P = prllLzo) < CR™{|IV™ullr2(2) + V"Dl }

1 < m < k and the estimate does not hold for m = k + 1 i.e., the best order of
convergence is reduced in one with respect to the estimate obtained for the Raviart—
Thomas approximation.

However, with the same argument used in Lemma 3.8 it can be proved that,
for k > 2,

[ Prp = phllr2(2) < C{hllu —anll 20y + P ||div(a — up)|| 2¢0) )

indeed, since P} is the orthogonal projection on 7?,‘571 and £ — 1 > 1, this follows
by using that
¢ — Puollrz(2) < Ch?(|6]l m2(0) (51)

in the last step of the proof of that lemma.
Therefore, for £k > 2, we obtain the following result analogous to that in
Theorem 3.4

1Pp = prllz2e) < CRF2{IV | 20 + (V7 Fllz2 e }-

On the other hand, if & = 1, (51) does not hold (because in this case P}, is the
projection over piecewise constant functions). Then, in this case we can prove only

|1 Pap = phllrzc2) < CR*{|IVull 20y + IV fll L2 }-

As we mentioned before, these estimates for || P,p—pp || .2 () can be used to improve
the order of approximation for p by a local post-processing.

Several rectangular elements have also been introduced for mixed approxima-
tions. We recall some of them (and refer to [17] for a more complete review).

First we define the spaces introduced by Raviart and Thomas [44]. For nonnega-
tive integers k, m we call Q, ,,, the space of polynomials of the form
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T L1

l Vo

Fig. 4. Degrees of freedom for R7T'o and RT'

k. m
q(z,y) =D aya'y’
i=0 j=0

then, the RT';,(R) space on a rectangle R is given by

RTk(R) = Qry1,6(R) X Qkpr1(R)

and the space for the scalar variable is Qj (R). It can be easily checked that

dim RT(R) = 2(k + 1)(k + 2).

Figure 4 shows the degrees of freedom for £ = 0 and k£ = 1.

23

Denoting with /;, ¢ = 1, 2, 3, 4 the four sides of R, the degrees of freedom defin-

ing the operator I1 for this case are

/HTV~nipkd€:/v~nipkd€ Vor € Pr(l;), i=1,2,3,4

4

and (for k > 1)

/ v - ¢ dr = / V- ¢rpdr Vo € Qr_1.:(R) X Qrk—1(R).
R R

Our last example in the 2D case are the spaces introduced by Brezzi, Douglas

and Marini on rectangular elements. They are defined for & > 1 as

BDM(R) = P}(R) + (curl (z"'y)) + (curl (zy" 1))

and the associated scalar space is Pr_1(R). It is easy to see that
dim BDMy(R) = (k+1)(k+ 2) + 2.

The degrees of freedom for £ = 1 and k£ = 2 are shown in Fig. 5.
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Vo Vol

Fig. 5. Degrees of freedom for BDM 1 and BDM o

The operator I is defined by

/HTV-nipkdﬁz/v-nipkdE Vor € Pr(l;), i=1,2,3,4
0 ¢

i

and (for k > 2)

/ v -pi_ode = / V- Ppr_adr Ypir_2 € Pi_o(R).
R R

The RT; as well as the BD M, spaces on rectangles have analogous properties
to those on triangles. Therefore, the same error estimates obtained for triangular
elements are valid in both cases.

More generally, one can consider general quadrilateral elements. Given a convex
quadrilateral (), the spaces are defined using the Piola transform from a reference
rectangle R to Q. Let us define for example the Raviart-Thomas spaces RT'\(Q).

Let R = [0,1] x [0,1] be the reference rectangle and F' : R — () a bilinear
transformation taking the vertices of R into the vertices of ). Then, we define the
local space RT;(R) by using the Piola transform, i.e., if x = F(Z), DF is the
Jacobian matrix of ' and J = |det DF

s

RTLQ)={v:Q - R? : v(z) = ﬁDF(:%)O(i) with v € RTx(R)}.
Also in this case similar error estimates to those obtained for triangular elements
can be proved under appropriate regularity assumptions on the quadrilaterals. The
analysis of this case is more technical and so we omit details and refer to [5, 37, 49].

