Daniele Boffi

Examples

Plan of the Course

PDE's Classificatior

Classical computational methods

Daniele Boffi

Dipartimento di Matematica, Università di Pavia http://www-dimat.unipv.it/boffi

Complexity and its Interdisciplinary Applications

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Some examples

A second order ODE

$$-u''(x) = f(x)$$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Some examples

A second order ODE

$$-u''(x)=f(x)$$

Solution can be explicitly determined (closed form solution)

$$u'(x) = u'(x_0) + \int_{x(0)}^{x} u''(t) dt = u'(x_0) - \int_{x(0)}^{x} f(t) dt$$

$$u(x) = u(x_0) + \int_{x(0)} u'(t) dt$$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Some examples

A second order ODE

$$-u''(x)=f(x)$$

Solution can be explicitly determined (closed form solution)

$$u'(x) = u'(x_0) + \int_{x(0)}^{x} u''(t) dt = u'(x_0) - \int_{x(0)}^{x} f(t) dt$$

$$u(x) = u(x_0) + \int_{x(0)}^{x} u'(t) dt$$

In general

$$u(x) = \alpha + \beta x - \int \int f(t) \, dt$$

Daniele Boffi

Examples

Plan of th Course

PDE's Classification

Some examples (cont'ed)

One dimensional convection equation (PDE)

$$\frac{\partial u}{\partial t}(x,t) - \frac{\partial u}{\partial x}(x,t) = 0$$

Daniele Boffi

Examples

Plan of th Course

PDE's Classification

Some examples (cont'ed)

One dimensional convection equation (PDE)

$$\frac{\partial u}{\partial t}(x,t) - \frac{\partial u}{\partial x}(x,t) = 0$$

Closed form solution

$$u(x,t)=w(x+t)$$

Daniele Boffi

Examples

Plan of th Course

PDE's Classification

Some examples (cont'ed)

One dimensional convection equation (PDE)

$$\frac{\partial u}{\partial t}(x,t) - \frac{\partial u}{\partial x}(x,t) = 0$$

Closed form solution

$$u(x,t)=w(x+t)$$

Daniele Boffi

Examples

Plan of th Course

PDE's Classification

Some examples (cont'ed)

One dimensional wave equation

$$\frac{\partial^2 u}{\partial t^2}(x,t) - c^2 \frac{\partial^2 u}{\partial x^2}(x,t) = 0$$

Daniele Boffi

Examples

Plan of th Course

PDE's Classification

Some examples (cont'ed)

One dimensional wave equation

$$\frac{\partial^2 u}{\partial t^2}(x,t) - c^2 \frac{\partial^2 u}{\partial x^2}(x,t) = 0$$

Closed form solution

 $u(x, t) = w_1(x + ct) + w_2(x - ct)$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Some examples (cont'ed)

One dimensional wave equation

$$\frac{\partial^2 u}{\partial t^2}(x,t) - c^2 \frac{\partial^2 u}{\partial x^2}(x,t) = 0$$

Closed form solution

$$u(x, t) = w_1(x + ct) + w_2(x - ct)$$

Proof

Daniele Boffi

Examples

Plan of th Course

PDE's Classification

Some examples (cont'ed)

One dimensional heat equation

$$rac{\partial u}{\partial t}(x,t)-rac{\partial^2 u}{\partial x^2}(x,t)=0, \qquad x\in(0,1), \,\,t>0$$

Daniele Boffi

Examples

Plan of th Course

PDE's Classification

Some examples (cont'ed)

One dimensional heat equation

$$rac{\partial u}{\partial t}(x,t)-rac{\partial^2 u}{\partial x^2}(x,t)=0, \qquad x\in(0,1), \,\,t>0$$

Closed form solution

$$u(x,t) = \sum_{j=1}^{\infty} u_{0,j} e^{-(j\pi)^2 t} \sin(j\pi x),$$

where $u_0(x) = u(x, 0)$ is the initial datum and

$$u_{0,j} = 2 \int_0^1 u_0(x) \sin(j\pi x) \, dx$$

Daniele Boffi

Examples

Plan of th Course

PDE's Classification

Some examples (cont'ed)

Convection equation

$$\frac{\partial u}{\partial t} + \operatorname{div}(\vec{\beta}u) = 0$$

First order linear equation.

