CORSO DI GEOMETRIA E ALGEBRA	2 luglio 2019
Cognome e Nome:	Matricola:

$$\Longrightarrow \Longrightarrow \Longrightarrow \boxed{ \text{Scrivere in modo } \underline{\text{LEGGIBILE}} \text{ nome e cognome!} } \longleftarrow \longleftarrow \longleftarrow \longleftarrow$$

1. **(8 pt)** Si consideri il sistema lineare AX = B, dove $X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$ è il vettore delle incognite, A e B sono le seguenti matrici dipendenti dal parametro reale k:

$$A = \begin{pmatrix} 1 & 2 & 0 & k \\ 1-k & -1-2k & 2 & -1 \\ 2 & 1 & 2 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1+k \\ 0 \\ 2k+1 \end{pmatrix}.$$

- (a) Determinare il rango di A al variare di k:
- (b) Determinare per quali valori di k il sistema ammette soluzioni:
- (c) Determinare per quali valori di k lo spazio delle soluzioni ha dimensione 2:
- (d) Sia k=1. Determinare la dimensione della varietà delle soluzioni e una sua rappresentazione parametrica:

k	$\operatorname{rg} A$	$\operatorname{rg} ilde{A}$	$S \neq \emptyset$?	$\dim S$
0	2	2	sì	2
-1	2	3	no	
resto	3	3	sì	1

$$rg(A) = \begin{cases} 3 \text{ se } k \neq 0, -1\\ 2 \text{ se } k = 0, -1. \end{cases}$$

Risolubile per $k \neq -1$, dim Sol = 2 per k = 0. Soluzione per k = 1:

$$\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 3/2 \\ 0 \\ 1/4 \\ 1/2 \end{pmatrix} + \alpha \begin{pmatrix} -2 \\ 1 \\ 3/2 \\ 0 \end{pmatrix} = \begin{pmatrix} 11/6 \\ -1/6 \\ 0 \\ 1/2 \end{pmatrix} + \alpha \begin{pmatrix} -4/3 \\ 2/3 \\ 1 \\ 0 \end{pmatrix}, \quad \alpha \in \mathbb{R}$$

2. Si considerino le matrici
$$A = \begin{pmatrix} 1 & 0 & 3 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 e $B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

- (a) Determinare gli autovalori di A specificandone molteplicità algebriche μ e geometriche m.
- (b) Determinare le equazioni cartesiane di ciascun autospazio di A.
- (c) Determinare una base di ciascun autospazio di A.
- (d) Discutere se la matrice B è simile alla matrice A; in caso positivo esibire una matrice invertibile N tale che $B = N^{-1}AN$. In caso negativo giustificare la risposta.
- (a) Autovalori di A: 1 con $\mu = 2$, m = 1, 2 con $\mu = m = 1$.
- (b) $V_1(A) = \{x + y = z = 0\}.$ $V_2(A) = \{x = z = 0\}.$
- (c) $V_1(A) = \operatorname{Span}\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$. $V_2(A) = \operatorname{Span}\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.
- (d) $A \in B$ non sono simili, perché B è diagonalizzabile, mentre A non lo è.
- 3. (8 pt) Si consideri l'applicazione lineare $L: \mathbb{R}^3 \to \mathbb{R}^4$ definita da:

$$L\begin{pmatrix}0\\2\\0\end{pmatrix} = \begin{pmatrix}4\\4\\2\\4\end{pmatrix}, \quad L\begin{pmatrix}0\\1\\1\\1\end{pmatrix} = \begin{pmatrix}1\\1\\1\\1\end{pmatrix}, \quad L\begin{pmatrix}1\\0\\0\end{pmatrix} = \begin{pmatrix}1\\1\\0\\1\end{pmatrix},$$

- (a) Determinare la matrice A che rappresenta L nelle basi canoniche di \mathbb{R}^3 e \mathbb{R}^4 :
- (b) Determinare una base del sottospazio $\operatorname{Im} L$:
- (c) Determinare una base del sottospazio Ker $L\!:$
- (d) Determinare una base di $(\operatorname{Im} L)^{\perp}$, complemento ortogonale di $\operatorname{Im} L$:

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix}$$

Base di Im L = prime due colonne di A

Base di Ker
$$L = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Base di
$$(\operatorname{Im} L)^{\perp} = \left\{ \begin{pmatrix} 1\\0\\0\\-1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix} \right\}.$$