3-d extensions of the spaces defined above have been introduced by Nédélec [41,
42] and by Brezzi, Douglas, Durdn and Fortin [14]. For tetrahedral elements the
spaces are defined in an analogous way, although the construction of the operator I/
requires a different analysis (we refer to [41] for the extension of the RT';, spaces
and to [42, 14] for the extension of the BD M, spaces). In the case of 3-d rectangular
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elements, the extensions of RT'j, are again defined in an analogous way [41] and the
extensions of BD M, [14] can be defined for a 3-d rectangle R by

BDDF(R) = P} + ({curl (0,0, 2y 12", i=0,...,k})
+({curl (0, 251yt 0), i=0,...,k})
+({curl (¢ 19*72,0,0), i=0,...,k})

where now we are using the usual notation curl v for the rotational of a 3-d vector
field v.

All the convergence results obtained in 2-d can be extended for the 3-d spaces
mentioned here. Other families of spaces, in both 2 and 3 dimensions which are
intermediate between the RT" and the 5D M spaces were introduced and analyzed
by Brezzi, Douglas, Fortin and Marini [15].

Finally, we refer to [10] for the case of general isoparametric hexahedral
elements.

4 A Posteriori Error Estimates

In this section we present an a posteriori error analysis for the mixed finite element
approximation of second order elliptic problems. For simplicity, we will assume that
the restriction of the coefficient a in (13) to any element of the triangulation is con-
stant. If not, higher order terms corresponding to the approximation of a arise in the
estimates.

For simplicity, we prove the results for the approximations obtained by the
Raviart-Thomas spaces and in the 2-d case. However, simple variants of the method
can be applied for mixed approximations in other spaces, in particular, for all the
spaces described in the previous section.

We introduce error estimators of the residual type for both scalar and vector vari-
ables and prove that the error is bounded by a constant times the estimator plus a
term which is of higher order (i.e., what is usually called “reliability” of the esti-
mator). We also prove that the estimator is less than or equal a constant times the
error. This last estimate (usually called “efficiency” of the estimator) is local, more
precisely, the error in one element 7" can be bounded below by the estimators in the
same triangle plus the estimators in the elements sharing a side with 7.

It is well known that several mixed methods are related to nonconforming fi-
nite element approximations (see [6]). In particular the lowest order Raviart—Thomas
method corresponds to the nonconforming linear elements of Crouzeix—Raviart (see
also [40]).

A posteriori error estimates were obtained first for the Crouzeix—Raviart method
by using a Helmoltz type decomposition of the error (see [23]). The same technique
has been applied for mixed finite element approximations in [4, 18]. In [4] only the
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vector variable is estimated while in [18] both variables are estimated, but to esti-
mate the scalar variable the a priori estimate (47) was assumed to hold. In particular,
this hypothesis excludes nonconvex polygonal domains. We refer also to [3, 39] for
related results.

Our analysis for the vector variable follows the approach of [4, 18], while for
the scalar variable we present a new argument which does not require the a priori
estimate (47).

We will use the following well-known approximation result. We denote with
Pj;q the standard continuous piecewise polynomials of degree k + 1. For any
¢ € H'(£2) there exists ¢, € Py, such that

16 = nllze) < CUUZ IV a9 (52)

and,
¢ = dnllrz(r) < C|T|1/2HV¢HL2(¢F) (53)

where T is the union of all the elements sharing a vertex with 7' (we can take for ex-
ample the Clément approximation [21] or any variant of it (see for example [37, 47]).
We will use the notation curl¢ introduced in the previous section for ¢ €
H'(2) and for v € H'(£2)? we define
rotv = % — %
oxr Oy’
Also, for a field v such that its restriction v |7 to each T' € 7}, belongs to H*(T)? we
will denote with rot j, v the function such that its restriction to 7" is given by rot (v|r).
For an element 7', let E be the set of edges of 7" and ¢ be the unit tangent on ¢
oriented clockwise. For an interior side ¢, [[uy,-t]] , denotes the jump of the tangential
component of uy, namely, if 77 and 75 are the triangles sharing ¢, and ¢; and ¢, the
corresponding unit tangent vectors on ¢ then

[[uh 'tﬂe =up|r ct—up|m b = up|n b upn -t

We define

2up -t if £ COS.

We now introduce the estimator for the vector variable and prove the efficiency
and reliability of this estimator.
The local error estimator is defined by

5 { [un 1], if £ 002

Mocet,r = |TIlIrotwunl|Zz ey + D 11 Tel 720
{eET

and the global one by,

2 _ § 2
Nvect = nvect,T'
TETh
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The key point to prove the reliability of the estimator is to decompose the error
by using a generalized Helmholtz decomposition given in the next lemma.

