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Some examples

A second order ODE

—u"(x) = f(x)
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A second order ODE

—"(x) = (x)

Solution can be explicitly determined (closed form solution)

X X

o () dt = o (x0) — / F(t) dt

x(0)

() = ') + [ o

X

u(x) = u(xo) +/ u'(t) dt

x(0)
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A second order ODE

—"(x) = (x)

Solution can be explicitly determined (closed form solution)

X X

o () dt = o (x0) — / F(t) dt

x(0)

() = ') + [ o

In general

u(x):a+ﬁx—//f(t)dt
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e One dimensional convection equation (PDE)
EESE;i?‘icatiolw 8” 8”

E(X’ t) — 5(x, t)=0
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Some examples (cont'ed)

One dimensional convection equation (PDE)

ou ou
E()Q t) - a()g t) =0

Closed form solution

u(x,t) = w(x+t)
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One dimensional convection equation (PDE)

du Ju
S 6t =56 1) =0
t /
Closed form solution (x=T,t+T)
u(x,t) = w(x +t) “
(x,0)
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0“u
W(X, t) — Czw(x, t) =0
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Some examples (cont'ed)

One dimensional wave equation

d2u d%u
W(X, t) — Czﬁ(xa t)=0

Closed form solution

u(x,t) = wi(x + ct) + wa(x — ct)
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One dimensional wave equation

d%u 9?2

u
w(xy t) — Czﬁ(xa t)=0

Closed form solution

u(x, t) = wi(x + ct) + wa(x — ct)

Proof

T,t+T) (x+cT,t+T)

(x.,0)
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Some examples (cont'ed)

One dimensional heat equation

ou
a(xa t)

02u
~ 5l

x,t) =0,

x€(0,1), t>0
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One dimensional heat equation

ou 9%u
E(X, t)—ﬁ(x,t)—O, XE(O,].), t>0

Closed form solution

u(x,t) = Z que_(j”)2t sin(jmx),

j=1

where up(x) = u(x, 0) is the initial datum and

1
upj = 2/ up(x) sin(jmx) dx
0
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Some examples (cont'ed)

Convection equation

Ju
ot

First order linear equation.

+div(fu) =0

d
N.B.: divergence operator divv = > gi’:
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Some examples (cont'ed)

Convection equation

ou .=
9 + div(fu) =0

First order linear equation.

d
N.B.: divergence operator div v = Zl gz

1=
This equation states the mass conservation of a body

occupying a region Q € R?, with density u and velocity ﬁ
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Some examples (cont'ed)

Laplace/Beltrami/Poisson equation
—Au="f
Second order linear equation.

d
N.B.: Laplace operator Av = ) %
i=1
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Laplace/Beltrami/Poisson equation

—Au="f

Second order linear equation.

N.B.: Laplace operator Av =

This equation states the dlfFu5|on of a homogeneous and
isotropic fluid occupying a region Q € R9, as well as the
vertical displacement of an elastic membrane. Fundamental
equation for several models.
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du
E—Au-f

Second order linear equation
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Classification
ou
— —Au=f
ot
Second order linear equation
Wave equation
d%u
— —Au=0
ot?

Second order linear equation
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e Burgers equation (d = 1)
ou n ou 0
e
ot Ox

First order quasi-linear equation
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Classification Burgers equatlon (d 1)
ou n ou 0
- u— =
ot 0x

First order quasi-linear equation
Viscous Burgers equation (d = 1)

o, ou_
ot uax_gax27

Second order semi-linear equation

e>0



Plan of the Course
e Classification of Partial Differential Equations (PDE)




Classical
computational
methods

Daniele Boffi Plan of the Course

Examples e Classification of Partial Differential Equations (PDE)

Plan of the
Course

PDE's
Classification



Classical
computational
methods

Daniele Boffi

Examples

Plan of the
Course

PDE's
Classification

Plan of the Course

e Classification of Partial Differential Equations (PDE)
e Elliptic PDE's
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e Classification of Partial Differential Equations (PDE)
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e Finite differences
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e Finite differences

e Finite elements
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Plan of the Course

e Classification of Partial Differential Equations (PDE)
e Elliptic PDE's

e Finite differences

e Finite elements

o Where the theory is elegant and complete. ..
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Plan of the Course

e Classification of Partial Differential Equations (PDE)
e Elliptic PDE's

o Finite differences

e Finite elements

e Where the theory is elegant and complete. ..
e From elliptic to hyperbolic PDE’s



Classical
computational
methods

Daniele Boffi

Plan of the
Course

Plan of the Course

e Classification of Partial Differential Equations (PDE)
e Elliptic PDE's

o Finite differences

e Finite elements

e Where the theory is elegant and complete. ..
e From elliptic to hyperbolic PDE's



