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Finite elements (cont’ed)

Generalization to more space dimensions

Example of unisolvent degrees of freedom
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Finite elements (cont’ed)

How to construct stiffness matrix and load vector
In general one considers reference elements and mappings to actual

elements

F ,
o L
// U

Notation: K reference element: K actual element
01, ...pN reference shape functions;
©1,...pxN actual shape functions




Finite elements (cont’ed)

How to map the shape functions
Fx:K — K, #=F()
p(Z) = p(F ()
Example of computation of local stiffness matrix (one dimensional)
Aji — a(gpz,gpj) — / sz( Spj dl‘ — Z/ (707, 90] d.CIZ‘
pi(& )%(i) o [e)es(E)
| @@= | S = | T




Finite elements (cont’ed)

dx

/ Pi(2)P%(2)
& F(2)

In general, F = a + (% is affine so that F' = (3 is constant (and
equal to h)

#i(2)p5(Z) L[ s
[ EEE e [ @) (@) do
kK F'(X) hJk

In more space dimensions, F' is affine for most popular elements.

/ grad o;(T) - grad (%) dE =7
K




Finite elements (cont’ed)

General strategy for assembling stiffness matrix and load vector

» Loop over elements e =1,...,ne

» Compute local stiffness matrix Aé@’-c = a(pi, ), 47 =1,...,ndof
and local load vector F/°¢ = F(p;), i =1,...,ndof

» Loop fori,7 =1,...,ndof and assembly of global matrix

loc

Aiglob,jglob — Aiglob,jglob - Aij

» Account for boundary conditions




Finite elements (cont’ed)

Some remarks on the discrete linear system

» matrix is sparse (sparsity pattern, so called skyline, can be
determined a priori)

» matrix is SPD (CG can be succesfully applied)

» conditioning of matrix grows as h goes to zero (need for
preconditioning)




Convection diffusion equation

As usual. . . a one dimensional example

—eu'(z)+bu'(2) =0 O<z<]l1
u(0) =0, u(l) =1

Non-homogeneous boundary conditions (!)
Péclet number P = |b|L/(22) (L =1 in our case)

Closed form solution can be explicitly computed

u() = exp(br/e) — 1
exp(b/e) — 1




Convection diffusion equation (cont’ed)

u(z) = exp(bx/e) — 1

exp(b/2) — 1
epsilon=1
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If b/e < 1 then u(x) ~ x
If b/e > 1 then u(z) ~ exp(—b(1 — x)/e)

In the second case, boundary layer of size O(e/b)




Convection diffusion equation (cont’ed)

Approximation by finite elements

a(u,v) = /0 (eu'(z)v' () + bu'(z)v(z)) dx

After some computations. . . stiffness matrix is (uniform mesh):

b ¢ 2¢ b ¢
g n)UH TR T T Ty )

Local (discrete) Péclet number is P(h) = |blh/(2¢), so that our
system has the structure

(]P(h) — 1)U¢+1 -+ Quz — (P(h) -+ 1)ui_1

|
-




Convection diffusion equation (cont’ed)

(P(h) — 1)ui+1 -+ QUZ — (P(h) -+ 1)%2'_1 —
General solution

- (H—]P(h))i
—P(h)

1 _ (H—IP’(h)) N
1—P(h)

i=1,....N

U, —

If P(h) > 1 solution oscillates!
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Stabilization techiniques

» Upwind (finite differences)
» Artificial viscosity, streamline diffusion (loosing consistency)

» Petrov—Galerkin, SUPG (strongly consistent)
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Hyperbolic equations

Let's consider the model problem (one dimensional convection
equation)

(u | ou_
ot o
L u(x,0) =up(z), R

0, t>0 z€R

/"

Solution is a traveling wave u(x,t) = ug(z — at).

We consider a finite difference approximation.




Hyperbolic equations (cont’ed)

- “7—0
t a@a:
At
n+1  n n n
U, =uU; — A_x( j+1/2 — j—1/2>

where h; 1,9 = h(u;,uj41) is a numerical flux

Indeed,

o _ Ljt+1/2
an - ((au)(xjﬂ/z) - (au)(%‘—l/z)) with U; = / u, dx

j—1/2
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Hyperbolic equations (cont’ed)

Courant—Friedrichs—Lewy (CFL) condition

At

— |1 <1
aAa:

Very clear geometrical interpretation (see also multidimensional
extension and generalization to systems)

Remark: implicit schemes (in time) don't have restrictions, but add
artificial diffusion




End of part Il
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