Lemma 4.1. If the domain (2 is simply connected and v € L*(2)?, then there exist
Y € HE(2) and ¢ € H'(82) such that

v =aVy + curl ¢ (54)

and
VAl (o) + IVl 22y < Clviizz o) (55)

with a constant C' depending only on a.
Proof. To obtain this decomposition we solve the problem
div(aVy) =divv

with ¢ € H& (£2), namely, v satisfies

/aVzb-VE:/v-Vf Ve € H(92).
0 0
In particular, choosing £ = 1 we obtain

V]2 (2) < CllviL2(0)- (56)

Now, since
div(v —aVy) =0,

and the domain is simply connected, there exists ¢ € H'({2) such that (54) holds.
Moreover, observe that (55) follows easily from (56) and (54).

Theorem 4.1. If {2 is simply connected and the restriction of a to any T € T}, is
constant, there exists a constant Cy such that

||11 - uh||L2(_Q) < Cl{nvect + h”f - thHL2(Q)}' (57)

Proof. For ¢ € H'(£2) we have

/,uu~curl¢dz:f/Vp'curlqﬁda;:O.
Q ¢

Analogously, for ¢, € Py 1, curl ¢, € RT, and therefore, using the first equation
in (39),

/ puy, - curl oy, de = 0.
2
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Then,
/u(u—uh)-curl¢dm:—/Muh-curl(qﬁ_qsh)dx
Q 2

:72{/roth puh)(¢f¢h)dx+/aTuuh.t(¢*¢h)ds}
:_Z{/mth pug) (¢ — ¢p) da + = Z/Je ¢— ¢h)d8}

/EE

Then, if ¢, € Py, is an approximation of ¢ satisfying (52) and (53), applying the
Schwarz inequality we obtain

/ M (ll - uh) : CllI'l(,ZSdl‘ S Cnvect|¢|l,!2- (58)
2

On the other hand, if ) € H{ (£2) we have

| uta=w)-avode= [ @) Vo

2

- [ dvtu-w)vde =~ [ (F=Puf)vdo =~ [ (F-Paf) (=P do
0 0 7
and, therefore, using that
¥ = Puibll2(0) < Ch|[VY| L2 (a),

which follows immediately from Corollary 2.1, we obtain

[ (=) Vide < CHlf = Puflize Vol 69
Using now Lemma 4.1 for v = u — u;, we have
u—uy =aVy + curlo
with ¢y € H}(£2) and ¢ € H'(§2) such that
Vo2 + VY2 (2) < Cllu—un|[L2(0).- (60)
Then,

||u—uh||2L2(Q) SC{/ ,u(u—uh)-curlqbdx—l—/(u—uh)-Vz/Jd:U}
17 17}

and therefore (57) follows immediately from (58), (59) and (60).

To prove the efficiency we will use a well-known argument of Verfiirth [50, 52].
In our case this argument will make use of the following lemma.

Lemma 4.2. Given a triangle T and functions g7 € L*(T) and, for each side { of
T, pe € L*({), there exists ¢ € Py13(T) such that
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Jporde= [ qrrdc YrePy(T),

Jypsde = [,prsdx Vs e Pry() Ve € Ep, (61)
o=0 at the vertices of T.
Moreover,
IVell2cry < CUTI 2 larllzzay + > 172 Ipell 2} (62)
teEET

Proof. The number of conditions is

(k+2)(k+1)
2

(k+2)(k+7)

dim Py (T) 4+ 3dim Py (¢) = 9

+3(k+2) =
while the dimension of the subspace of P}, 3 of polynomials vanishing at the vertices
of T'is

dim Py.43(T) — 3 = (“4)2(’”5) 5 (k+2)2(k+7).

Therefore, (61) is a square system and so it is enough to show the uniqueness. So,
assume that
Jporde=0 VrePy(T)

feqﬁsdx:O Vs € Pri1(0) Ve € Ep (63)
=0 at the vertices of 7.

Since ¢ vanishes at the vertices of /, it follows from the second condition in (63) that
¢ = 0 on the sides of T". Then,

qb = AMAA37T with r € Py,
and, therefore, it follows from the first condition in (63) that ¢ = 0.
We will call Dp the union of 1" with the triangles sharing a side with it.

