Catalogo

Geometria e Algebra — Appello del 18 febbraio 2020

☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0 ☐ 0
Domanda [opendefxxB] Dare la definizione di autovettore di una matrice quadrata $n \times n$. $\mathbf{w} \mathbf{p} \mathbf{a} \mathbf{c}$

Catalogo

omanda	[opendefxxC]	Dare	la	definizione	di	$_{ m matrice}$	diagonalizzabile.
							wpa c
omanda	[opendefxxD] D	are la def i	iniz	z ione di autos _l	pazio	di una m	atrice quadrata $n \times n$. $\mathbf{w} \mathbf{p} \mathbf{a} \mathbf{c}$
	[ranksysA] Dar				eare	di 3 equa	zioni in 2 incognite ch

Catalogo

Domanda [ranksysB]					n 4 incognite ch
bbia l'insieme delle soluz	ioni di dimensi	one 2, motiv	ando la rispos	ta. w	'pa c
Domanda [ranksysC] bbia l'insieme delle soluz					n 3 incognite che
Domanda [ranksysD] bbia l'insieme delle soluz					n 4 incognite che

Domanda [teospettA] ♣ Sia A una matrice simm				
A con autospazio $V_1 = \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} x - y = 0 \}$, stabilire qu	nali affermazioni sono necessariamente vere:			
\blacksquare A possiede un autovalore $\lambda \neq 1$ con $V_{\lambda} = V_{1}^{\perp}$.				
La molteplicità algebrica di 1 è 3.				
\square Il vettore $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$ è autovettore di A .				
Esistono 3 autovettori di A ortogonali tra loro.				
Domanda [teospettB] \clubsuit Sia A una matrice qua $\{1,2,3\}$. Stabilire quali affermazioni sono necessaria:				
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				
Esiste una base ortogonale di \mathbb{R}^3 composta da autovettori di A .				
Gli autospazi V_1, V_2, V_3 sono due a due ortogor dim $V_1 = 1$.	aali.			
Domanda [teospettC] ♣ Sia A una matrice 3 × 3 2 e 3. Stabilire quali affermazioni sono necessariame:				
$\forall \boldsymbol{u} \in V_2, \forall \boldsymbol{w} \in V_3, \langle \boldsymbol{u}, \boldsymbol{w} \rangle = 0.$				
Entrambi gli autovalori hanno molteplicità geo				
Esiste una matrice 3×3 invertibile M tale che	$M^{-1}AM$ é diagonale.			
Domanda [teospettD] \clubsuit Sia A una matrice 3×3 con autospazio $V_4 = \operatorname{Span} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. Stabilire quali afferm	$\bf 3$ tale che $A^{\rm T}=A,$ e 4 sia un autovalore di A azioni sono necessariamente vere:			
Esiste una matrice ortogonale M tale che M^{T}	4M è una matrice diagonale.			
\square Esiste una matrice diagonale M tale che $M^{\mathrm{T}}A$	M è ortogonale.			
\square A ha tre autovalori regolari.				
Se $X \in \mathbb{R}^3$ è un autovettore di A non proporzio	onale a $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$, allora è ad esso ortogonale.			
Domanda [geomspazA] — Quale dei seguenti sistemi nello spazio.	è la rappresentazione ${\it cartesiana}$ di una ${\it retta}$			
	$ \begin{cases} x - y = 0 \\ x + y + 2z = 2 \end{cases} $			
$\int x = 2t$	$\int x - y = 0$			
$ \square \begin{cases} x = 2t \\ y = t + 2 \\ z = 0 \end{cases} \qquad t \in \mathbb{R} $	$ \begin{cases} x - y = 0 \\ x + 2y + 2z = 7 \end{cases} $ $ \begin{cases} x + z - 1 \end{cases} $			
(z=0)	(x+z=1			
Domanda [geomspazB] Quale dei seguenti sistemi nello spazio.	è la rappresentazione $cartesiana$ di un $piano$			
	$\int x + y + z = 0$			
`	$ \begin{bmatrix} x+y+z=0\\ x-2y+z=0 \end{bmatrix} $ $ \begin{bmatrix} x+y+z=0\\ 3x+3y+6z=1 \end{bmatrix} $			
$ \square \begin{cases} x = 2t + s + 1 \\ y = t \\ z = t + s \end{cases} t, s \in \mathbb{R} $	$\int x + y + z = 0$			
z = t + s				

Domanda [geomspazC] — Quale dei seguenti sistemi è la rappresentazione *cartesiana* di una *retta* nello spazio.