Classical
computational
methods

Daniele Boffi

Examples

Plan of the
Course

PDE's
Classification

Plan of the Course

e Classification of Partial Differential Equations (PDE)
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e Finite differences

e Finite elements

e Where the theory is elegant and complete. ..
e From elliptic to hyperbolic PDE's

e Convection-diffusion equation
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e Classification of Partial Differential Equations (PDE)
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o Finite differences

e Finite elements

e Where the theory is elegant and complete. ..
e From elliptic to hyperbolic PDE's

e Convection-diffusion equation

e Finite differences, upwind
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Classification of Partial Differential Equations (PDE)
Elliptic PDE’s
o Finite differences
e Finite elements
e Where the theory is elegant and complete. ..
From elliptic to hyperbolic PDE's
e Convection-diffusion equation
Finite differences, upwind
Integrating along the characteristics
Stabilization of finite elements
Parabolic equation
e Heat equation: space semidiscretization and evolution in
time
e Stability of #-method
Examples with Matlab

Conclusions and comments
Questions and answers
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Classification of (linear) PDE's

The case of two variables (can be generalized)

Lu= <A

82
Ox3

2+B

d%u

8X1 8X2

+C—

82
8x2

)+LOT.
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Matrix associated with quadratic form

(A 1B
QF—<;B c)
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S Classification of (linear) PDE's

s The case of two variables (can be generalized)

Classification
0%u 0%u 0%u
Lu=|A— +B— L.O.T.
! ( Ox? + Ox10x2 + C@xz) +L.O.

Matrix associated with quadratic form

(A 1B
QF—<;B c)

Note: A, B, and C might be functions themselves.
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Classification of PDE’s (cont’ed)

Compute eigenvalues \; of QF
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Compute eigenvalues \; of QF
e Elliptic equation: AiAx >0
e Parabolic equation: AjA> =0
e Hyperbolic equation: A1Ap < 0
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Classification of PDE’s (cont’ed)

Compute eigenvalues \; of QF
e Elliptic equation: A1A2 >0
e Parabolic equation: AjA> =0
e Hyperbolic equation: A1Ap < 0

With the notation of quadratic forms: definite form,
semidefinite form, indefinite form, respectively.
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Consider operator

0%u d%u C82u

PoE Lu=AZY 4+ B2 42l
Y=L T P T ok

Classification

0

and look for change of variables

E=axo+ fBx1, n=r"yx+0x

: : 2 :
so that Lu is a multiple of 6‘955’77 (see wave equation)
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Consider operator

d%u d%u

Lu=A—+B—
Y 6x12+ O0x10x2

and look for change of variables

P _
3X22

E=axo+ fBx1, n=r"yx+0x

&%u

so that Lu is a multiple of 7z (see wave equation)

2

Lu= (AB%+ Bap + coﬂ)@ + (A8? + Byd + CH?)

&2

+ (2AB6 4 B(ad + 7) + 2Ca) o

2

080n

0

d%u

on?
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2

Lu= (A3 + Baf + Coﬂ)@ + (A8% + Bvs + Cy?)

e

+ (2AB5 + B(ad + B7) + 2Cay) Ou

If A= C =0, trivial.

2

9En

d%u

on?
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2 d%u

0“u
2 2 2 2
Lu= (A" + Baf + Ca )8—£2+(A5 + Byd 4 Cr )87172

2

+ (2490 + B(ad + 57) + 2Car) 5 ;n

If A= C =0, trivial. Suppose A # 0; we want
AB%2+ Baf+ Ca? =0, A2+ Byi+Cy?=0

When ay # 0, divide first equation by a?, second one by 72
and solve for 3/« and § /7, resp.

B/a=(A) N (~BxVA), b/v=(2A)(~-B=VA)

A = B? — 4AC
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Classification of PDE’s (cont’ed)

Hyperbolic case ‘

§=axa+ fBx1, n=r"yx+0x

B/a=(A)N(~BxVA), b/y=(2A)(~-B=VA)

For nonsingular change of variables, A must be positive
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Hyperbolic case ‘

PDE's E=axo+ Ox1, n="79x+dx

Classification

Bla= (A H-BEVA), §/y=(A)(~-B=+VA)
For nonsingular change of variables, A must be positive
a=v=2A, B=-B+VA,§=-B-—VA

02u
o0&

Lu = —4A(B* — 4AC)
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Classification of PDE’s (cont’ed)

Hyperbolic case ‘

§=axa+ fBx1, n=r"yx+0x

B/a=(A)N(~BxVA), b/y=(2A)(~-B=VA)

For nonsingular change of variables, A must be positive

a=v=2A, B=-B+VA,§=-B-—VA

0u

0&on

As before, solution has the form u = p(§) + g(n) and the lines
& = constant and 1 = constant are called characteristics.

Lu= —4A(B? — 4AC)
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PDE's Actually, when x; = t and x» = x, the change of variables

Classification

X =x——t t' =t

maps our hyperbolic operator (A # 0) to a multiple of wave
equation
0’u  ,0%u

o2~ ox2
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Classification of PDE’s (cont’ed)

Actually, when x; = t and x» = x, the change of variables
X =x——t, t'=t

maps our hyperbolic operator (A # 0) to a multiple of wave
equation

0’u  ,0%u

a2~ ox2
Hence, L is a wave operator in a frameset moving at speed
—B/(2A).
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Classification of PDE’s (cont’ed)

’ Parabolic case‘

2

Lu= (AR + Baf + Ca?) Y 4 (A + Byo + C12)2 .