Theorem 4.2. If the restriction of a to any T € T}, is constant, there exists a constant
Cs such that, for any T € Ty,

Nveet, 7 < Ca|lu —upl|z2(p,)- (64)

Proof. We apply Lemma 4.2 on T" and its neighbors T}, i = 1,2, 3 (we assume that
T does not have a side on 92, trivial modifications are needed if this is not the case).
In this way we can construct ¢ € HE(Dr) vanishing at the vertices of 7" and 73,
1 = 1,2, 3 and such that

/ ordr = f/ |T| rot p, (puy,) rdex Vr € Pr(T) (65)
T T
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/¢5d$:*/|f|<]gsd$ Vs € Pry1(£), VL € Er, (66)
0 4

/ orde=0  Vre Py (67)
TY

and
/¢ sdx =0 Vs € Pr+1(f) on the other two sides of T;. (68)
¢

Since ¢ vanishes at the boundary of D1 we can extend it by zero to obtain a function
¢ € Hi(£2). Then,

/Qu(u—uh)-curlqﬁdx:—Z{/Troth(uuh)gbdx+% Z /Zngi)ds}.

T teET
(69)
But,
roth(uuh)\T S Pk(T) and Jy € 'P}c+1(f)7

therefore, we can take r = rot (uuy) and, for each ¢ € Ep, s = Jy in (65) and (66)
respectively to obtain

/ rotp(puy) ¢ do = —|T|Hrothuh||%2(T)
T

and

> [ds == 3 (Al

LeEp LeEy
Analogously, using now (66), (67), (68), we obtain

/roth(,uuh)¢>dx:0, 1=1,2,3
T.

and

>, /Jgdwls = |0l TellZ2), i=1,2,3
. 7
leEr,

where ¢ =T NT;.
Therefore, recalling that ¢ vanishes outside Dy, it follows from (69) that

Moeet, T = / p(u—uy) - curlpde
; Dy

and so,
Moeerr < Cllu—upl| L2Vl L2 (D)
But, using (62) we have
1 1
IVl L2y < CLTI? ot n(pan) 2y + >, 12 1 Tell2 0y} < Civeer.r
teET

and therefore (64) holds.
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To estimate the error in the scalar variable p we introduce the local estimator

Neerr = |THIVapn + il oy + D 1 [pa]l 720
teET

where [[p]], denotes the jump of pj, across the side £ if £ is an interior side or
([pn]], = 2pn if £ C 042 and, for a function g such that its restriction to each T' € 7j,
belongs to H*(T') we denote with V¢ the function such that its restriction to 7" is
given by V(q|r).

Then, the global estimator is defined as usual by

2 _ E 2
Nse = nsc,T .
TeT,

The next lemma shows that the error in the scalar variable is bounded by 7. plus
the error in the vector variable.

Apart from (30) we will use the following error estimate which can be obtained
in a similar way.

If ¢ is a side of an element 1" we have

(v = H7v) - 1| 20 < CH 2| VY] L2 (2. (70)
Lemma 4.3. There exists a constant C' such that

Il = pullezo) < Ci{nse + [u —unl|L2(0)}-

Proof. By Lemma 2.2 we know that there exists v € H!(£2)? such that
divv=p—pp (71)
and

IVl < Cllp —prlle o) (72)

with a constant C' depending only on the domain.
Then,

HP—PthLz(Q):/Q(p—ph)divvdm

= / (p—pn)div(v — IIv) dz + / (p — pn)div IIv dx
0 Q (73)

= / (p — pp) div(v — I v) dx
Q

7/9u(ufuh)'(Vthv)da?Jr/Q,u(u*uh)-vdx.
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But using that

/pdiv(v—ﬂhv)dx—/uu~(v—H;Lv)dac=O
Q 2

and integrating by parts on each element we have

/(p—ph)div(v—Hhv)dx—/ pwla—uy) - (v — IIpv) de
Q Q

= Z {/thph-(V—Hhv)dxf/anh(fohv)~nds

TeTy

+ /Tuuh (v —IIpv) da:}

= Z { /T(Vhph +puy) - (v — Ipv) dz

TeTy

—% Z /g[[phﬂe(v—ﬂhv)-nds}.

leET

Therefore, the Lemma follows from this equality and (73) using the Schwarz in-
equality and the error estimates (30) and (70).

Using now the results for the vector variable we obtain the following a posteriori
error estimate for the scalar variable.

