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Some examples

A second order ODE

−u′′(x) = f (x)

Solution can be explicitly determined (closed form solution)

u′(x) = u′(x0) +

∫ x

x(0)
u′′(t) dt = u′(x0)−

∫ x

x(0)
f (t) dt

u(x) = u(x0) +

∫ x

x(0)
u′(t) dt

In general

u(x) = α + βx −
∫ ∫

f (t) dt
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Some examples (cont’ed)

One dimensional convection equation (PDE)

∂u

∂t
(x , t)− ∂u

∂x
(x , t) = 0

Closed form solution

u(x , t) = w(x + t)

(x,t)

t

x

(x−T,t+T)
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One dimensional convection equation (PDE)
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One dimensional convection equation (PDE)

∂u

∂t
(x , t)− ∂u

∂x
(x , t) = 0

Closed form solution

u(x , t) = w(x + t)

(x,t)

t

x

(x−T,t+T)
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Some examples (cont’ed)

One dimensional wave equation

∂2u

∂t2
(x , t)− c2 ∂2u

∂x2
(x , t) = 0

Closed form solution

u(x , t) = w1(x + ct) + w2(x − ct)

Proof (x,t)

t

x

(x−cT,t+T) (x+cT,t+T)
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One dimensional wave equation
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Some examples (cont’ed)

One dimensional wave equation

∂2u

∂t2
(x , t)− c2 ∂2u

∂x2
(x , t) = 0

Closed form solution

u(x , t) = w1(x + ct) + w2(x − ct)

Proof (x,t)
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Some examples (cont’ed)

One dimensional heat equation

∂u

∂t
(x , t)− ∂2u

∂x2
(x , t) = 0, x ∈ (0, 1), t > 0

Closed form solution

u(x , t) =
∞∑
j=1

u0,je
−(jπ)2t sin(jπx),

where u0(x) = u(x , 0) is the initial datum and

u0,j = 2

∫ 1

0
u0(x) sin(jπx) dx
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Some examples (cont’ed)

One dimensional heat equation

∂u

∂t
(x , t)− ∂2u

∂x2
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Closed form solution
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∞∑
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−(jπ)2t sin(jπx),

where u0(x) = u(x , 0) is the initial datum and
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∫ 1
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Some examples (cont’ed)

Convection equation

∂u

∂t
+ div(~βu) = 0

First order linear equation.

N.B.: divergence operator div~v =
d∑

i=1

∂vi
∂xi

This equation states the mass conservation of a body
occupying a region Ω ∈ Rd , with density u and velocity ~β
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Convection equation

∂u

∂t
+ div(~βu) = 0

First order linear equation.
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∂vi
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Some examples (cont’ed)

Laplace/Beltrami/Poisson equation

−∆u = f

Second order linear equation.

N.B.: Laplace operator ∆v =
d∑

i=1

∂2v
∂x2

i

This equation states the diffusion of a homogeneous and
isotropic fluid occupying a region Ω ∈ Rd , as well as the
vertical displacement of an elastic membrane. Fundamental
equation for several models.
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Laplace/Beltrami/Poisson equation
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N.B.: Laplace operator ∆v =
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Some examples (cont’ed)

Heat equation

∂u

∂t
−∆u = f

Second order linear equation

Wave equation

∂2u

∂t2
−∆u = 0

Second order linear equation
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Some examples (cont’ed)

Heat equation

∂u

∂t
−∆u = f

Second order linear equation

Wave equation

∂2u

∂t2
−∆u = 0

Second order linear equation
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Some examples (cont’ed)

Burgers equation (d = 1)

∂u

∂t
+ u

∂u

∂x
= 0

First order quasi-linear equation

Viscous Burgers equation (d = 1)

∂u

∂t
+ u

∂u

∂x
= ε

∂2u

∂x2
, ε > 0

Second order semi-linear equation
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Plan of the Course

• Classification of Partial Differential Equations (PDE)
• Elliptic PDE’s

• Finite differences
• Finite elements
• Where the theory is elegant and complete. . .

• From elliptic to hyperbolic PDE’s
• Convection-diffusion equation
• Finite differences, upwind
• Integrating along the characteristics
• Stabilization of finite elements

• Parabolic equation
• Heat equation: space semidiscretization and evolution in

time
• Stability of θ-method

• Examples with Matlab

• Conclusions and comments

• Questions and answers
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time
• Stability of θ-method

• Examples with Matlab

• Conclusions and comments

• Questions and answers
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Classification of (linear) PDE’s

The case of two variables (can be generalized)

Lu ≡
(

A
∂2u

∂x2
1

+ B
∂2u

∂x1∂x2
+ C

∂2u

∂x2
2

)
+ L.O.T .