0&?

+ (2AB6 + B(ad + B7) +2Cay)

d%u

Edn

2

on
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’ Parabolic case‘

2

Lu=(AB*+ Bap + Caz)ﬂ +

0&?

+ (2AB6 + B(ad + B7) +2Cay)

For B/a = —B/(2A) coefficient of

u
9ez

)
(A% + BY6 + C7) o

d%u

Edn

vanishes

2

on
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Classification of PDE’s (cont’ed)

’ Parabolic case‘

2 2

0“u 0“u
= (A3 +B )ry + (AP + B ) o
Lu= (A3 + aﬁ+Ca)8§2+( 6+ 75+C7)8n2

+ (2AB6 + B(ad + B7) +2Cay)

d%u

Edn

For B/a = —B/(2A) coefficient of g%‘z’ vanishes

But B/(2A) = 2C/B, so coefficient of % is zero as well
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Classification of PDE’s (cont’ed)

’ Parabolic case‘

2

Cu= (AR + Baf + Ca?) Y 4 (A% + Bryo + c2) 04

€2
+ (2ABS + B(ad + Bv) + 2Cav)

For B/a = —B/(2A) coefficient of 24 \anishes

o¢z

2

0%u

Edn

2

On?

But B/(2A) = 2C/B, so coefficient of % is zero as well

Everything can be written as a multiple o

8%u
f W
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ooe In conclusion, in the parabolic case, the change of variables

Classification

E=2Ax —Bx, n=2x

maps the equation to
0%u

a0
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ooe In conclusion, in the parabolic case, the change of variables
S
Classification

E=2Ax —Bx, n=2x

maps the equation to
0%u
on?

which has the general solution

=0

u=p(&) +nq(&)
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Classification of PDE’s (cont’ed)

In conclusion, in the parabolic case, the change of variables
E=2Ax —Bx, n=2x
maps the equation to
0%u
on?

which has the general solution

u=p(&) +nq(&)

=0

One family of characteristics £ = constant



Classical
computational
methods

Daniele Boffi

Examples

Plan of the
Course

PDE's
Classification

Classification of PDE’s (cont’ed)

Elliptic case

. .. 2 2

No choice of parameters makes coefficients of 2u and 2y

i<h 3 on
vanis
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Classification of PDE’s (cont’ed)

Elliptic case

No choice of parameters makes coefficients of

vanish

In this case change of variables

maps equation to

£

_ 2Ax— Bx
~ V4AC — B?’

gt

P o
02 on?

)-o

%u
o€z

an

d%u
d W
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Classification of PDE’s (cont’ed)

Elliptic case

No choice of parameters makes coefficients of g%‘z’ and ‘3%‘2’
vanish
In this case change of variables
2Ax> — Bxy
E———————— = X].
Vaac B2

0%u  0%u
Al =+ ] =0
(852 i an2>
No family of characteristics (infinite speed of propagation, no
discontinuities allowed)

£

maps equation to



Classification of PDE's (cont’ed)

Final examples
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e Laplace equation: elliptic
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Classification of PDE’s (cont’ed)

Final examples

e Laplace equation: elliptic

e Wave equation: hyperbolic
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Classification of PDE’s (cont’ed)

Final examples
e Laplace equation: elliptic
e Wave equation: hyperbolic
e Heat equation: parabolic
e Convection-diffusion equation:

ou o
FTie eAu+div(fu) =0

parabolic, degenerating to hyperbolic as ¢ tends to zero.
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Classification of PDE’s (cont’ed)

Final examples

e Laplace equation: elliptic
e Wave equation: hyperbolic
e Heat equation: parabolic

e Convection-diffusion equation:
0 =
a—;’ —eAu+div(Bu) =0

parabolic, degenerating to hyperbolic as ¢ tends to zero.

End of Part |
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Change of variables

Closed form of 1D wave equation

y = X+ ct,

Z =X —Ct,

solution

u(x,t) = w(y, z)
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y=x-+ct, z=x—ct, u(x,t) = w(y, z)
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y=x-+ct, z=x—ct, u(x,t) = w(y, z)

@_ 5 82W_282W +82W
ot? dy? Oydz  0z2

Pu Pw  Pw

20y 02

Pw
0ydz

=0=w=wi(y) + wa(2)
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Closed form of 1D wave equation

Change of variables
y =X+ ct,

P _
ot?

Pw
0ydz

solution

z=x—ct, u(x,t) = w(y, z)

5 (0w Pw 0w
c -2 +

dy? Oydz  0z2
Pu_ P o
ox2  Qy?  0z2

=0=w=wi(y) + wa(z) = wi(x + ct) + wa(x — ct)
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