Theorem 4.3. If {2 is simply connected and the restriction of a to any T € Tj, is
constant, there exists a constant Cs such that

2 = prlle22) < Ca{nse + Mvect + hllf — Pufllrzo)}- (74)

Proof. This result follows immediately from Theorem 4.1 and Lemma 4.3.

To prove the efficiency of 1. we first prove that the jumps involved in the defini-
tion of the estimator can be bounded by the error plus the other part of the estimator.

Lemma 4.4. There exists a constant C such that
1212 || [[on]] 2 o) < Clllp—pull L2 ooy HO lu =il L2 (o HENV mpn+ 1 2o, }
where Dy is the union of the triangles sharing (.

Proof. If ¢ € Erp, it follows from the regularity assumption on the meshes that
1 . . .
|¢| ~ hy ~ |T|z. Now, since p is continuous we have

Hen]l Nzz = Hlen = 2]l 220
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and so, applying the trace inequality (1) and the standard scaling argument, we obtain

€)% enll Nz2e) < C{llon = Pllz2oey + VIVR (@R — D)2 (D0
< C{llpn = pllL2(p,) + [l Vipn + pull2(p,)
< C{llpr = pllz2py) + VP + pun|z2(p,)
+ (e —up)llr2(p,)}
concluding the proof because y is bounded.

Now, in order to bound ||Vypp, + pu 2 (1) by the error we will use again the
argument of Verfiirth.

Lemma 4.5. There exists a constant C such that
1 1
T2 |V hpn + pag || L2y < C{T2[u = wnllz2(r) + lp = pullzzey ) (75)
Proof. Using again that

/uu-vdm—/pdivvdxzo Vv € H(02)?
7} Q

we have, for any v € H}(T)?,

/,u(u—uh)-vd;v—/(p—ph) divvd:r:—/,uuh-vdx—i—/ph divvdx
T T T T

:—/,uuh-vdac—/Vhph~vdx=—/(Vhph+uuh)-vda:.
T T T

Choosing now v = —bp(Vypp + puy), with by € P3(T) vanishing at the boundary
and equal to one at the barycenter of 7', we obtain

/,u(ufuh)~vdx7/(pfph) divvdx:/ \Vhpn + pap,|*bp dz. (76)
T T T

But, since V,py, + puy, € Pra1(T), a standard argument (equivalence of norms in
a reference element and an affine change of variables) gives

/ \Vipn + pug|? do < C’/ IV hpn + pug by da,
T T

which together with (76) and the Schwarz inequality yields

IVapntpan| ey < Clllu—upnllo|V]2cy+p—prll L2y IV VI L2 ()} (T7)

but, since by is bounded by a constant independent of 7" we know that
IVllLzry < ClIVapn + panl| L2 r)
and, using the inverse inequality given in Lemma 2.3,
_1
Vvlzzery < CIT|"2||Vipn + pap | L2 (1)
and, therefore, (75) follows from (77).

Collecting the lemmas we can prove the efficiency of the estimator 7.
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Theorem 4.4. If the restriction of a to any T € Ty, is constant, there exists a constant
Cy such that, for any T € Ty,

1
Nse,r < C{|T|2 [u —up|l2(pyy + Ip — PrllL2(or) }- (78)

Proof. This result is an immediate consequence of Lemmas 4.4 and 4.5.

Putting together the results for both estimators we have the following a posteriori
error estimate for the mixed finite element approximation.

We define

M = Noeetr + Moo and n> = > i

TeT),

Theorem 4.5. If (2 is simply connected and the restriction of a to any T € Tp, is
constant, there exist constants Cs and Cg such that

nr < Cs{llu—upllL2(pr) + lp — rlle2or
and

u—wpllr2(2) + Ip — Prllez2) < Celn+ hllf — Pufllrzco)}

Proof. This result is an immediate consequence of Theorems 4.1, 4.2, 4.3 and 4.4.

5 The General Abstract Setting

The problem considered in the previous sections is a particular case of a general
class of problems that we are going to analyze in this section. The theory presented
here was first developed by Brezzi [13]. Some of the ideas were also introduced for
particular problems by Babuska [9] and by Crouzeix and Raviart [22]. We also refer
the reader to [32, 31] and to the books [17, 45, 37].

Let V and @ be two Hilbert spaces and suppose that a(, ) and b( , ) are continu-
ous bilinear forms on V' x V and V' x @ respectively, i.e.,

la(u, )| < lallllullv vy VueV,VveV

and
b(v, )| < [ollllv]lvllalle VveV, VgeQ.

