Daniele Boffi

Elliptic PDE's

Finite elements

CCM, Part II

Daniele Boffi

Dipartimento di Matematica, Università di Pavia http://www-dimat.unipv.it/boffi

Complexity and its Interdisciplinary Applications

Elliptic PDE's

One dimensional model problem $(\Omega =]a, b[)$

$$\begin{cases} -u''(x) = f(x) & \text{in } \Omega \\ u(a) = u(b) = 0 \end{cases}$$

Boundary value problem (other boundary conditions possible)

Elliptic PDE's

One dimensional model problem $(\Omega =]a, b[)$

$$\begin{cases} -u''(x) = f(x) & \text{in } \Omega \\ u(a) = u(b) = 0 \end{cases}$$

Boundary value problem (other boundary conditions possible) Generalization to $\Omega \in \mathbb{R}^d$ with boundary $\partial \Omega$

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

Elliptic PDE's

One dimensional model problem $(\Omega =]a, b[)$

$$\begin{cases} -u''(x) = f(x) & \text{in } \Omega \\ u(a) = u(b) = 0 \end{cases}$$

Boundary value problem (other boundary conditions possible) Generalization to $\Omega \in \mathbb{R}^d$ with boundary $\partial \Omega$

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

Theorem: well-posedness (existence, uniqueness, stability)

Daniele Boffi

Elliptic PDE's

Finite differences Finite elements

Finite differences

Summary: easy to design (approximate derivatives with difference quotients), easy to implement, very hard extension to general domains and boundary conditions

Daniele Boffi

Elliptic PDE's

Finite differences

Finite differences

Summary: easy to design (approximate derivatives with difference quotients), easy to implement, very hard extension to general domains and boundary conditions

Finite differences

Summary: easy to design (approximate derivatives with difference quotients), easy to implement, very hard extension to general domains and boundary conditions

Here
$$N = 5$$
, $x_0 = a$, $x_i = a + \sum_{j=1}^{i} h_j$, $i = 1, ..., N$

Finite differences

Finite differences

Summary: easy to design (approximate derivatives with difference quotients), easy to implement, very hard extension to general domains and boundary conditions

Here
$$N = 5$$
, $x_0 = a$, $x_i = a + \sum_{j=1}^{i} h_j$, $i = 1, \dots, N$

Denoting $u_i = u(x_i)$, $u'_i = u'(x_i)$, first finite difference is

$$u_i' \simeq \frac{u_{i+1} - u_{i-1}}{h_i + h_{i+1}}$$
 second order accurate in h (consistent)

Daniele Boffi

Elliptic PDE's

Finite differences

Finite differences (cont'ed)

Approximation of second derivative

$$u_i'' \simeq \frac{u_{i+1/2}' - u_{i-1/2}'}{\frac{h_i + h_{i+1}}{2}}$$

Daniele Boffi

Finite differences

Finite differences (cont'ed)

Approximation of second derivative

$$u_i'' \simeq \frac{u_{i+1/2}' - u_{i-1/2}'}{\frac{h_i + h_{i+1}}{2}} \simeq \frac{\frac{u_{i+1} - u_i}{h_{i+1}} - \frac{u_i - u_{i-1}}{h_i}}{\frac{h_i + h_{i+1}}{2}}$$

Finite differences (cont'ed)

Approximation of second derivative

$$u_i'' \simeq \frac{u_{i+1/2}' - u_{i-1/2}'}{\frac{h_i + h_{i+1}}{2}} \simeq \frac{\frac{u_{i+1} - u_i}{h_{i+1}} - \frac{u_i - u_{i-1}}{h_i}}{\frac{h_i + h_{i+1}}{2}}$$

If $h_i = h$ (constant mesh size), simpler expression

$$u_i'' \simeq \frac{u_{i-1} - 2u_i + u_{i+1}}{h^2}$$
 second order consistent

Finite differences (cont'ed)

Approximation of second derivative

$$u_i'' \simeq \frac{u_{i+1/2}' - u_{i-1/2}'}{\frac{h_i + h_{i+1}}{2}} \simeq \frac{\frac{u_{i+1} - u_i}{h_{i+1}} - \frac{u_i - u_{i-1}}{h_i}}{\frac{h_i + h_{i+1}}{2}}$$

If $h_i = h$ (constant mesh size), simpler expression

$$u_i'' \simeq \frac{u_{i-1} - 2u_i + u_{i+1}}{h^2}$$
 second order consistent

Our approximate equation at x_i reads

$$\frac{-u_{i-1}+2u_i-u_{i+1}}{h^2}=f_i, \qquad i=1,\ldots,N-1$$

Daniele Boffi

Elliptic PDE's

Finite differences (cont'ed)