Domanda [geomspazD] — Quale dei seguenti sistemi è la rappresentazione *cartesiana* di un *piano* nello spazio.

$$\begin{cases} x - y = 0 \\ x = t + s + 1 \\ y = 3t \\ z = t - s \end{cases}$$

$$\begin{bmatrix} 6x - 3y + 4z = 2 \\ 3x + y + 2z = 0 \\ 6x + 2y + 4z = 2 \\ 3x + y + 2z = 0 \end{cases}$$

Domanda [sistemiA] \clubsuit Si supponga che $X_1, X_2 \in \mathbb{R}^n$ siano soluzioni di un sistema lineare non omogeneo AX = B assegnato. Stabilire quali delle seguenti affermazioni è possibile dedurre con certezza:

- $2X_1$ è soluzione del sistema 2AX = B.
- $X_1 X_2$ è soluzione del sistema omogeneo $AX = \mathbf{0}$.
- Il vettore $Y = X_2 3X_1$ appartiene a Ker A.
- \square Se il rango di A è massimo, allora necessariamente $X_1 = X_2$.

Domanda [sistemiB] \clubsuit Si supponga che $X_1, X_2 \in \mathbb{R}^n$ siano soluzioni di un sistema lineare non omogeneo AX = B assegnato. Stabilire quali delle seguenti affermazioni è possibile dedurre con certezza:

- $-X_1$ è soluzione del sistema AX = -B.
- $X_1 2X_2$ è soluzione del sistema omogeneo $AX = \mathbf{0}$.
- Il vettore $Y = 2X_2 2X_1$ appartiene a Ker A.
- Se rg A = n, allora necessariamente $X_1 = X_2$.

Domanda [sistemic] \clubsuit Si supponga che $X_1, X_2 \in \mathbb{R}^n$ siano soluzioni di un sistema lineare non omogeneo AX = B assegnato. Stabilire quali delle seguenti affermazioni è possibile dedurre con certezza:

- $2X_2$ è soluzione del sistema AX = 2B.
- $X_1 + X_2$ è soluzione del sistema omogeneo $AX = \mathbf{0}$.
- Il vettore $Y = X_2 X_1$ appartiene a Ker A.
- Se il rango di A è massimo, allora non esistono altre soluzioni.

Domanda [sistemid] \clubsuit Si supponga che $X_1, X_2 \in \mathbb{R}^n$ siano soluzioni di un sistema lineare non omogeneo AX = B assegnato. Stabilire quali delle seguenti affermazioni è possibile dedurre con certezza:

- $X_1 + 2X_2$ è soluzione del sistema AX = 3B.
- $2X_1 X_2$ è soluzione del sistema omogeneo $AX = \mathbf{0}$.
- Il vettore X_1 non appartiene a Ker A.
- Se rg A < n, allora il sistema ha infinite soluzioni.