Consider the problem: given f € V' and g € @’ find (u,p) € V' x @ solution of

a(u,v) + b(v,p) = (f,v) YveV
{ b(u,q) = (9,9) Yq€Q (79)

where (., .) denotes the duality product between a space and its dual one.
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For example, the mixed formulation of second order elliptic problems considered
in the previous sections can be written in this way with

V = H(div,2), Q= L*)
and
a(u,v):/ﬂu-valac7 b(v,p):/pdivvdx.
[0 0
The general problem (79) can be written in the standard way

c((u,p), (v,q)) = (f,v) +(9,q9) V(v,q) €V xQ (80)

where c is the continuous bilinear form on V' x () defined by

c((u,p), (v,9)) = a(u,v) + b(v,p) + b(u, q).

However, the bilinear form is not coercive and therefore the usual finite element error
analysis can not be applied.

We will give sufficient conditions (indeed, they are also necessary although we
are not going to prove it here, we refer to [17, 37]) on the forms a and b for the
existence and uniqueness of a solution of problem (79). Below, we will also show that
their discrete version ensures the stability and optimal order error estimates for the
Galerkin approximations. These results were obtained by Brezzi [13] (see also [17]
were more general results are proved).

Introducing the continuous operators A : V' — V', B : V — @’ and its adjoint
B* : Q — V' defined by,

<AU, v>V’><V = CL(’LL, ’U)
and
<BU, q>Q’><Q = b(U, q) = <’U, B*Q>V><V’
problem (79) can also be written as
Au+B*p=f in V'
{ Bu=g in Q. @D

Let us introduce W = KerB C V and, for g € Q’,
W(g) ={veV: Bv=g}

Now, if (u,p) € V X @ is a solution of (79) then, it is easy to see that u is a solution
of the problem
ue W(g), alu,v)={(f,v) YveW. (82)

We will find conditions under which both problems (79) and (82) are equivalent, in
the sense that for a solution v € W (g) of (82) there exists a unique p € @ such that
(u,p) is a solution of (79).

In what follows we will use the following well-known result of functional analy-
sis. Given a Hilbert space V and S C V we define S° C V' by

SO={LeV':(L,v)=0, Yve S}
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Theorem 5.1. Let Vi and V, be Hilbert spaces and A : Vi — V4 be a continuous

linear operator. Then,
(Ker A)® = ITm A~ (83)

and
(Ker A) =Tm A. (84)

Proof. Tt is easy to see that Im A* C (Ker A)° and that (Ker A)° is a closed
subspace of V7. Therefore
ImA* C (Ker A)°.

Suppose now that there exists Lo € V{ such that Ly € (Ker A)° \ Im A*. Then, by
the Hahn-Banach theorem there exists a linear continuous functional defined on V{
which vanishes on I'm A* and is different from zero on Lg. In other words, using the
standard identification between V" and V;, there exists vy € V; such that

(Lo,vo) #0 and (L,v9) =0 VL € Im A*.
In particular, for all v € V5
(Avg, v) = (vg, A"v) =0

and so vg € Ker A which, since Ly € (Ker A)°, contradicts (Lo, vo) # 0. There-
fore, (Ker A)° C I'm A* and so (83) holds. Finally, (84) is an immediate conse-
quence of (83) because (A*)* = A.

Lemma 5.1. The following properties are equivalent:
(a) There exists 3 > 0 such that

b(v,q)

veV HU”V

= fllalle VqeQ. (85)

(b) B* is an isomorphism from Q onto W° and,
1B*qllv: = Bllalle  Va € Q. (86)

(c) B is an isomorphism from W onto Q' and,

|Bv|lgr > Bllvlly Yo e W (87)

Proof. Assume that (a) holds then, (86) is satisfied and so B* is injective. Moreover
Im B* is a closed subspace of V', indeed, suppose that B*q,, — w then, it follows
from (86) that

||B*(Qn - Qm)HV’ > ﬁHQn - qWHQ

and, therefore, {g, } is a Cauchy sequence and so it converges to some ¢ € ) and,
by continuity of B*, w = B*q € Im B*. Consequently, using (83) we obtain that
I'm B* = W9 and therefore (b) holds.
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Now, we observe that W can be isometrically identified with (W =)’. Indeed,
denoting with P+ : V' — W+ the orthogonal projection, for any g € (W)’ we
define § € W% by § = g o P+ and it is easy to check that g — § is an isometric
bijection from (W)’ onto W and then, we can identify these two spaces. Therefore
(b) and (c) are equivalent.