Putting things together we are led to the linear system

$$\begin{cases} u_0 = 0 \\ \dots \\ \frac{-u_{i-1} + 2u_i - u_{i+1}}{h^2} = f_i \\ \dots \\ u_N = 0 \end{cases}$$

Finite differences (cont'ed)

Putting things together we are led to the linear system

$$\begin{cases} u_0 = 0 \\ \dots \\ \frac{-u_{i-1} + 2u_i - u_{i+1}}{h^2} = f_i \\ \dots \\ u_N = 0 \end{cases}$$

$$AU = F$$
 $A = [tridiag(-1, 2, -1)]/h^2$

Daniele Boffi

Elliptic PDE's
Finite differences
Finite elements

Weak formulations

Need for more general formulations.

Daniele Boffi

Elliptic PDE's Finite differences Finite elements

Weak formulations

Need for more general formulations.

Let's consider space $V = H_0^1(a,b)$ consisting of continuous functions on [a,b], piecewise differentiable with bounded derivative, and vanishing at endpoints.

Weak formulations

Need for more general formulations.

Let's consider space $V = H_0^1(a,b)$ consisting of continuous functions on [a,b], piecewise differentiable with bounded derivative, and vanishing at endpoints.

Generalization to 2D requires Lebesgue integral and Hilbert spaces

$$H^1(\Omega) = \{ v \in L^2(\Omega) \text{ s.t. } \operatorname{grad} v \in L^2(\Omega) \}$$

where

$$L^2(\Omega) = \left\{ v: \Omega o \mathbb{R} \; ext{integrable s.t.} \; \int_\Omega v^2 < \infty
ight\}$$

Take our model equation, multiply by a generic $v \in V$ (test function), and integrate over (a, b)

$$-\int_a^b u''(x)v(x)\,dx = \int_a^b f(x)v(x)\,dx$$

Take our model equation, multiply by a generic $v \in V$ (test function), and integrate over (a, b)

$$-\int_a^b u''(x)v(x)\,dx = \int_a^b f(x)v(x)\,dx$$

Integrating by parts gives

$$\int_a^b u'(x)v'(x)\,dx = \int_a^b f(x)v(x)\,dx$$

Take our model equation, multiply by a generic $v \in V$ (test function), and integrate over (a, b)

$$-\int_a^b u''(x)v(x)\,dx = \int_a^b f(x)v(x)\,dx$$

Integrating by parts gives

$$\int_a^b u'(x)v'(x) dx = \int_a^b f(x)v(x) dx$$

 $a:V imes V o \mathbb{R}$, $F\in V^*$

$$a(u, v) = \int_a^b u'(x)v'(x) dx, \quad F(v) = \int_a^b f(x)v(x) dx$$

Daniele Boffi

Elliptic PDE's
Finite differences
Finite elements

Weak formulations (cont'ed)

Lax-Milgram Lemma

Find
$$u \in V$$
 such that $a(u, v) = F(v) \quad \forall v \in V$

Lax-Milgram Lemma

Find $u \in V$ such that $a(u, v) = F(v) \quad \forall v \in V$

This problem is well posed (exist., uniq., and stab.) provided

- 1 V Hilbert space
- 2 a bilinear, continuous, F linear, continuous
- **3** a coercive, that is there exists $\alpha > 0$ s.t.

$$a(v, v) \ge \alpha ||v||_V^2, \quad \forall v \in V$$

Lax-Milgram Lemma

Find $u \in V$ such that $a(u, v) = F(v) \quad \forall v \in V$

This problem is well posed (exist., uniq., and stab.) provided

- 1 V Hilbert space
- 2 a bilinear, continuous, F linear, continuous
- **3** a coercive, that is there exists $\alpha > 0$ s.t.

$$a(v, v) \ge \alpha ||v||_V^2, \quad \forall v \in V$$

$$||u||_V \le \frac{1}{\alpha} ||F||_{V^*}$$
 Stability estimate

Daniele Boffi

Elliptic PDE's
Finite differences
Finite elements

Weak formulations (cont'ed)

In our case hypotheses of LM Lemma OK (Poincaré inequality)

Daniele Boffi

Finite difference Finite elements

Weak formulations (cont'ed)

In our case hypotheses of LM Lemma OK (Poincaré inequality)