N.B.: divergence operator div
$$\vec{v} = \sum_{i=1}^{d} \frac{\partial v_i}{\partial x_i}$$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Some examples (cont'ed)

Convection equation

$$\frac{\partial u}{\partial t} + \operatorname{div}(\vec{\beta}u) = 0$$

First order linear equation.

N.B.: divergence operator div $\vec{v} = \sum_{i=1}^{d} \frac{\partial v_i}{\partial x_i}$

This equation states the mass conservation of a body occupying a region $\Omega \in \mathbb{R}^d$, with density u and velocity $\vec{\beta}$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Some examples (cont'ed)

Laplace/Beltrami/Poisson equation

 $-\Delta u = f$

Second order linear equation.

N.B.: Laplace operator $\Delta v = \sum_{i=1}^{d} \frac{\partial^2 v}{\partial x_i^2}$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Some examples (cont'ed)

Laplace/Beltrami/Poisson equation

 $-\Delta u = f$

Second order linear equation.

N.B.: Laplace operator $\Delta v = \sum_{i=1}^{d} \frac{\partial^2 v}{\partial x_i^2}$

This equation states the diffusion of a homogeneous and isotropic fluid occupying a region $\Omega \in \mathbb{R}^d$, as well as the vertical displacement of an elastic membrane. Fundamental equation for several models.

Daniele Boffi

Examples

Plan of th Course

PDE's Classification

Heat equation

$$\frac{\partial u}{\partial t} - \Delta u = f$$

Some examples (cont'ed)

Second order linear equation

Daniele Boffi

Examples

Plan of th Course

PDE's Classification

Some examples (cont'ed)

Heat equation

$$\frac{\partial u}{\partial t} - \Delta u = f$$

Second order linear equation

Wave equation

$$\frac{\partial^2 u}{\partial t^2} - \Delta u = 0$$

Second order linear equation

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Some examples (cont'ed)

Burgers equation (d = 1)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$$

First order quasi-linear equation

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Some examples (cont'ed)

Burgers equation (d = 1)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$$

First order quasi-linear equation

Viscous Burgers equation (d = 1)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}, \qquad \varepsilon > 0$$

Second order semi-linear equation

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Plan of the Course

• Classification of Partial Differential Equations (PDE)

From elliptic to hyperbolic PDE's

Parabolic equation

Examples with Matlab Conclusions and comments

Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Plan of the Course

Classification of Partial Differential Equations (PDE)

From elliptic to hyperbolic PDE's

Parabolic equation

- Examples with Matlab
- Conclusions and comments
- Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

• Classification of Partial Differential Equations (PDE)

Plan of the Course

- Elliptic PDE's
 - Finite differences

I initial elements
 Where the theory is elegant and complete
 Errors all plac to hyperbolic PDE's

Parabolic equation

Examples with Matlab Conclusions and comments

Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of Partial Differential Equations (PDE) Elliptic PDE's

Plan of the Course

• Finite differences

Finite elements

Where the theory is elegant and complete....

From elliptic to hyperbolic PDE's

Parabolic equation

- Examples with Matlab
- Conclusions and comments
- Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

• Classification of Partial Differential Equations (PDE)

Plan of the Course

- Elliptic PDE's
 - Finite differences
 - Finite elements

where the tropple at youth shit and complete SERS aloging of a daily man

Parabolic equation

Examples with Matlab Conclusions and commentation

Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...

Parabolic equation

- Examples with Matlab.
- Conclusions and comments
- Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Plan of the Course

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
 - Finite differences
 - Finite elements

Where the theory is elegant and complete...

Parabolic equation

Examples with Matlab Conclusions and commentations

Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

• Classification of Partial Differential Equations (PDE)

Plan of the Course

- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's

Parabolic equation

- Examples with Matlab.
- Conclusions and comments
- Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Plan of the Course

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...

