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Some examples

A second order ODE

—u"(z) = f(z)

Solution can be explicitly determined (closed form solution)

xr

u'(z) = u'(x0) —I—/ u'(t) dt = u'(xg) — fE f(t)dt

z(0) z(0)

X

u(x) = u(zg) + / u'(t) dt

x(0)
In general

u(:z:):oz—l—ﬂx—//f(t)dt




Some examples (cont’ed)

One dimensional convection equation (PDE)

ou ou
g(%t) — %(ﬂfat) =0
o

Closed form solution (x=T,t+T)

u(xz,t) = w(x +t) (Xst)




Some examples (cont’ed)

One dimensional wave equation

0°u 0%u
ﬁ(ﬂ?, t) — 62@(33, t) =0

Closed form solution
(x—dI,t+T) (x+cT,t+T)
u(xz,t) = wi(x + ct) + wa(x — ct) 7 s

t
Proof 0




Some examples (cont’ed)

One dimensional heat equation

ou 0u
E(m,t)—@(x,t) —O, T < (O, 1), t>0

Closed form solution

@)
u(x,t) = Z u(),jfz_(j”)275 sin(jmx),
j=1

where ug(x) = u(xz,0) is the initial datum and

1
Uy ;= 2/ uo(x) sin(jrx) dx
0




Some examples (cont’ed)

Convection equation

ou .. =
v + div(fu) =0

First order linear equation.

d
. . o — - aU/L
N.B.: divergence operator div v = 21 5
1=

This equation states the mass conservation of a body occupying a
region 2 € R?, with density u and velocity 3




Some examples (cont’ed)

Laplace/Beltrami/Poisson equation
—Au=f
Second order linear equation.

02w
8:13%2

N.B.: Laplace operator Av = )

d
1=1
This equation states the diffusion of a homogeneous and isotropic
fluid occupying a region Q € R?, as well as the vertical displacement

of an elastic membrane. Fundamental equation for several models.




Some examples (cont’ed)

Heat equation

ou
IU Ay —
g ~u=1

Second order linear equation

Wave equation

0%

Second order linear equation




Some examples (cont’ed)

Burgers equation (d = 1)

ou N ou 0
- U— =

ot Ox

First order quasi-linear equation

Viscous Burgers equation (d = 1)

Ot u@x_gﬁxZ’ -

Second order semi-linear equation




Plan of the Course

[1 Classification of Partial Differential Equations (PDE)

L] Elliptic PDE's

» Finite differences
» Finite elements
» Where the theory is elegant and complete. . .

L] From elliptic to hyperbolic PDE's

» Convection-diffusion equation

» Finite differences, upwind

» Integrating along the characteristics
» Stabilization of finite elements

— — 7T



1 Parabolic equation

» Heat equation: space semidiscretization and evolution in time
» Stability of #-method

L] Examples with Matlab
[ ] Conclusions and comments

[] Questions and answers
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Classification of (linear) PDE’s

The case of two variables (can be generalized)

0%u 0% O?u
Lu=|A—+ B — L.O.T.
“ < Oy + 011015 + C@az%) +L.0

Matrix associated to quadratic form

(A 3B
or=(1p %)

Note: A, B, and C' might be functions themselves.
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Classification of PDE’s (cont’ed)

Compute eigenvalues \; of QF
» Elliptic equation: A\ Ay > 0
» Parabolic equation: A\ Ay =0

» Hyperbolic equation: A1y < 0

With the notation of quadratic forms: definite form, semidefinite
form, indefinite form, respectively.




Classification of PDE’s (cont’ed)
Consider operator

0%y O%u O%u
= A— 1+ B I—
Lu Oy " 0x102 i C@x% !

and look for change of variables

§ = axg+ Px1, 1n=yT2+ 071

. . 2 .
so that Lu is a multiple of aééé‘n (see wave equation)

Lu = (AB°+ Baf + Coﬂ)@ + (A6% + Bv6 + 072)@
0&? on?
0%u

+ (2456 + B(ad + By) + 2Cay)5 o




Classification of PDE’s (cont’ed)

Lu = (AB°+ Baf + Con)@ + (A6% + Bv6 + 072)@

08> on?
0%u
3%,

If A= C =0, trivial. Suppose A # 0; we want

+ (2436 + B(ad + ) + 2Cary)

AB*+ BafB+Ca* =0, AS*+Bv5+Cy* =0

When a7y # 0, divide first equation by o, second one by ~? and
solve for 3/a and 9/, resp.

Bla=(24) " (=B£VA), §/y=024) (-B+VA)

A = B2 —4AC
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Classification of PDE’s (cont’ed)

Hyperbolic case

§ = axp+ fr1, 1 =7y22+ 02

Bja=(24) (~B+VA), §/y=(24)"(~B = VA)

For nonsingular change of variables, A must be positive

a=y=24A, f=-B+VAJi=-B-VA

0*u

0EON

As before, solution has the form u = p(&) + q(n) and the lines
& = constant and 1 = constant are called characteristics.

Lu = —4A(B* — 4A0)




Classification of PDE’s (cont’ed)

Actually, when x1 =t and x5 = x, the change of variables

B
v=x——t t' =t

2A

maps our hyperbolic operator (A # 0) to a multiple of wave equation

Hence, £ is a wave operator in a frameset moving at speed —B/(2A4).




Classification of PDE’s (cont’ed)

Parabolic case

ﬁuzwAﬂ2+£%¢L%Ca%Qif+(A&%%Byé+(}ﬂﬁfg
&2 on?
0%u

00N

+ (2A066 + B(ad + Bv) + 2Cary)

For 6/a = —B/(2A) coefficient of g%’;" vaznishes
But B/(2A) = 2C/B, so coefficient of % is zero as well

. . ] 82
Everything can be written as a multiple of 8—77"‘5
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Classification of PDE’s (cont’ed)

In conclusion, in the parabolic case, the change of variables
§ =2Ax9 — By, n=ux

maps the equation to

0%u
A— =0
on?

which has the general solution

u = p(§) +nq(§)

One family of characteristics & = constant

— — 7T
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Classification of PDE’s (cont’ed)

Elliptic case

No choice of parameters makes coefficients of 852 and 822 vanish
In this case change of variables

ZAQZ‘Q — BQ?l
V4AC — B?

&=

= a1

maps equation to

0?u  O%u
4 (652 > -0

No family of characteristics (infinite speed of propagation, no
discontinuities allowed)




Classification of PDE’s (cont’ed)

Final examples

» Laplace equation: elliptic
» Wave equation: hyperbolic
» Heat equation: parabolic

» Convection-diffusion equation:

% — eAu+ div(fu) = 0

parabolic, degenerating to hyperbolic as ¢ tends to zero.

20



End of Part |
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Closed form of 1D wave equation solution

Change of variables

y=x+ct, z=ux—ct, u(x,t) = w(y, 2)

a2~ S\ o2 %ay0: T 92

0*u  0*w  O*w

922~ o2 ' 922

T0 o w0 = wi(y) + ws(z) = t —
R 1(y) + wa(z2) = wi(x + ct) + wa(x — ct)

O*u 2 (82@0 0w 82w)
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