Catalogo
Domanda [matprodA] Si considerino le matrici $A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & 1 \end{pmatrix}$ e $B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$. Quale fra i seguenti è il corretto valore del prodotto AB :
$\blacksquare \begin{pmatrix} 6 & 4 \\ 1 & 2 \end{pmatrix}. \qquad \Box \begin{pmatrix} 6 & 1 \\ 4 & 2 \end{pmatrix}. \qquad \Box \begin{pmatrix} 2 & 1 & 4 \\ 1 & 2 & 3 \\ 2 & 1 & 4 \end{pmatrix}. \qquad \Box \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 1 \\ 4 & 3 & 4 \end{pmatrix}.$
Domanda [matprodB] Si considerino le matrici $A = \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ 3 & 1 \end{pmatrix}$ e $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$. Quale fra i seguenti è il corretto valore del prodotto AB :
Domanda [matprodC] Si considerino le matrici $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$ e $B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & 1 \end{pmatrix}$. Quale fra i seguenti è il corretto valore del prodotto AB :
Domanda [matprodD] Si considerino le matrici $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ e $B = \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ 3 & 1 \end{pmatrix}$. Quale fra i seguenti è il corretto valore del prodotto AB :
$ \textbf{Domanda [orthogsfA]} \text{Sia } U = \text{Span}(\begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \\ -1 \end{pmatrix}). \text{ Dire quale dei seguenti vettori appartiene al complemento ortogonale } U^{\perp} : $
$\square \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} \qquad \square \begin{pmatrix} 4\\1\\-1\\-1 \end{pmatrix} \qquad \square \begin{pmatrix} 1\\1\\1\\3 \end{pmatrix} \qquad \blacksquare \begin{pmatrix} 2\\-1\\0\\-1 \end{pmatrix}$
Domanda [orthogsfB] Sia $U = \text{Span}(\begin{pmatrix} 3 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 1 \\ 0 \end{pmatrix})$. Dire quale dei seguenti vettori appartiene
al complemento ortogonale U^{\perp} :
$\square \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \qquad \square \begin{pmatrix} 1 \\ -1 \\ 2 \\ 1 \end{pmatrix} \qquad \blacksquare \begin{pmatrix} 1 \\ 2 \\ -7 \\ -1 \end{pmatrix} \qquad \square \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$
Domanda [orthogsfC] Sia $U = \text{Span}(\begin{pmatrix} 1\\1\\0\\2 \end{pmatrix}, \begin{pmatrix} 0\\2\\-1\\-1 \end{pmatrix})$. Dire quale dei seguenti vettori appartiene

 $\square \quad \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix} \qquad \blacksquare \quad \begin{pmatrix} 3\\-1\\-1\\-1 \end{pmatrix} \qquad \square \quad \begin{pmatrix} 2\\0\\1\\1 \end{pmatrix} \qquad \square \quad \begin{pmatrix} 1\\1\\-1\\3 \end{pmatrix}$

al complemento ortogonale $U^\perp\colon$

Domanda [orthogsfD] Sia $U = \text{Span}\begin{pmatrix} 1 \\ -3 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$). Dire quale dei seguenti vettori appartiene
al complemento ortogonale U^{\perp} :
$\square \begin{pmatrix} 1\\0\\-3\\1 \end{pmatrix} \qquad \square \begin{pmatrix} 1\\-1\\-2\\1 \end{pmatrix} \qquad \square \begin{pmatrix} 0\\0\\1\\-1 \end{pmatrix} \qquad \blacksquare \begin{pmatrix} 2\\1\\-7\\1 \end{pmatrix}$
Domanda [eigvalplainA] Siano A una matrice 3×3 e $p_A(t) = -t^3 + 2t^2 - t$ il suo polinomio caratteristico. Stabilire quale delle seguenti affermazioni è necessariamente vera.
$t=-1$ è autovalore di A con molteplicità algebrica $\mu=1$. $t=1$ è autovalore di A con molteplicità algebrica $\mu=1$. dim Ker $A=1$.
Domanda [eigvalplainB] Siano A una matrice 3×3 e $p_A(t) = -t^3 + t$ il suo polinomio caratteristico. Stabilire quale delle seguenti affermazioni è necessariamente vera.
$t=-1$ è autovalore di A con molteplicità algebrica $\mu=1$. $t=1$ è autovalore di A con molteplicità geometrica $m=2$. $t=0$ è autovalore di A con molteplicità algebrica $\mu=3$. $p_A(t)$ non è totalmente decomponibile in \mathbb{R} , cioè non tutte le sue radici sono reali.
Domanda [eigvalplainC] Siano A una matrice 3×3 e $p_A(t) = -t^3 + t^2$ il suo polinomio caratteristico. Stabilire quale delle seguenti affermazioni è necessariamente vera.
$t=-1$ è autovalore di A con molteplicità algebrica $\mu=2$. $t=1$ è autovalore di A con molteplicità algebrica $\mu=2$.
Domanda [eigvalplainD] Siano A una matrice 3×3 e $p_A(t) = -t^3 - t$ il suo polinomio caratteristico. Stabilire quale delle seguenti affermazioni è necessariamente vera.
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
t=0 è autovalore di A con molteplicità geometrica $m=1$.
$t = -1$ è autovalore di A con molteplicità algebrica $\mu = 1$.