From elliptic to hyperbolic PDE's

Parabolic equation

Examples with Matlab Conclusions and commentations

Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

• Classification of Partial Differential Equations (PDE)

Plan of the Course

- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's

Parabolic equation

- Examples with Matlab.
- Conclusions and comments
- Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

• Classification of Partial Differential Equations (PDE)

Plan of the Course

- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's

Examples with Matlab Conclusions and compension

Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification • Classification of Partial Differential Equations (PDE)

- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's

- Examples with Matlab
- Conclusions and comments
- Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation

Examples with Matlab Conclusions and commen

Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation

- Examples with Matlab
- Conclusions and comments
- Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation
 - Finite differences, upwind

Integrating along the characteristics

Examples with Matlab Conclusions and common

Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation
 - Finite differences, upwind
 - Integrating along the characteristics
 - Stabilization of finite elements
 - Parabolic equation

- Examples with Matlab
- Conclusions and comments
- Questions and answers
Daniele Boffi

Examples

Plan of the Course

PDE's Classification • Classification of Partial Differential Equations (PDE)

Plan of the Course

- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation
 - Finite differences, upwind
 - Integrating along the characteristics

Stabilization of finite elements

Examples with Matlab

Conclusions and comments

Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation
 - Finite differences, upwind
 - Integrating along the characteristics
 - Stabilization of finite elements
 - Parabolic equation

- Examples with Matlab
- Conclusions and comments
- Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation
 - Finite differences, upwind
 - Integrating along the characteristics
 - Stabilization of finite elements

Parabolic equation

Examples with Matlab

Conclusions and comments

Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation
 - Finite differences, upwind
 - Integrating along the characteristics
 - Stabilization of finite elements
 - Parabolic equation

- Examples with Matlab.
- Conclusions and comments
- Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification • Classification of Partial Differential Equations (PDE)

- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation
 - Finite differences, upwind
 - Integrating along the characteristics
 - Stabilization of finite elements
 - Parabolic equation
 - Heat equation: space semidiscretization and evolution i time
 Stability of *0*-method
 Examples with Mattala
 Conclusions and comments
 Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation
 - Finite differences, upwind
 - Integrating along the characteristics
 - Stabilization of finite elements
 - Parabolic equation
 - Heat equation: space semidiscretization and evolution in time
 - Stability of θ-method
 - Examples with Matlab
 - Conclusions and comments
 - Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification • Classification of Partial Differential Equations (PDE)

Plan of the Course

- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation
 - Finite differences, upwind
 - Integrating along the characteristics
 - Stabilization of finite elements
 - Parabolic equation
 - Heat equation: space semidiscretization and evolution in time
 - Stability of θ-method

Examples with Matlab

Conclusions and comments

Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation
 - Finite differences, upwind
 - Integrating along the characteristics
 - Stabilization of finite elements
 - Parabolic equation
 - Heat equation: space semidiscretization and evolution in time
 - Stability of θ-method
 - Examples with Matlab
 - Conclusions and comments
 - Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification • Classification of Partial Differential Equations (PDE)

Plan of the Course

- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation
 - Finite differences, upwind
 - Integrating along the characteristics
 - Stabilization of finite elements
 - Parabolic equation
 - Heat equation: space semidiscretization and evolution in time
 - Stability of θ -method

Examples with Matlab

Conclusions and commenting

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation
 - Finite differences, upwind
 - Integrating along the characteristics
 - Stabilization of finite elements
 - Parabolic equation
 - Heat equation: space semidiscretization and evolution in time
 - Stability of θ -method

Examples with Matlab

- Conclusions and comments
- Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation
 - Finite differences, upwind
 - Integrating along the characteristics
 - Stabilization of finite elements
 - Parabolic equation
 - Heat equation: space semidiscretization and evolution in time
 - Stability of θ -method
 - Examples with Matlab

Conclusions and comments

Questions and answer

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation
 - Finite differences, upwind
 - Integrating along the characteristics
 - Stabilization of finite elements
 - Parabolic equation
 - Heat equation: space semidiscretization and evolution in time
 - Stability of θ -method
 - Examples with Matlab
 - Conclusions and comments
 - Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation
 - Finite differences, upwind
 - Integrating along the characteristics
 - Stabilization of finite elements
 - Parabolic equation
 - Heat equation: space semidiscretization and evolution in time
 - Stability of θ -method
 - Examples with Matlab
 - Conclusions and comments
 - Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation
 - Finite differences, upwind
 - Integrating along the characteristics
 - Stabilization of finite elements
 - Parabolic equation
 - Heat equation: space semidiscretization and evolution in time
 - Stability of θ -method
 - Examples with Matlab
 - Conclusions and comments
 - Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