Remark

If f is smooth enough, the unique solution to weak formulation solves the original equation as well (strong solution)

In our case hypotheses of LM Lemma OK (Poincaré inequality)

Remark

If f is smooth enough, the unique solution to weak formulation solves the original equation as well (strong solution)

More general situation

$$\begin{cases} -\operatorname{div}(\varepsilon \operatorname{grad} u) + \vec{\beta} \cdot \operatorname{grad} u + \sigma u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

In our case hypotheses of LM Lemma OK (Poincaré inequality)

Remark

If f is smooth enough, the unique solution to weak formulation solves the original equation as well (strong solution)

More general situation

$$\begin{cases} -\operatorname{div}(\varepsilon \operatorname{grad} u) + \vec{\beta} \cdot \operatorname{grad} u + \sigma u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

$$a(u, v) = \int_{\Omega} \varepsilon \operatorname{grad} u \cdot \operatorname{grad} v \, d\mathbf{x} + \int_{\Omega} v \vec{\beta} \cdot \operatorname{grad} u \, d\mathbf{x} + \int_{\Omega} \sigma u v \, d\mathbf{x}$$

In general problem in weak form, when *a* is symmetric, is equivalent to the following variational problem:

Find $u \in V$ such that

$$J(u) = \min_{v \in V} J(v), \quad J(v) = \frac{1}{2}a(v, v) - F(v)$$

In general problem in weak form, when *a* is symmetric, is equivalent to the following variational problem:

Find $u \in V$ such that

$$J(u) = \min_{v \in V} J(v), \quad J(v) = \frac{1}{2}a(v,v) - F(v)$$

In the one dimensional model problem, we have

$$J(v) = \frac{1}{2} \int_{a}^{b} (v'(x))^{2} dx - \int_{a}^{b} f(x)v(x) dx$$

Daniele Boffi

Elliptic PDE's
Finite difference
Finite elements

Finite elements (Galerkin method)

Consider a finite dimensional subspace $V_h \subset V$ (h refers to a mesh parameter).

Daniele Boffi

Elliptic PDE's Finite difference Finite elements

Finite elements (Galerkin method)

Consider a finite dimensional subspace $V_h \subset V$ (h refers to a mesh parameter).

Find
$$u_h \in V_h$$
 such that $a(u_h, v_h) = F(v_h) \quad \forall v_h \in V_h$

Daniele Boffi

Finite difference Finite elements

Finite elements (Galerkin method)

Consider a finite dimensional subspace $V_h \subset V$ (h refers to a mesh parameter).

Find
$$u_h \in V_h$$
 such that $a(u_h, v_h) = F(v_h) \quad \forall v_h \in V_h$
Problem is solvable by Lax–Milgram

Finite elements (Galerkin method)

Consider a finite dimensional subspace $V_h \subset V$ (h refers to a mesh parameter).

Find
$$u_h \in V_h$$
 such that $a(u_h, v_h) = F(v_h) \quad \forall v_h \in V_h$

Problem is solvable by Lax-Milgram

Suppose that
$$V_h = \operatorname{span}\{\varphi_1, \dots, \varphi_N(h)\}$$
, so $u_h = \sum_{j=1}^N u_j \varphi_j$

Finite elements (Galerkin method)

Consider a finite dimensional subspace $V_h \subset V$ (h refers to a mesh parameter).

Find
$$u_h \in V_h$$
 such that $a(u_h, v_h) = F(v_h) \quad \forall v_h \in V_h$

Problem is solvable by Lax-Milgram

Suppose that
$$V_h = \operatorname{span}\{\varphi_1, \dots, \varphi_N(h)\}$$
, so $u_h = \sum_{j=1}^N u_j \varphi_j$

Problem can be written: find $\mathbf{u} = \{u_j\}$ s.t. for any i

$$a\Big(\sum_{i=1}^N u_j\varphi_j,\varphi_i\Big)=F(\varphi_i)$$

Daniele Boffi

Elliptic PDE's
Finite differences
Finite elements

Galerkin method (cont'ed)

Bilinearity of a gives

$$\sum_{j=1}^{N} u_j a(\varphi_j, \varphi_i) = F(\varphi_i), \quad i = 1, \dots, N$$

Galerkin method (cont'ed)

Bilinearity of a gives

$$\sum_{j=1}^{N} u_j \mathsf{a}(arphi_j, arphi_i) = \mathsf{F}(arphi_i), \quad i = 1, \dots, N$$