Corollary 5.1. If the form b satisfies (85) then, problems (79) and (82) are equiva-
lent, that is, there exists a unique solution of (79) if and only if there exists a unique
solution of (82).

Proof. If (u,p) is a solution of (79) we know that v is a solution of (82). It rests
only to check that for a solution u of (82) there exists a unique p € @ such that
B*p = f — Au but, this follows from (b) of the previous lemma since, as it is easy
to check, f — Au € WP,

Now we can prove the fundamental existence and uniqueness theorem for prob-
lem (79).

Lemma 5.2. If there exists o > 0 such that a satisfies

U)o ol Vuew (88)
veW ”v”V

U)oy e w (89)
wew  ||ullv

then, for any g € W' there exists w € W such that
a(w,v) = (g,v) Yo e W

and moreover .
el < —lgllw. (90)

Proof. Considering the operators
AW —W and A* W — W’
defined by
(Au, V)wrww = a(u,v) and (u, A*v)wxw = a(u,v),
conditions (88) and (89) can be written as
|Aullw > allullw  Yue W 1)

and
A v||wr > a|lvllw Yo e W 92)
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respectively. Therefore, it follows from (89) that
Ker A* = {0}.
Then, from (84), we have
(Ker A)? =Tm A
and so
ImA=W".
Using now (91) and the same argument used in (85) to prove that Im B* is closed,

we can show that Im A is a closed subspace of W’ and consequently Im A = W’
as we wanted to show. Finally (90) follows immediately from (91).

Theorem 5.2. If a satisfies (88) and (89), and b satisfies (85) then, there exists a
unique solution (u,p) € V x @Q of problem (79) and moreover,

1 1
full < 211+ 5 (14 240 g ©3)
" o Jall (. llal
1 a a a
e < 5 (1+ ) i+ B0 (1 LY g 00

Proof. First we show that there exists a solution u of problem (82). Since (85) holds
we know from Lemma 5.1 that there exists a unique ug € W+ such that Bug =g and

1
lwollv < Fllgller (95)

then, the existence of u solution of (82) is equivalent to the existence of w = u—wug €
W such that
a(w,v) = (f,v) — a(ug,v) Yo € W

but, from Lemma 5.2, it follows that such a w exists and moreover,

1 1 llall
< — ’ < — ’ —_— ’
Jully < 5017 + lalluollvy < 240l + 15 gl

where we have used (95).

Therefore, u = w + uy is a solution of (82) and satisfies (93).

Now, from Corollary 5.1 it follows that there exists a unique p € () such that
(u,p) is a solution of (79). On the other hand, from Lemma 5.1 it follows that (86)
holds and using it, it is easy to check that

1
IPle = Z £ v+ llalllulv}

which combined with (93) yields (94). Finally, the uniqueness of solution follows
from (93) and (94).
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Assume now that we have two families of subspaces V;, C V and @, C Q.
The Galerkin approximation (uy,, pp) € Vi, X @, to the solution (u,p) € V' x @ of
problem (79), is defined by

{a(uh,v) +b(v,pp) = (f,v) YveV, 96)
b(un,q) = (9,9) Vq € Qn.

For the error analysis it is convenient to introduce the associated operator By, :
Vi, — @), defined by
(Bhv, @)@ xqi = b(v,q)
and the subsets of V},, W}, = Ker By, and

Wi(9) ={veV, : Byv=g in Q}}

where ¢ is restricted to Q.

In order to have the Galerkin approximation well defined we need to know that
there exists a unique solution (up,pn) € Vi X @) of problem (96). In view of
Theorem 5.2, this will be true if there exist a* > 0 and §* > 0 such that

sup a(u, v) > a|ully Yue W, 97)
vew, [lv[lv
sup a(u,v) > |||y VYo e W, (98)
ueWy, ||U’HV
and,

b(v,q "

©.9) 5 glglg Ve Qn ©9)
vev, [[vllv

In fact, (98) follows from (97) since W}, is finite dimensional.
Now, we can prove the fundamental general error estimates due to Brezzi [13].