- Classification of Partial Differential Equations (PDE)
- Elliptic PDE's
 - Finite differences
 - Finite elements
 - Where the theory is elegant and complete...
 - From elliptic to hyperbolic PDE's
 - Convection-diffusion equation
 - Finite differences, upwind
 - Integrating along the characteristics
 - Stabilization of finite elements
 - Parabolic equation
 - Heat equation: space semidiscretization and evolution in time
 - Stability of θ -method
 - Examples with Matlab
 - Conclusions and comments
 - Questions and answers

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of (linear) PDE's

The case of two variables (can be generalized)

$$Lu \equiv \left(A\frac{\partial^2 u}{\partial x_1^2} + B\frac{\partial^2 u}{\partial x_1 \partial x_2} + C\frac{\partial^2 u}{\partial x_2^2}\right) + L.O.T.$$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of (linear) PDE's

The case of two variables (can be generalized)

$$Lu \equiv \left(A\frac{\partial^2 u}{\partial x_1^2} + B\frac{\partial^2 u}{\partial x_1 \partial x_2} + C\frac{\partial^2 u}{\partial x_2^2}\right) + L.O.T.$$

Matrix associated with quadratic form

$$QF = \left(\begin{array}{cc} A & \frac{1}{2}B\\ \frac{1}{2}B & C \end{array}\right)$$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of (linear) PDE's

The case of two variables (can be generalized)

$$Lu \equiv \left(A\frac{\partial^2 u}{\partial x_1^2} + B\frac{\partial^2 u}{\partial x_1 \partial x_2} + C\frac{\partial^2 u}{\partial x_2^2}\right) + L.O.T.$$

Matrix associated with quadratic form

$$QF = \left(\begin{array}{cc} A & \frac{1}{2}B\\ \frac{1}{2}B & C \end{array}\right)$$

Note: A, B, and C might be functions themselves.

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Compute eigenvalues λ_i of QF

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Compute eigenvalues λ_i of QF

- *Elliptic* equation: $\lambda_1 \lambda_2 > 0$
- Parabolic equation: $\lambda_1 \lambda_2 = 0$
- Hyperbolic equation: $\lambda_1 \lambda_2 < 0$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Compute eigenvalues λ_i of QF

- *Elliptic* equation: $\lambda_1 \lambda_2 > 0$
- Parabolic equation: $\lambda_1 \lambda_2 = 0$
- Hyperbolic equation: $\lambda_1\lambda_2 < 0$

With the notation of quadratic forms: *definite* form, *semidefinite* form, *indefinite* form, respectively.

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Consider operator

$$\mathcal{L}u \equiv A \frac{\partial^2 u}{\partial x_1^2} + B \frac{\partial^2 u}{\partial x_1 \partial x_2} + C \frac{\partial^2 u}{\partial x_2^2} = 0$$

and look for change of variables

$$\xi = \alpha x_2 + \beta x_1, \quad \eta = \gamma x_2 + \delta x_1$$

so that $\mathcal{L}u$ is a multiple of $\frac{\partial^2 u}{\partial \xi \partial \eta}$ (see wave equation)