Let's denote by A the *stiffness* matrix $A_{ij} = a(\varphi_j, \varphi_i)$ and by b the *load* vector $b_i = F(\varphi_i)$. Then we have the matrix form of discrete problem

$$A\mathbf{u} = b$$

Bilinearity of a gives

$$\sum_{j=1}^{N} u_j \mathsf{a}(\varphi_j, \varphi_i) = \mathsf{F}(\varphi_i), \quad i = 1, \dots, N$$

Let's denote by A the *stiffness* matrix $A_{ij} = a(\varphi_j, \varphi_i)$ and by b the *load* vector $b_i = F(\varphi_i)$. Then we have the matrix form of discrete problem

$$A\mathbf{u} = b$$

a symmetric and coercive implies A symmetric positive definite

Daniele Boffi

Elliptic PDE's Finite difference Finite elements

Galerkin method (cont'ed)

Existence and uniqueness (Lax-Milgram)

Daniele Boffi

Elliptic PDE's
Finite difference
Finite elements

Galerkin method (cont'ed)

Existence and uniqueness (Lax-Milgram)

 ${\sf Convergence} = {\sf Consistency} + {\sf Stability}$

Existence and uniqueness (Lax-Milgram)

$${\sf Convergence} = {\sf Consistency} + {\sf Stability}$$

Stability:

$$||u_h||_V \leq \frac{1}{\alpha} ||F||_{V^*}$$

Existence and uniqueness (Lax-Milgram)

$${\sf Convergence} = {\sf Consistency} + {\sf Stability}$$

Stability:

$$||u_h||_V \leq \frac{1}{\alpha} ||F||_{V^*}$$

Strong consistency

$$a(u-u_h,v_h)=0 \quad \forall v_h \in V_h$$

Error estimate (Céa's Lemma)

$$\|\alpha\|u - u_h\|_V^2 \le a(u - u_h, u - u_h) = a(u - u_h, u - v_h)$$

 $\le M\|u - u_h\|_V\|u - v_h\|_V$

Error estimate (Céa's Lemma)

$$\alpha \|u - u_h\|_V^2 \le a(u - u_h, u - u_h) = a(u - u_h, u - v_h)$$

 $\le M \|u - u_h\|_V \|u - v_h\|_V$

$$\|u-u_h\|_V \leq \frac{M}{\alpha} \inf_{v \in V_h} \|u-v_h\|_V$$

Error estimate (Céa's Lemma)

$$\alpha \|u - u_h\|_V^2 \le a(u - u_h, u - u_h) = a(u - u_h, u - v_h)$$

 $\le M \|u - u_h\|_V \|u - v_h\|_V$

$$\|u-u_h\|_V \leq \frac{M}{\alpha} \inf_{v \in V_h} \|u-v_h\|_V$$

Error bounded by best approximation Need for good choice of V_h !

Daniele Boffi

Elliptic PDE's
Finite differences
Finite elements

Galerkin method (cont'ed)

Moreover, when a is symmetric, we have the variational property

$$J(u_h) = \min_{v_h \in V_h} J(v_h)$$

Moreover, when a is symmetric, we have the variational property

$$J(u_h) = \min_{v_h \in V_h} J(v_h)$$

Since $V_h \subset V$, in particular, we have

$$J(u) \leq J(u_h)$$

Daniele Boffi

Elliptic PDE's

Finite elements

Finite elements

One dimensional p/w linear approximation. Shape (or basis) functions: hat functions.

Daniele Boffi

Finite difference Finite elements

Finite elements

One dimensional p/w linear approximation. Shape (or basis) functions: hat functions.

A finite element is defined by:

1 a domain (interval, triangle, tetrahedron,...),

Daniele Boffi

Finite difference Finite elements

Finite elements

One dimensional p/w linear approximation. Shape (or basis) functions: hat functions.

A finite element is defined by:

- 1 a domain (interval, triangle, tetrahedron,...),
- 2 a finite dimensional (polynomial) space,

Daniele Boffi

Elliptic PDE's Finite difference

Finite differences Finite elements

Finite elements

One dimensional p/w linear approximation. Shape (or basis) functions: hat functions.

A finite element is defined by:

- 1 a domain (interval, triangle, tetrahedron,...),
- 2 a finite dimensional (polynomial) space,
- 3 a set of degrees of freedom.