CORSO DI GEOMETRIA E ALGEBRA	2 luglio 2019
Cognome e Nome:	Matricola:

$$\Longrightarrow \Longrightarrow \Longrightarrow \boxed{ \text{Scrivere in modo } \underline{\text{LEGGIBILE}} \text{ nome e cognome!} } \longleftarrow \longleftarrow \longleftarrow \longleftarrow$$

1. **(8 pt)** Si consideri il sistema lineare AX = B, dove $X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$ è il vettore delle incognite, $A \in B$ sono le seguenti matrici dipendenti dal parametro reale k:

$$A = \begin{pmatrix} 1 & -1 & 1 & k \\ -1 - k & k & 2 - k & 1 \\ 2 & -1 & -1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 2k + 2 \\ 0 \\ k + 2 \end{pmatrix}.$$

- (a) Determinare il rango di A al variare di k:
- (b) Determinare per quali valori di k il sistema ammette soluzioni:
- (c) Determinare per quali valori di k lo spazio delle soluzioni ha dimensione 2:
- (d) Sia k = -1. Determinare la dimensione della varietà delle soluzioni e una sua rappresentazione parametrica:

k	$\operatorname{rg} A$	$\operatorname{rg} ilde{A}$	$S \neq \emptyset$?	$\dim S$
0	2	2	sì	2
1	2	3	no	_
altrim.	3	3	sì	1

$$rg(A) = \begin{cases} 3 \text{ se } k \neq 0, 1\\ 2 \text{ se } k = 0, 1. \end{cases}$$

Risolubile per $k \neq 1$, dim Sol = 2 per k = 0. Soluzione per k = -1:

$$\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 1 \\ 1/2 \\ 0 \\ 1/2 \end{pmatrix} + \alpha \begin{pmatrix} 2 \\ 3 \\ 1 \\ 0 \end{pmatrix}, \quad \alpha \in \mathbb{R}.$$

- 2. **(8 pt)** Si considerino le matrici $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$ e $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
 - (a) Determinare gli autovalori di A specificandone molteplicità algebriche μ e geometriche m.

- (b) Determinare le equazioni cartesiane di ciascun autospazio di A.
- (c) Determinare una base di ciascun autospazio di A.
- (d) Discutere se la matrice B è simile alla matrice A; in caso positivo esibire una matrice invertibile N tale che $B = N^{-1}AN$. In caso negativo giustificare la risposta.
- (a) Autovalori di A: 1 con $\mu = m = 2$, 2 con $\mu = m = 1$.
- (b) $V_1(A) = \{x = 0\}.$ $V_2(A) = \{x + z = y = 0\}.$
- (c) $V_1(A) = \operatorname{Span}\left\{\begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}\right\}$. $V_2(A) = \operatorname{Span}\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$.
- (d) A e B sono simili, perché hanno lo stesso polinomio caratteristico e sono entrambe diagonalizzabili. $N=\begin{pmatrix}0&1&0\\1&0&0\\0&-1&1\end{pmatrix}$.
- 3. (8 pt) Si consideri l'applicazione lineare $L \colon \mathbb{R}^4 \to \mathbb{R}^3$ definita da:

$$L \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \quad L \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix}, \quad L \begin{pmatrix} 0 \\ 0 \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}, \quad L \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

- (a) Determinare la matrice A che rappresenta L nelle basi canoniche di \mathbb{R}^4 e \mathbb{R}^3 :
- (b) Determinare una base del sottospazio ${\rm Im}\,L$:
- (c) Determinare una base del sottospazio KerL:
- (d) Determinare una base di $(\operatorname{Ker} L)^{\perp}$, complemento ortogonale di $\operatorname{Ker} L$:

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 2 \\ -1 & -1 & 0 & -1 \end{pmatrix}$$

Base di ${\rm Im}\, L=$ ultime due colonne di A

Base di Ker
$$L = \left\{ \begin{pmatrix} 1\\0\\0\\-1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix} \right\}$$

Base di
$$(\operatorname{Ker} L)^{\perp} = \left\{ \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \right\}.$$

CORSO DI GEOMETRIA E ALGEBRA	2 luglio 2019
Cognome e Nome:	Matricola:

$$\Longrightarrow \Longrightarrow \Longrightarrow \boxed{\text{Scrivere in modo } \underline{\text{LEGGIBILE}} \text{ nome e cognome!}} \Longleftrightarrow \Longleftrightarrow \Longleftrightarrow \Longleftrightarrow$$