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Consider operator

$$\mathcal{L}u \equiv A \frac{\partial^2 u}{\partial x_1^2} + B \frac{\partial^2 u}{\partial x_1 \partial x_2} + C \frac{\partial^2 u}{\partial x_2^2} = 0$$

and look for change of variables

$$\xi = \alpha x_2 + \beta x_1, \quad \eta = \gamma x_2 + \delta x_1$$

so that $\mathcal{L}u$ is a multiple of $\frac{\partial^2 u}{\partial \xi \partial \eta}$ (see wave equation)

$$\mathcal{L}u = (A\beta^{2} + B\alpha\beta + C\alpha^{2})\frac{\partial^{2}u}{\partial\xi^{2}} + (A\delta^{2} + B\gamma\delta + C\gamma^{2})\frac{\partial^{2}u}{\partial\eta^{2}} + (2A\beta\delta + B(\alpha\delta + \beta\gamma) + 2C\alpha\gamma)\frac{\partial^{2}u}{\partial\xi\partial\eta}$$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

$$\mathcal{L}u = (A\beta^{2} + B\alpha\beta + C\alpha^{2})\frac{\partial^{2}u}{\partial\xi^{2}} + (A\delta^{2} + B\gamma\delta + C\gamma^{2})\frac{\partial^{2}u}{\partial\eta^{2}} + (2A\beta\delta + B(\alpha\delta + \beta\gamma) + 2C\alpha\gamma)\frac{\partial^{2}u}{\partial\xi\partial\eta}$$

If A = C = 0, trivial.

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

$$\mathcal{L}u = (A\beta^{2} + B\alpha\beta + C\alpha^{2})\frac{\partial^{2}u}{\partial\xi^{2}} + (A\delta^{2} + B\gamma\delta + C\gamma^{2})\frac{\partial^{2}u}{\partial\eta^{2}} + (2A\beta\delta + B(\alpha\delta + \beta\gamma) + 2C\alpha\gamma)\frac{\partial^{2}u}{\partial\xi\partial\eta}$$

If A = C = 0, trivial. Suppose $A \neq 0$; we want

$$A\beta^{2} + B\alpha\beta + C\alpha^{2} = 0, \quad A\delta^{2} + B\gamma\delta + C\gamma^{2} = 0$$

When $\alpha\gamma \neq 0$, divide first equation by α^2 , second one by γ^2 and solve for β/α and δ/γ , resp.

$$eta/lpha = (2A)^{-1}(-B\pm\sqrt{\Delta}), \quad \delta/\gamma = (2A)^{-1}(-B\pm\sqrt{\Delta})$$

 $\Delta = B^2 - 4AC$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Hyperbolic case

$$\xi = \alpha x_2 + \beta x_1, \quad \eta = \gamma x_2 + \delta x_1$$

$$\beta/\alpha = (2A)^{-1}(-B \pm \sqrt{\Delta}), \quad \delta/\gamma = (2A)^{-1}(-B \pm \sqrt{\Delta})$$

For nonsingular change of variables, Δ must be positive

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Hyperbolic case

$$\xi = \alpha x_2 + \beta x_1, \quad \eta = \gamma x_2 + \delta x_1$$

$$\beta/\alpha = (2A)^{-1}(-B \pm \sqrt{\Delta}), \quad \delta/\gamma = (2A)^{-1}(-B \pm \sqrt{\Delta})$$

For nonsingular change of variables, Δ must be positive

$$lpha = \gamma = 2A, \quad eta = -B + \sqrt{\Delta}, \delta = -B - \sqrt{\Delta}$$

$$\mathcal{L}u = -4A(B^2 - 4AC)\frac{\partial^2 u}{\partial\xi\partial\eta}$$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Hyperbolic case

$$\xi = \alpha x_2 + \beta x_1, \quad \eta = \gamma x_2 + \delta x_1$$

$$\beta/\alpha = (2A)^{-1}(-B \pm \sqrt{\Delta}), \quad \delta/\gamma = (2A)^{-1}(-B \pm \sqrt{\Delta})$$

For nonsingular change of variables, Δ must be positive

$$lpha = \gamma = 2A, \quad eta = -B + \sqrt{\Delta}, \delta = -B - \sqrt{\Delta}$$

$$\mathcal{L}u = -4A(B^2 - 4AC)\frac{\partial^2 u}{\partial\xi\partial\eta}$$

As before, solution has the form $u = p(\xi) + q(\eta)$ and the lines $\xi = constant$ and $\eta = constant$ are called *characteristics*.