Daniele Boffi

Elliptic PDE's
Finite difference
Finite elements

Finite elements (cont'ed)

One dimensional finite elements

1 domain: interval

Daniele Boffi

Elliptic PDE's
Finite difference
Finite elements

Finite elements (cont'ed)

One dimensional finite elements

1 domain: interval

2 space: \mathcal{P}_p

Daniele Boffi

Finite difference Finite elements

Finite elements (cont'ed)

One dimensional finite elements

1 domain: interval

2 space: \mathcal{P}_p

3 d.o.f.'s: depend on polynomial order

Daniele Boffi

Finite difference Finite elements

Finite elements (cont'ed)

One dimensional finite elements

1 domain: interval

2 space: \mathcal{P}_p

3 d.o.f.'s: depend on polynomial order

linear element: endpoints (2) quadratic element: endpoints + midpoint (3)

. . .

One dimensional finite elements

1 domain: interval

2 space: \mathcal{P}_p

3 d.o.f.'s: depend on polynomial order

linear element: endpoints (2) quadratic element: endpoints + midpoint (3)

. . .

Set $\{a_j\}_{j=1}^N$ of degrees of freedom is *unisolvent*, that is, given N numbers $\alpha_1, \ldots, \alpha_N$, there exists a unique polynomial φ in \mathcal{P}_p s. t.

$$\varphi(a_j) = \alpha_j, \quad j = 1, \dots, N$$

Daniele Boffi

Elliptic PDE's Finite difference Finite elements

Finite elements (cont'ed)

Approximation properties of one dimensional finite elements

Daniele Boffi

Elliptic PDE's
Finite differences
Finite elements

Finite elements (cont'ed)

Approximation properties of one dimensional finite elements

$$\inf_{v_h \in V_h} \|u - v_h\|_{H^k} \le Ch^{p+1-k} |u|_{H^{p+1}} \quad k = 0, 1$$

Approximation properties of one dimensional finite elements

$$\inf_{v_h \in V_h} \|u - v_h\|_{H^k} \le Ch^{p+1-k} |u|_{H^{p+1}} \quad k = 0, 1$$

Remark on hp FEM

- Refine in h where solution is singular
- Refine in *p* where solution is regular

Daniele Boffi

Elliptic PDE's Finite difference Finite elements

Finite elements (cont'ed)

Generalization to more space dimensions Example of unisolvent degrees of freedom

Daniele Boffi

Elliptic PDE's
Finite differences
Finite elements

Finite elements (cont'ed)

How to construct stiffness matrix and load vector

Daniele Boffi

Elliptic PDE's
Finite differences
Finite elements

Finite elements (cont'ed)

How to construct stiffness matrix and load vector In general one considers reference elements and mappings to actual elements

Daniele Boffi

Finite difference

Finite elements (cont'ed)

How to construct stiffness matrix and load vector In general one considers reference elements and mappings to actual elements

Notation: \hat{K} reference element; K actual element

Daniele Boffi

Finite difference Finite elements

Finite elements (cont'ed)

How to construct stiffness matrix and load vector In general one considers reference elements and mappings to actual elements

Notation: \hat{K} reference element; K actual element $\hat{\varphi}_1, \dots \hat{\varphi}_N$ reference shape functions; $\varphi_1, \dots \varphi_N$ actual shape functions

Daniele Boffi

Elliptic PDE's Finite differences Finite elements

Finite elements (cont'ed)

How to map the shape functions

$$F_K : \hat{K} \to K, \quad \vec{x} = F(\hat{\vec{x}})$$

 $\varphi(\vec{x}) = \hat{\varphi}(F^{-1}(\vec{x}))$

How to map the shape functions

$$F_K : \hat{K} \to K, \quad \vec{x} = F(\hat{\vec{x}})$$

 $\varphi(\vec{x}) = \hat{\varphi}(F^{-1}(\vec{x}))$

Example of computation of *local* stiffness matrix (one dimensional)

$$A_{ji} = a(\varphi_i, \varphi_j) = \int_a^b \varphi_i'(x) \varphi_j'(x) \, dx = \sum_K \int_K \varphi_i'(x) \varphi_j'(x) \, dx$$

How to map the shape functions

$$F_K : \hat{K} \to K, \quad \vec{x} = F(\hat{\vec{x}})$$

 $\varphi(\vec{x}) = \hat{\varphi}(F^{-1}(\vec{x}))$

Example of computation of *local* stiffness matrix (one dimensional)

$$A_{ji} = a(\varphi_i, \varphi_j) = \int_a^b \varphi_i'(x) \varphi_j'(x) \, dx = \sum_K \int_K \varphi_i'(x) \varphi_j'(x) \, dx$$

$$\int_{\mathcal{K}} \varphi_i'(x) \varphi_j'(x) \, dx = \int_{\hat{\mathcal{K}}} \frac{\hat{\varphi}_i'(\hat{x})}{F'(\hat{x})} \frac{\hat{\varphi}_j'(\hat{x})}{F'(\hat{x})} F'(\hat{x}) \, d\hat{x} = \int_{\hat{\mathcal{K}}} \frac{\hat{\varphi}_i'(\hat{x}) \hat{\varphi}_j'(\hat{x})}{F'(\hat{x})} \, d\hat{x}$$