1. **(8 pt)** Si consideri il sistema lineare AX = B, dove $X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$ è il vettore delle incognite, $A \in B$ sono le seguenti matrici dipendenti dal parametro reale k:

$$A = \begin{pmatrix} 2 & 2 & 1 & -1 \\ k & 2 & -3 + 2k & -1 \\ 1 & 0 & 2 & k+1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ -3 + 2k \\ 1 \end{pmatrix}.$$

- (a) Determinare il rango di A al variare di k:
- (b) Determinare per quali valori di k il sistema ammette soluzioni:
- (c) Determinare per quali valori di k lo spazio delle soluzioni ha dimensione 2:
- (d) Sia k=1. Determinare la dimensione della varietà delle soluzioni e una sua rappresentazione parametrica:

k	$\operatorname{rg} A$	$\operatorname{rg} ilde{A}$	$S \neq \emptyset$?	$\dim S$
-1	2	3	no	_
2	2	2	sì	2
altrim.	3	3	sì	1

$$rg(A) = \begin{cases} 3 \text{ se } k \neq -1, 2\\ 2 \text{ se } k = -1, 2. \end{cases}$$

Risolubile per $k \neq -1$, dim Sol = 2 per k = 2.

Soluzione per k = 1:

$$\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} -1/3 \\ 0 \\ 7/6 \\ -1/2 \end{pmatrix} + \alpha \begin{pmatrix} -4/3 \\ 1 \\ 2/3 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -7/4 \\ 0 \\ -1/2 \end{pmatrix} + \alpha \begin{pmatrix} -2 \\ 3/2 \\ 1 \\ 0 \end{pmatrix}, \quad \alpha \in \mathbb{R}$$

2. **(8 pt)** Si considerino le matrici
$$A = \begin{pmatrix} -2 & 0 & -2 \\ 3 & -4 & 3 \\ 1 & 0 & 1 \end{pmatrix}$$
 e $B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

- (a) Determinare gli autovalori di A specificandone molteplicità algebriche μ e geometriche m.
- (b) Determinare le equazioni cartesiane di ciascun autospazio di A.
- (c) Determinare una base di ciascun autospazio di A.
- (d) Discutere se la matrice B è simile alla matrice A; in caso positivo esibire una matrice invertibile N tale che $B = N^{-1}AN$. In caso negativo giustificare la risposta.
- (a) Autovalori di A: -4, -1, 0 tutti con $\mu = m = 1$.
- (b) $V_{-4}(A) = \{x = z = 0\}.$ $V_{-1}(A) = \{y + z = x + 2z = 0\}.$ $V_0(A) = \{x + z = y = 0\}.$
- (c) $V_{-4}(A) = \operatorname{Span}\left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$. $V_{-1}(A) = \operatorname{Span}\left\{ \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix} \right\}$. $V_0(A) = \operatorname{Span}\left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}$.
- (d) A e B non sono simili perché hanno stessi autovalori diversi.
- 3. (8 pt) Si consideri l'applicazione lineare $L \colon \mathbb{R}^3 \to \mathbb{R}^4$ definita da:

$$L\begin{pmatrix}2\\0\\0\end{pmatrix}=\begin{pmatrix}2\\2\\-2\\0\end{pmatrix},\quad L\begin{pmatrix}1\\1\\0\end{pmatrix}=\begin{pmatrix}2\\2\\-2\\0\end{pmatrix},\quad L\begin{pmatrix}0\\0\\-1\end{pmatrix}=\begin{pmatrix}-1\\-1\\1\\1\end{pmatrix},$$

- (a) Determinare la matrice A che rappresenta L nelle basi canoniche di \mathbb{R}^3 e \mathbb{R}^4 :
- (b) Determinare una base del sottospazio $\operatorname{Im} L$:
- (c) Determinare una base del sottospazio Ker L:
- (d) Determinare una base di $(\operatorname{Im} L)^{\perp}$, complemento ortogonale di $\operatorname{Im} L$:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -1 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$

Base di $\operatorname{Im} L = \operatorname{ultime}$ due colonne di A

Base di Ker
$$L=\begin{pmatrix}1\\-1\\0\end{pmatrix}$$

Base di
$$(\operatorname{Im} L)^{\perp} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

CORSO DI GEOMETRIA E ALGEBRA	2 luglio 2019
Cognome e Nome:	Matricola:

$$\Longrightarrow \Longrightarrow \Longrightarrow \boxed{ \textbf{Scrivere in modo } \underline{\textbf{LEGGIBILE}} \ \textbf{nome e cognome!} } \longleftarrow \longleftarrow \longleftarrow \longleftarrow$$