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Actually, when $x_1 = t$ and $x_2 = x$, the change of variables

$$x' = x - \frac{B}{2A}t, \quad t' = t$$

maps our hyperbolic operator $(A \neq 0)$ to a multiple of wave equation

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2}$$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Actually, when $x_1 = t$ and $x_2 = x$, the change of variables

$$x' = x - \frac{B}{2A}t, \quad t' = t$$

maps our hyperbolic operator $(A \neq 0)$ to a multiple of wave equation

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2}$$

Hence, \mathcal{L} is a wave operator in a frameset moving at speed -B/(2A).

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Parabolic case

$$\mathcal{L}u = (A\beta^{2} + B\alpha\beta + C\alpha^{2})\frac{\partial^{2}u}{\partial\xi^{2}} + (A\delta^{2} + B\gamma\delta + C\gamma^{2})\frac{\partial^{2}u}{\partial\eta^{2}} + (2A\beta\delta + B(\alpha\delta + \beta\gamma) + 2C\alpha\gamma)\frac{\partial^{2}u}{\partial\xi\partial\eta}$$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Parabolic case

$$\mathcal{L}u = (A\beta^{2} + B\alpha\beta + C\alpha^{2})\frac{\partial^{2}u}{\partial\xi^{2}} + (A\delta^{2} + B\gamma\delta + C\gamma^{2})\frac{\partial^{2}u}{\partial\eta^{2}} + (2A\beta\delta + B(\alpha\delta + \beta\gamma) + 2C\alpha\gamma)\frac{\partial^{2}u}{\partial\xi\partial\eta}$$

For $\beta/\alpha = -B/(2A)$ coefficient of $\frac{\partial^2 u}{\partial \xi^2}$ vanishes

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Parabolic case

$$\mathcal{L}u = (A\beta^{2} + B\alpha\beta + C\alpha^{2})\frac{\partial^{2}u}{\partial\xi^{2}} + (A\delta^{2} + B\gamma\delta + C\gamma^{2})\frac{\partial^{2}u}{\partial\eta^{2}} + (2A\beta\delta + B(\alpha\delta + \beta\gamma) + 2C\alpha\gamma)\frac{\partial^{2}u}{\partial\xi\partial\eta}$$

For $\beta/\alpha = -B/(2A)$ coefficient of $\frac{\partial^2 u}{\partial \xi^2}$ vanishes But B/(2A) = 2C/B, so coefficient of $\frac{\partial^2 u}{\partial \xi \partial \eta}$ is zero as well

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Parabolic case

$$\mathcal{L}u = (A\beta^{2} + B\alpha\beta + C\alpha^{2})\frac{\partial^{2}u}{\partial\xi^{2}} + (A\delta^{2} + B\gamma\delta + C\gamma^{2})\frac{\partial^{2}u}{\partial\eta^{2}} + (2A\beta\delta + B(\alpha\delta + \beta\gamma) + 2C\alpha\gamma)\frac{\partial^{2}u}{\partial\xi\partial\eta}$$

For $\beta/\alpha = -B/(2A)$ coefficient of $\frac{\partial^2 u}{\partial \xi^2}$ vanishes But B/(2A) = 2C/B, so coefficient of $\frac{\partial^2 u}{\partial \xi \partial \eta}$ is zero as well Everything can be written as a multiple of $\frac{\partial^2 u}{\partial n^2}$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

In conclusion, in the parabolic case, the change of variables

$$\xi = 2Ax_2 - Bx_1, \quad \eta = x_1$$

maps the equation to

$$A\frac{\partial^2 u}{\partial \eta^2} = 0$$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

In conclusion, in the parabolic case, the change of variables

$$\xi = 2Ax_2 - Bx_1, \quad \eta = x_1$$

maps the equation to

$$A\frac{\partial^2 u}{\partial \eta^2} = 0$$

which has the general solution

$$u = p(\xi) + \eta q(\xi)$$
Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

In conclusion, in the parabolic case, the change of variables

$$\xi = 2Ax_2 - Bx_1, \quad \eta = x_1$$

maps the equation to

$$A\frac{\partial^2 u}{\partial \eta^2} = 0$$

which has the general solution

$$u = p(\xi) + \eta q(\xi)$$

One family of characteristics $\xi = constant$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Elliptic case

