

Geometria e A	lgebra Appello del 9	febbraio 2017	
0 0	matricola. Durata: 1 ora. V strumenti elettronici di cal smartphone,). Le dom	comporre il proprio numero di Vietato l'uso di appunti, libri, colo e/o comunicazione (cell, ande con il segno 🌲 possono orrette. Risposte gravemente nteggi negativi.	
Domanda [openquestsistemicA	Data una matrice $A \operatorname{con} k$	righe ed n colonne definire Ker A .	
Quindi dare un esempio di una m			
Domanda [openquestsistemicB] Data una matrice A con k righe ed n colonne definire Ker A . Quindi dare un esempio di una matrice 4×3 con Ker $A = \{0\}$.			

Oomanda [openquestsistemicC] Enunciare il teorema sulla riso quindi dare un esempio di un sistema lineare di 2 equazioni in 3 ince	lubilità dei sistemi linear ognite senza soluzioni.
	wpa c
Oomanda [openquestsistemicD] Enunciare il teorema sulla riso guindi dare un esempio di un sistema lineare di 2 equazioni in 3 incognit	
Domanda [opendefeigenVA] Dare la definizione di autospazio di un relativo a un autovalore λ . Si dia un esempio di una matrice 3×10^{-5} imensioni degli autospazi sia 2.	

Domanda [opendefeigenVB] Dare la definizione di molteplicità geometrica di un autovalore di un operatore lineare $L\colon V\to V$. Costruire un esempio di una matrice 3×3 con autovalore 0 e		
tale che	$v_0 = \{z = 0\}.$	w p a c
	nda [opendefeigenVC] Sia A una matrice 3×3 . Dare la defini a un autovalore λ . Dimostrare che se $\operatorname{Ker}(A-2I) \neq \{0\}$ allora 2	
	nda [opendefeigenVD] — Dare la definizione di autovalore di u 7 . Costruire un esempio di una matrice 2×2 con autovalori 1 e	

Domanda [linappcA] Sia $L \colon \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare suriettiva tale che $L \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Quale delle seguenti affermazioni è necessariamente vera?				
	\Box L è l'applicazione identica di \mathbb{R}^3 . \Box $L \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.			
Domanda [linappcB] Sia $L: \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare tale che Im $L = \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x+y+z=0 \}$. Quale delle seguenti affermazioni è necessariamente vera?				
Domanda [linappcC] Sia $L: \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare iniettiva tale che $L \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \neq \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Quale delle seguenti affermazioni è necessariamente vera?				
L non è suriettiva. Esiste $X \in \mathbb{R}^3$ tale che $L(X) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.				
Domanda [linappcD] Sia $L: \mathbb{R}^3 \to \mathbb{R}^2$ un'applicazione lineare tale che Ker $L = \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} x + z = 0 \}$. Quale delle seguenti affermazioni è necessariamente vera?				
Domanda [VorthogA] \clubsuit Sia $V = \{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 \mid x+y+z=x-t=0 \}$ un sottospazio vettoriale di \mathbb{R}^4 . Quali fra i seguenti vettori appartengono a V^{\perp} ?				
$\blacksquare \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix} \qquad \blacksquare \begin{pmatrix} 2\\0\\0\\-2 \end{pmatrix}$	(1) (1)			
Domanda [VorthogB] \clubsuit Sia $V = \{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 \mid x+2y-t=x+z=0 \}$ un sottospazio vettoriale di \mathbb{R}^4 . Quali fra i seguenti vettori appartengono a V^{\perp} ?				
$\blacksquare \begin{pmatrix} 2\\4\\0\\-2 \end{pmatrix} \qquad \Box \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix}$	$\blacksquare \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad \Box \begin{pmatrix} 1 \\ 1 \\ -1 \\ 3 \end{pmatrix}$			

Domanda [invdiagB] La matrice $\begin{pmatrix} 1 & 1 \\ 0 & 2 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ è
invertibile, ma non diagonalizzabile. non invertibile, ma diagonalizzabile.	non invertibile e non diagonalizzabile.invertibile e diagonalizzabile.
Domanda [invdiagC] La matrice $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1\\1\\2 \end{pmatrix}$ è
invertibile, ma non diagonalizzabile.non invertibile, ma diagonalizzabile.	non invertibile e non diagonalizzabile. invertibile e diagonalizzabile.
Domanda [invdiagD] La matrice $\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ è
invertibile, ma non diagonalizzabile.	non invertibile e non diagonalizzabile. invertibile e diagonalizzabile.