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Elliptic PDE’s

One dimensional model problem (2 =]a, b|)

—u"(x) = f(x) in Q
u(a) =u(b) =0

Boundary value problem (other boundary conditions possible)

Generalization to Q € R? with boundary 9Q

—Au=f in Q
u=20 on 0N

Theorem: well-posedness (existence, uniqueness, stability)
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Summary: easy to design (approximate derivatives with
difference quotients), easy to implement, very hard extension to
general domains and boundary conditions

a h; b

X0 X1 X9 X3 Xy X5

i
Here N=5 xo=a,x;=a+ > h;,i=1,...,N
j=1
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Finite differences
Finite elements

Summary: easy to design (approximate derivatives with
difference quotients), easy to implement, very hard extension to
general domains and boundary conditions

a h, b

X0 X1 X9 X3 Xy X5

i
Here N=5 xo=a,x;=a+ > h;,i=1,...,N
j=1
Denoting uj = u(x;), u} = u'(x;), first finite difference is

s, Yigl — Ui

second order accurate in h (consistent)
hi + hit1
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Finite differences (cont’ed)

Approximation of second derivative

f =~

/ /
Uit12 = Yi—1y2

hithiy
2
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Approximation of second derivative

Uip1—Uj _ Uj—Uj_1

/ /
s Yivi2 “Yic12  “hin hi
r= hithiyy - hi+hiys
2 2
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Approximation of second derivative

/ o Uii—up  Uj—Uj_y
!~ Yiv12 = Yic1p2 ~ __hi hi
r hithiyy - hi+hiys
2 2

If hj = h (constant mesh size), simpler expression

)~ Yim1 = 200t Ui

(= 12 second order consistent
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Finite differences (cont’ed)

Approximation of second derivative

/ o Uii—up  Uj—Uj_y
!~ Yiv12 = Yic1p2 ~ __hi hi
r hithiyy - hi+hiys
2 2

If hj = h (constant mesh size), simpler expression

)~ Yim1 = 200t Ui

(= 12 second order consistent

Our approximate equation at x; reads

—Uj—1+2uj — Ujiy1 p
h2 - i’
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Putting things together we are led to the linear system

.
up =20

—Uj—1 +2u; — Uj41
2

=

\UNZO
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Putting things together we are led to the linear system
( up =20

—Uj—1 +2u; — Uj41

h2 =i

\UNZO

AU=F A= [tridiag(—1,2,-1)]/h°
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functions on [a, b], piecewise differentiable with bounded
derivative, and vanishing at endpoints.
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Need for more general formulations.

Let's consider space V = H3(a, b) consisting of continuous
functions on [a, b], piecewise differentiable with bounded
derivative, and vanishing at endpoints.

Generalization to 2D requires Lebesgue integral and Hilbert
spaces

HY Q) = {v € [3(Q) s.t. gradv € [*(Q)}

where

[2(Q) = {v : 2 — R integrable s.t. / v < oo}
Q
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Take our model equation, multiply by a generic v € V (test
function), and integrate over (a, b)

- / ? W (x) dx = /  Fv(x) dx
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Take our model equation, multiply by a generic v € V (test
function), and integrate over (a, b)

- / ? W (x) dx = /  Fv(x) dx

Integrating by parts gives

/ab U (x)V(x) dx = /ab f(x)v(x) dx
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Weak formulations (cont’ed)

Finite differences

Finite elements

Take our model equation, multiply by a generic v € V (test
function), and integrate over (a, b)

- / ? W (x) dx = /  Fv(x) dx

Integrating by parts gives

/ab U (x)V(x) dx = /ab f(x)v(x) dx

a:VxV-=R FeV”*
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Lax—Milgram Lemma

| Find u € V such that a(u,v) = F(v) WveV |
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Lax—Milgram Lemma
Find u € V such that a(u,v) = F(v) WveV |

This problem is well posed (exist., uniq., and stab.) provided
® V Hilbert space

® a bilinear, continuous, F linear, continuous

© a coercive, that is there exists a > 0 s.t.

a(v,v) > allv|}, VYveV
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Lax—Milgram Lemma
Find u € V such that a(u,v) = F(v) WveV |

This problem is well posed (exist., uniq., and stab.) provided
® V Hilbert space

® a bilinear, continuous, F linear, continuous

© a coercive, that is there exists a > 0 s.t.

a(v,v) > allv|}, VYveV

1
ullv < a||F||v* Stability estimate



CCM, Part Il

Daniele Boffi . 1
Weak formulations (cont’ed)
Elliptic PDE'’s

Finite differences
Finite elements

In our case hypotheses of LM Lemma OK (Poincaré inequality)
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If f is smooth enough, the unique solution to weak formulation

solves the original equation as well (strong solution)
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In our case hypotheses of LM Lemma OK (Poincaré inequality)

Remark
If f is smooth enough, the unique solution to weak formulation

solves the original equation as well (strong solution)