No choice of parameters makes coefficients of $\frac{\partial^2 u}{\partial \xi^2}$ and $\frac{\partial^2 u}{\partial \eta^2}$ vanish

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Elliptic case

No choice of parameters makes coefficients of $\frac{\partial^2 u}{\partial \xi^2}$ and $\frac{\partial^2 u}{\partial \eta^2}$ vanish

In this case change of variables

$$\xi = \frac{2Ax_2 - Bx_1}{\sqrt{4AC - B^2}}, \quad \eta = x_1$$

maps equation to

$$A\left(\frac{\partial^2 u}{\partial\xi^2} + \frac{\partial^2 u}{\partial\eta^2}\right) = 0$$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Elliptic case

No choice of parameters makes coefficients of $\frac{\partial^2 u}{\partial \xi^2}$ and $\frac{\partial^2 u}{\partial \eta^2}$ vanish

In this case change of variables

$$\xi = \frac{2Ax_2 - Bx_1}{\sqrt{4AC - B^2}}, \quad \eta = x_1$$

maps equation to

$$A\left(\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2}\right) = 0$$

No family of characteristics (infinite speed of propagation, no discontinuities allowed)

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Final examples

Daniele Boffi

Examples

Plan of th Course

PDE's Classification

Classification of PDE's (cont'ed)

Final examples

• Laplace equation: elliptic

Daniele Boffi

Examples

Plan of th Course

PDE's Classification

Classification of PDE's (cont'ed)

Final examples

- Laplace equation: elliptic
- Wave equation: hyperbolic

Daniele Boffi

Examples

Plan of th Course

PDE's Classification

Classification of PDE's (cont'ed)

Final examples

- Laplace equation: elliptic
- Wave equation: hyperbolic
- Heat equation: parabolic

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Final examples

- Laplace equation: elliptic
- Wave equation: hyperbolic
- Heat equation: parabolic
- Convection-diffusion equation:

$$\frac{\partial u}{\partial t} - \varepsilon \Delta u + \operatorname{div}(\vec{\beta} u) = 0$$

parabolic, degenerating to hyperbolic as ε tends to zero.

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Classification of PDE's (cont'ed)

Final examples

- Laplace equation: elliptic
- Wave equation: hyperbolic
- Heat equation: parabolic
- Convection-diffusion equation:

$$\frac{\partial u}{\partial t} - \varepsilon \Delta u + \operatorname{div}(\vec{\beta} u) = 0$$

parabolic, degenerating to hyperbolic as ε tends to zero.

End of Part I

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Closed form of 1D wave equation solution

Change of variables

$$y = x + ct$$
, $z = x - ct$, $u(x, t) = w(y, z)$

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Closed form of 1D wave equation solution

Change of variables

$$y = x + ct$$
, $z = x - ct$, $u(x, t) = w(y, z)$

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 w}{\partial y^2} - 2 \frac{\partial^2 w}{\partial y \partial z} + \frac{\partial^2 w}{\partial z^2} \right)$$
$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}$$

$$\frac{\partial^2 w}{\partial y \partial z} = 0 \Rightarrow$$

back

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Closed form of 1D wave equation solution

Change of variables

$$y = x + ct$$
, $z = x - ct$, $u(x, t) = w(y, z)$

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 w}{\partial y^2} - 2 \frac{\partial^2 w}{\partial y \partial z} + \frac{\partial^2 w}{\partial z^2} \right)$$
$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}$$

$$\frac{\partial^2 w}{\partial y \partial z} = 0 \Rightarrow w = w_1(y) + w_2(z)$$

back

- 1

Daniele Boffi

Examples

Plan of the Course

PDE's Classification

Closed form of 1D wave equation solution

Change of variables

$$y = x + ct$$
, $z = x - ct$, $u(x, t) = w(y, z)$

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 w}{\partial y^2} - 2 \frac{\partial^2 w}{\partial y \partial z} + \frac{\partial^2 w}{\partial z^2} \right)$$
$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}$$

 $\frac{\partial^2 w}{\partial y \partial z} = 0 \Rightarrow w = w_1(y) + w_2(z) = w_1(x + ct) + w_2(x - ct)$

back