Matrix associated with quadratic form

QF =

(
A 1

2B
1
2B C

)
Note: A, B, and C might be functions themselves.
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Classification of PDE’s (cont’ed)

Compute eigenvalues λi of QF

• Elliptic equation: λ1λ2 > 0

• Parabolic equation: λ1λ2 = 0

• Hyperbolic equation: λ1λ2 < 0

With the notation of quadratic forms: definite form,
semidefinite form, indefinite form, respectively.
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Classification of PDE’s (cont’ed)

Consider operator

Lu ≡ A
∂2u

∂x2
1

+ B
∂2u

∂x1∂x2
+ C

∂2u

∂x2
2

= 0

and look for change of variables

ξ = αx2 + βx1, η = γx2 + δx1

so that Lu is a multiple of ∂2u
∂ξ∂η (see wave equation)

Lu = (Aβ2 + Bαβ + Cα2)
∂2u

∂ξ2
+ (Aδ2 + Bγδ + Cγ2)

∂2u

∂η2

+ (2Aβδ + B(αδ + βγ) + 2Cαγ)
∂2u

∂ξ∂η
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Classification of PDE’s (cont’ed)

Lu = (Aβ2 + Bαβ + Cα2)
∂2u

∂ξ2
+ (Aδ2 + Bγδ + Cγ2)

∂2u

∂η2

+ (2Aβδ + B(αδ + βγ) + 2Cαγ)
∂2u

∂ξ∂η

If A = C = 0, trivial.

Suppose A 6= 0; we want

Aβ2 + Bαβ + Cα2 = 0, Aδ2 + Bγδ + Cγ2 = 0

When αγ 6= 0, divide first equation by α2, second one by γ2

and solve for β/α and δ/γ, resp.

β/α = (2A)−1(−B ±
√

∆), δ/γ = (2A)−1(−B ±
√

∆)

∆ = B2 − 4AC
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Classification of PDE’s (cont’ed)

Hyperbolic case

ξ = αx2 + βx1, η = γx2 + δx1

β/α = (2A)−1(−B ±
√

∆), δ/γ = (2A)−1(−B ±
√

∆)

For nonsingular change of variables, ∆ must be positive

α = γ = 2A, β = −B +
√

∆, δ = −B −
√

∆

Lu = −4A(B2 − 4AC )
∂2u

∂ξ∂η

As before, solution has the form u = p(ξ) + q(η) and the lines
ξ = constant and η = constant are called characteristics.
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Actually, when x1 = t and x2 = x , the change of variables

x ′ = x − B

2A
t, t ′ = t

maps our hyperbolic operator (A 6= 0) to a multiple of wave
equation

∂2u

∂t2
− c2 ∂2u

∂x2

Hence, L is a wave operator in a frameset moving at speed
−B/(2A).
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Actually, when x1 = t and x2 = x , the change of variables

x ′ = x − B
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t, t ′ = t

maps our hyperbolic operator (A 6= 0) to a multiple of wave
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Classification of PDE’s (cont’ed)

Parabolic case

Lu = (Aβ2 + Bαβ + Cα2)
∂2u

∂ξ2
+ (Aδ2 + Bγδ + Cγ2)

∂2u

∂η2

+ (2Aβδ + B(αδ + βγ) + 2Cαγ)
∂2u

∂ξ∂η

For β/α = −B/(2A) coefficient of ∂2u
∂ξ2 vanishes

But B/(2A) = 2C/B, so coefficient of ∂2u
∂ξ∂η is zero as well

Everything can be written as a multiple of ∂2u
∂η2
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In conclusion, in the parabolic case, the change of variables

ξ = 2Ax2 − Bx1, η = x1

maps the equation to

A
∂2u

∂η2
= 0

which has the general solution

u = p(ξ) + ηq(ξ)

One family of characteristics ξ = constant
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Elliptic case

No choice of parameters makes coefficients of ∂2u
∂ξ2 and ∂2u

∂η2

vanish

In this case change of variables

ξ =
2Ax2 − Bx1√

4AC − B2
, η = x1

maps equation to

A

(
∂2u

∂ξ2
+

∂2u

∂η2

)
= 0

No family of characteristics (infinite speed of propagation, no
discontinuities allowed)
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Final examples

• Laplace equation: elliptic

• Wave equation: hyperbolic

• Heat equation: parabolic

• Convection-diffusion equation:

∂u

∂t
− ε∆u + div(~βu) = 0

parabolic, degenerating to hyperbolic as ε tends to zero.

End of Part I
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Closed form of 1D wave equation
solution

Change of variables

y = x + ct, z = x − ct, u(x , t) = w(y , z)

∂2u

∂t2
= c2

(
∂2w

∂y2
− 2

∂2w

∂y∂z
+

∂2w

∂z2

)
∂2u

∂x2
=

∂2w

∂y2
+

∂2w

∂z2

∂2w

∂y∂z
= 0 ⇒ w = w1(y) + w2(z) = w1(x + ct) + w2(x − ct)

back
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