More general situation

—div(egradu) + 3 -gradu+ou=f  inQ
u=0 on 0N
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Weak formulations (cont’ed)

In our case hypotheses of LM Lemma OK (Poincaré inequality)

Remark
If f is smooth enough, the unique solution to weak formulation

solves the original equation as well (strong solution)

More general situation

—div(egradu) + 3 -gradu+ou=f  inQ
u=20 on 0N

a(u, v)—/Q&?gradu-gradvdx—i—/Qvﬁ-gradudx%—/ﬂauvdx



CCM, Part Il

Daniele Boffi

Weak formulations (cont’ed)

Finite differences

Finite elements

In general problem in weak form, when a is symmetric, is
equivalent to the following variational problem:

Find u € V such that

J(u) = ‘r/nei\r}J(v), J(v) = %a(v7 v) — F(v)
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In general problem in weak form, when a is symmetric, is
equivalent to the following variational problem:

Find u € V such that

J(u) = ‘r/nei\r}J(v), J(v) = %a(v7 v) — F(v)

In the one dimensional model problem, we have

b b
J(v) = ;/ (V'(x))? dx—/ f(x)v(x) dx
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Finite elements (Galerkin method)

Consider a finite dimensional subspace V}, C V (h refers to a
mesh parameter).
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mesh parameter).
Find up € V}, such that a(up, vi) = F(vh) Yvp € V ‘
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Consider a finite dimensional subspace V), C V (h refers to a
mesh parameter).

Find up € V}, such that a(up, vi) = F(vh) Yvp € V ‘
Problem is solvable by Lax—Milgram

N
Suppose that Vj, = span{ys,...,on(h)}, so up = D ujp;
j=1
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Finite differences

Finite elements

Consider a finite dimensional subspace V), C V (h refers to a
mesh parameter).

Find up € V}, such that a(up, vi) = F(vh) Yvp € V ‘
Problem is solvable by Lax—Milgram

N
Suppose that Vj, = span{ys,...,on(h)}, so up = D ujp;
j=1

Problem can be written: find u = {u;} s.t. for any /

B(ZN: ujpjs 90i> = F(ei)

Jj=1
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Bilinearity of a gives

N

Z uia(pj, i) = F(ei), i=1,...,N
j=1



CCM, Part Il

Daniele Boffi

Galerkin method (cont'ed)

Finite differences

Finite elements

Bilinearity of a gives

N

Z uia(pj, i) = F(ei), i=1,....,N
j=1

Let's denote by A the stiffness matrix Aj; = a(yj, ¢i) and by b
the load vector b; = F(p;). Then we have the matrix form of
discrete problem

Au=>
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Galerkin method (cont'ed)

Bilinearity of a gives

N

S walgj i) = Fpi), i=1,...,N
=

Let's denote by A the stiffness matrix Aj; = a(yj, ¢i) and by b
the load vector b; = F(p;). Then we have the matrix form of
discrete problem

Au=>

a symmetric and coercive implies A symmetric positive definite
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Existence and uniqueness (Lax—Milgram)
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Galerkin method (cont'ed)

Existence and uniqueness (Lax—Milgram)

Convergence = Consistency + Stability‘
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Galerkin method (cont'ed)

Existence and uniqueness (Lax—Milgram)

Convergence = Consistency + Stability‘

Stability:

1
lunllv < =[IF|lv-
«
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Galerkin method (cont'ed)
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Existence and uniqueness (Lax—Milgram)

Convergence = Consistency + Stability‘

Stability:

1
lunllv < =[IF|lv-
«

Strong consistency

a(u—up,vp) =0 Vv, €V,
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Error estimate (Céa's Lemma)

allu— uh||%/ < a(u— up,u—up) = alu— up,u—vp)

< Mllu— upllv|u — vallv



CCM, Part Il

Daniele Boffi

Finite differences

Finite elements

Galerkin method (cont'ed)

Error estimate (Céa's Lemma)

allu— uh||%/ < a(u— up,u—up) = alu— up,u—vp)

< Mllu— upllv|u — vallv

M
_ <2 inf llu—
|u—upllv < o Jnf. |u — vallv
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Error estimate (Céa's Lemma)
ollu— w3 < a(u — up,u— up) = a(u — up, u—vy)
< Mllu — upllvlu — vallv
M
_ <2 inf llu—
lu = unllv <2 inf llu=vallv

Error bounded by best approximation
Need for good choice of V!
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Moreover, when a is symmetric, we have the variational
property
J(up) = min J(vp)

VhE V),



CCM, Part Il

Daniele Boffi

Galerkin method (cont'ed)

Finite differences

Finite elements

Moreover, when a is symmetric, we have the variational
property
J(up) = min J(vp)

VhE V),

Since V}, C V, in particular, we have

J(u) < J(up)
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linear approximation.
Shape (or basis) func-
tions: hat functions.
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One dimensional p/w
linear approximation.
Shape (or basis) func-
tions: hat functions.