Daniele Boffi

Elliptic DDE'c

Finite differences Finite elements

Finite elements (cont'ed)

$$\int_{\hat{K}} \frac{\hat{\varphi}_i'(\hat{x})\hat{\varphi}_j'(\hat{x})}{F'(\hat{x})} \, d\hat{x}$$

$$\int_{\hat{\kappa}} \frac{\hat{\varphi}_i'(\hat{x})\hat{\varphi}_j'(\hat{x})}{F'(\hat{x})} \, d\hat{x}$$

In general, $F = \alpha + \beta \hat{x}$ is affine so that $F' = \beta$ is constant (and equal to h)

$$\int_{\hat{\kappa}} \frac{\hat{\varphi}_i'(\hat{x})\hat{\varphi}_j'(\hat{x})}{F'(\hat{x})} \, d\hat{x}$$

In general, $F = \alpha + \beta \hat{x}$ is affine so that $F' = \beta$ is constant (and equal to h)

$$\int_{\hat{K}} \frac{\hat{\varphi}_i'(\hat{x})\hat{\varphi}_j'(\hat{x})}{F'(\hat{x})} dx = \frac{1}{h} \int_{\hat{K}} \hat{\varphi}_i'(\hat{x})\hat{\varphi}_j'(\hat{x}) dx$$

$$\int_{\hat{K}} \frac{\hat{\varphi}_i'(\hat{x})\hat{\varphi}_j'(\hat{x})}{F'(\hat{x})} \, d\hat{x}$$

In general, $F = \alpha + \beta \hat{x}$ is affine so that $F' = \beta$ is constant (and equal to h)

$$\int_{\hat{K}} \frac{\hat{\varphi}_i'(\hat{x})\hat{\varphi}_j'(\hat{x})}{F'(\hat{x})} dx = \frac{1}{h} \int_{\hat{K}} \hat{\varphi}_i'(\hat{x})\hat{\varphi}_j'(\hat{x}) dx$$

In more space dimensions, F is affine for most popular elements.

$$\int_{\mathcal{K}} \operatorname{grad} \varphi_i(\vec{x}) \cdot \operatorname{grad} \varphi_j(\vec{x}) \, d\vec{x} = ?$$

Daniele Boffi

Elliptic PDE's
Finite differences
Finite elements

Finite elements (cont'ed)

General strategy for assembling stiffness matrix and load vector

General strategy for assembling stiffness matrix and load vector

- Loop over elements $ie = 1, \dots, ne$
- Compute local stiffness matrix $A_{ji}^{loc} = a(\varphi_i, \varphi_j)$, $i, j = 1, \ldots, ndof$ and local load vector $F_i^{loc} = F(\varphi_i)$, $i = 1, \ldots, ndof$
- Loop for i, j = 1, ..., ndof and assembly of global matrix

$$A_{iglob,jglob} = A_{iglob,jglob} + A_{ij}^{loc}$$

Account for boundary conditions

Daniele Boffi

Finite difference Finite elements

Finite elements (cont'ed)

Some remarks on the discrete linear system

 matrix is sparse (sparsity pattern, so called skyline, can be determined a priori)

Daniele Boffi

Finite difference Finite elements

Finite elements (cont'ed)

Some remarks on the discrete linear system

- matrix is sparse (sparsity pattern, so called skyline, can be determined a priori)
- matrix is SPD (CG can be successfully applied)

Daniele Boffi

Finite difference

Finite elements (cont'ed)

Some remarks on the discrete linear system

- matrix is sparse (sparsity pattern, so called skyline, can be determined a priori)
- matrix is SPD (CG can be successfully applied)
- conditioning of matrix grows as h goes to zero (need for preconditioning)

Daniele Boffi

Finite difference Finite elements

Finite elements (cont'ed)

Some remarks on the discrete linear system

- matrix is sparse (sparsity pattern, so called skyline, can be determined a priori)
- matrix is SPD (CG can be successfully applied)
- conditioning of matrix grows as h goes to zero (need for preconditioning)

End of part II