1. **(8 pt)** Si consideri il sistema lineare AX = B, dove $X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$ è il vettore delle incognite, $A \in B$ sono le seguenti matrici dipendenti dal parametro reale k:

$$A = \begin{pmatrix} 2 & -1 & -1 & -1 \\ -k & 3-k & k-1 & 1 \\ 1 & 1 & -1 & k-1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 \\ k-2 \\ 1 \end{pmatrix}.$$

- (a) Determinare il rango di A al variare di k:
- (b) Determinare per quali valori di k il sistema ammette soluzioni:
- (c) Determinare per quali valori di k lo spazio delle soluzioni ha dimensione 2:
- (d) Sia k = -1. Determinare la dimensione della varietà delle soluzioni e una sua rappresentazione parametrica:

k	$\operatorname{rg} A$	$\operatorname{rg} ilde{A}$	$S \neq \emptyset$?	$\dim S$
2	2	3	no	_
1	2	2	sì	2
altrim.	3	3	sì	1

$$rg(A) = \begin{cases} 3 \text{ se } k \neq 1, 2\\ 2 \text{ se } k = 1, 2 \end{cases}$$

Risolubile per $k \neq 2$, dim Sol = 2 per k = 1.

Soluzione per k = -1:

$$\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 5/3 \\ 0 \\ 2 \\ -2/3 \end{pmatrix} + \alpha \begin{pmatrix} 2 \\ 1 \\ 3 \\ 0 \end{pmatrix}, \quad \alpha \in \mathbb{R}$$

2. **(8 pt)** Si considerino le matrici
$$A = \begin{pmatrix} 0 & 0 & -2 \\ -1 & 2 & -1 \\ 1 & 0 & 3 \end{pmatrix}$$
 e $B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

- (a) Determinare gli autovalori di A specificandone molteplicità algebriche μ e geometriche m.
- (b) Determinare le equazioni cartesiane di ciascun autospazio di A.
- (c) Determinare una base di ciascun autospazio di A.
- (d) Discutere se la matrice B è simile alla matrice A; in caso positivo esibire una matrice invertibile N tale che $B = N^{-1}AN$. In caso negativo giustificare la risposta.
- (a) Autovalori di A: 1 con $\mu = m = 1$, 2 con $\mu = m = 2$.
- (b) $V_1(A) = \{x 2y = y + z = 0\}.$ $V_2(A) = \{x + z = 0\}.$
- (c) $V_1(A) = \text{Span}\left\{ \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix} \right\}$. $V_2(A) = \text{Span} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.
- (d) A e B non sono simili perché sono entrambe diagonalizzabili, e hanno gli stessi autovalori, ma le molteplicità sono diverse.
- 3. (8 pt) Si consideri l'applicazione lineare $L: \mathbb{R}^4 \to \mathbb{R}^3$ definita da:

$$L\begin{pmatrix}0\\1\\0\\0\end{pmatrix}=\begin{pmatrix}1\\1\\-1\end{pmatrix},\quad L\begin{pmatrix}0\\1\\1\\0\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix},\quad L\begin{pmatrix}0\\0\\0\\2\end{pmatrix}=\begin{pmatrix}0\\0\\2\end{pmatrix},\quad L\begin{pmatrix}1\\0\\0\\1\end{pmatrix}=\begin{pmatrix}1\\1\\0\end{pmatrix},$$

- (a) Determinare la matrice A che rappresenta L nelle basi canoniche di \mathbb{R}^4 e \mathbb{R}^3 :
- (b) Determinare una base del sottospazio ${\rm Im}\,L$:
- (c) Determinare una base del sottospazio Ker $L\!:$
- (d) Determinare una base di $(\operatorname{Ker} L)^{\perp}$, complemento ortogonale di $\operatorname{Ker} L$:

$$A = \begin{pmatrix} 1 & 1 & -1 & 0 \\ 1 & 1 & -1 & 0 \\ -1 & -1 & 1 & 1 \end{pmatrix}$$

Base di $\operatorname{Im} L = \operatorname{ultime}$ due colonne di A

Base di Ker
$$L = \left\{ \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} \right\}$$

Base di
$$(\operatorname{Ker} L)^{\perp} = \left\{ \begin{pmatrix} 1\\1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}.$$