A finite element is defined by:
@ a domain (interval, triangle, tetrahedron,...),

@® a finite dimensional (polynomial) space,
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Finite elements

Finite elements

One dimensional p/w
linear approximation.
Shape (or basis) func-
tions: hat functions.

A finite element is defined by:
@ a domain (interval, triangle, tetrahedron,...),
@® a finite dimensional (polynomial) space,

© a set of degrees of freedom.
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Finite elements (cont’ed)

One dimensional finite elements

@ domain: interval
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Finite elements (cont’ed)

One dimensional finite elements
@ domain: interval

@® space: P,
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Finite elements (cont’ed)

One dimensional finite elements
@ domain: interval
® space: P,

® d.o.f.'s: depend on polynomial order



CCM, Part Il

Daniele Boffi

Elliptic PDE'’s
Finite differences
Finite elements

Finite elements (cont’ed)

One dimensional finite elements
@ domain: interval
® space: P,

® d.o.f.'s: depend on polynomial order

linear element: endpoints (2)
quadratic element: endpoints 4+ midpoint (3)
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Finite differences

Finite elements

One dimensional finite elements
@ domain: interval
@® space: P,
® d.o.f.'s: depend on polynomial order

linear element: endpoints (2)
quadratic element: endpoints 4+ midpoint (3)

Set {aj}jN:l of degrees of freedom is unisolvent, that is, given
N numbers ajg, ..., apy, there exists a unique polynomial ¢ in
Pps. t.

w(aj):aj, jZl,...,N
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Approximation properties of one dimensional finite elements

inf Jlu—vpllge < CPPTKulpgpn k=0,1
vhEV}
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Finite elements (cont’ed)

Approximation properties of one dimensional finite elements

inf Jlu—vpllge < CPPTKulpgpn k=0,1
vhEV}

Remark on hp FEM
e Refine in h where solution is singular

e Refine in p where solution is regular
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Finite elements (cont’ed)

Generalization to more space dimensions
Example of unisolvent degrees of freedom

JANVANAN
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Finite elements (cont’ed)

How to construct stiffness matrix and load vector
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How to construct stiffness matrix and load vector
In general one considers reference elements and mappings to
actual elements

Y i

Notation: K reference element; K actual element
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Finite elements (cont’ed)

Finite differences

Finite elements

How to construct stiffness matrix and load vector
In general one considers reference elements and mappings to
actual elements

Y i

Notation: K reference element; K actual element
P1, ... Py reference shape functions;
1, - .. n actual shape functions
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How to map the shape functions

N
x>
!
x
X1
Il
pu
\>3>
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Finite differences

Finite elements

How to map the shape functions

Example of computation of local stiffness matrix (one
dimensional)

b
A = aloi ;) = / ARl dx = 3 /K ()] (x)
a K
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Finite elements

How to map the shape functions

Example of computation of local stiffness matrix (one
dimensional)

b
@—mmm—/ﬁmwww—zijmww
a K

g [ BEOEE LR
JeAsas = | By pmF e = [ e e



Finite elements (cont'ed)

/k (’)'f’) (X)(X)
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In general, F = a + 3% is affine so that F/ = 3 is constant
(and equal to h)
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Finite elements (cont’ed)

Finite differences

— ey dX
kK F(%)
In general, F = a + 3% is affine so that F/ = 3 is constant
(and equal to h)

i X)PH(%) 1 /
e dx = i(X)P5H(X) dx
/R F'(X) h RSO( %)

/ Pi(%)P;(%)
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Finite elements

— ey dX
kK F(%)
In general, F = a + 3% is affine so that F/ = 3 is constant
(and equal to h)

BEGE) L[
R CETCL

/ Pi(%)P;(%)

kK FI(X) h
In more space dimensions, F is affine for most popular
elements.

/ grad ¢;(X) - grad ¢;(X) dX =7
K
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Finite differences

Finite elements

General strategy for assembling stiffness matrix and load vector

e Loop over elements ie=1,...,ne

Compute local stiffness matrix AP = a(;, ¢;),
i,j=1,...,ndof and local load vector F/°¢ = F(y;),
i=1,...,ndof

Loop for i,j =1,...,ndof and assembly of global matrix

loc
Aiglob jglob = Aiglob.jglob + Ajj

Account for boundary conditions
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Some remarks on the discrete linear system

e matrix is sparse (sparsity pattern, so called skyline, can be
determined a priori)
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e matrix is SPD (CG can be succesfully applied)
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Finite elements (cont’ed)

Some remarks on the discrete linear system
e matrix is sparse (sparsity pattern, so called skyline, can be
determined a priori)
e matrix is SPD (CG can be succesfully applied)

e conditioning of matrix grows as h goes to zero (need for
preconditioning)
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Finite elements (cont’ed)

Finite differences

Finite elements

Some remarks on the discrete linear system
e matrix is sparse (sparsity pattern, so called skyline, can be
determined a priori)
e matrix is SPD (CG can be succesfully applied)
e conditioning of matrix grows as h goes to zero (need for

preconditioning)

End of part Il
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