Theorem 5.3. If the forms a and b satisfy (97), (98) and (99), problem (96) has a
unique solution and there exists a constant C, depending only on o*, 3%, ||a| and
||b]| such that the following estimates hold. In particular, if the constants o and [3*
are independent of h then, C'is independent of h.

lu—unllv+1p=pulle < C{inf [[u—v|v+ inf [p—qgle} (100)
vEV) q€Qn
and, when Ker B;, C Ker B,
lu—wup|ly < C inf ||u—ovy. (101)
veVh

Proof. From Theorem 5.2, there exists a unique solution (uy,, pp) € Vi, X Qp, of (96).
On the other hand, given (v, q) € V}, X Qp, we have

a(up —v,w) +b(w,pp, —q) = alu —v,w) +b(w,p—q) YweV, (102)
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and
b(up, —v,r) =blu—v,r) Yr e Q. (103)

Now, for fixed (v, q) , the right hand sides of (102) and (103) define linear functionals
on V}, and )}, which are continuous with norms bounded by

lalllw—vllv +[[ollllp —gllq and [[b]l[u —v][v
respectively. Then, it follows from Theorem 5.2 that, for any (v, q) € V}, x Qp,

lun = vllv + [lpn = glle < C{llu—vlv +p - qlle}

and therefore (100) follows by the triangular inequality.
On the other hand, we know that u;, € W},(g) is a solution of

a(up,v) = (f,v) YveW, (104)
and, since W, C W, subtracting (104) from (82) we have,
alu—up,v) =0 Yo € Wy (105)
Now, for w € Wj,(g), up, — w € W}, and so from (97) and (105) we have

o lun —wlly < sup B0V _ g, Al

—w,v)
vew,  |lvllv vew,  [[vllv

< [lalllu = wllv
and therefore,

lu — uplly < <1 + a||) inf |ju—w|y.
a* ) weWy(g)

To conclude the proof we will see that, if (99) holds then,

, oIy
f - < (14— f Jjlu— . 106
wElVrT}h(g) ”u wHV N < * ﬂ* Uléth HU UHV ( )

Given v € V},, from Lemma 5.1 we know that there exists a unique z € W,f‘
such that

b(Z, q) = b(u -0, q) VQ € Qh

and
1oty < L — oy
B
thus, w = z + v € V}, satisfies Byw = g, thatis, w € Wj(g). But
o]l
v —wlv < llu—=vlly +zllv <1+ 7 Mu —vllv

and so (106) holds.
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In the applications, a very useful criterion to check the inf—sup condition (99) is
the following result due to Fortin [32].

Theorem 5.4. Assume that (85) holds. Then, the discrete inf-sup condition (99)
holds with a constant 3* > 0 independent of h, if and only if, there exists an operator

Hh V- ‘/h,
such that
b(v—Ipv,q) =0 Yv eV, VqgeQy (107)
and,
| IIpv|ly < Cllvlly YveV (108)

with a constant C' > 0 independent of h.

Proof. Assume that such an operator 11, exists. Then, from (107), (108) and (85) we
have, for ¢ € Qy,,

1 17
Bl < sup 752 b)) b, q)

lvllv — wev  |lv]lv vev [ nv|lv

and therefore, (99) holds with 5* = 3/C.
Conversely, suppose that (99) holds with 5* independent of k. Then, from (87)
we know that for any v € V there exists a unique v}, € VVhl such that

b(vh7Q) = b(’U, Q) vq S Qh

and,
lioll
[vnllv < 5 [[v]lv

Therefore, II;,v = vy, defines the required operator.

Remark 5.1. In practice, it is sometimes enough to show the existence of the opera-
tor I}, on a subspace S C V, where the exact solution belongs, verifying (107) and
(108) for v € .S and the norm on the right hand side of (108) replaced by a strongest
norm (that of the space .S). This is in some cases easier because the explicit con-
struction of the operator 1}, requires regularity assumptions which do not hold for a
general function in V. For example, in the problem analyzed in the previous sections
we have constructed this operator on a subspace of V' = H(div, {2) because the de-
grees of freedom defining the operator do not make sense in H (div,T'), indeed, we
need more regularity for v (for example v € H'(T)") in order to have the integral
of the normal component of v against a polynomial on a face F' of T" well defined.
It is possible to show the existence of IT;, defined on H (div, {2) satisfying (107) and
(108) (see [32, 46]). However, as we have seen, this is not really necessary to obtain
optimal error estimates.
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