Quasi-conformal minimal Lagrangian diffeomorphisms of the hyperbolic plane

Francesco Bonsante

(joint work with J.M. Schlenker)

January 21, 2010

Francesco Bonsante Quasi-conformal minimal Lagrangian diffeomorphisms of the

Quasi-symmetric homeomorphism of a circle

 A homeomorphism φ : S¹_∞ → S¹_∞ is quasi-symmetric if there exists K such that

$$\frac{1}{K} \leq \frac{\left[\phi(\boldsymbol{a}), \phi(\boldsymbol{b}); \phi(\boldsymbol{c}), \phi(\boldsymbol{d})\right]}{\left[\boldsymbol{a}, \boldsymbol{b}; \boldsymbol{c}, \boldsymbol{d}\right]} \leq K$$

for every $a,b,c,d\in S^1_\infty=\partial\mathbb{H}^2.$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Quasi-symmetric homeomorphism of a circle

 A homeomorphism φ : S¹_∞ → S¹_∞ is quasi-symmetric if there exists K such that

$$rac{1}{K} \leq rac{\left[\phi(m{a}), \phi(m{b}); \phi(m{c}), \phi(m{d})
ight]}{\left[m{a}, m{b}; m{c}, m{d}
ight]} \leq K$$

for every $a, b, c, d \in S^1_{\infty} = \partial \mathbb{H}^2$.

 A homeomorphism g : S¹_∞ → S¹_∞ is quasi-symmetric iff there exits a quasi-conformal diffeo φ of ℍ² such that g = φ|_{S¹_∞}.

The universal Teichmüller space

 $\mathcal{T} = \{$ quasi-conformal diffeomorphisms of $\mathbb{H}^2 \} / \sim$ where $\phi \sim \psi$ is there is $A \in PSL_2(\mathbb{R})$ such that

$$\phi|_{\mathcal{S}^1_\infty} = \mathcal{A} \circ \psi|_{\mathcal{S}^1_\infty}.$$

The universal Teichmüller space

 $\mathcal{T} = \{$ quasi-conformal diffeomorphisms of $\mathbb{H}^2 \} / \sim$ where $\phi \sim \psi$ is there is $A \in PSL_2(\mathbb{R})$ such that

$$\phi|_{\mathcal{S}^1_{\infty}} = \mathcal{A} \circ \psi|_{\mathcal{S}^1_{\infty}}.$$

 $\mathcal{T} = \{$ quasi-symmetric homeomorphisms of $S^1_{\infty}\}/PSL_2(\mathbb{R}).$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Shoen conjecture

Conjecture (Shoen)

For any quasi-symmetric homeomorphism $g: S^1_{\infty} \to S^1_{\infty}$ there is a unique quasi-conformal harmonic diffeo Φ of \mathbb{H}^2 such that $g = \Phi|_{S^1_{\infty}}$

• (10) • (10)

Main result

THM (B-Schlenker)

For any quasi-symmetric homeomorphism $g: S^1_{\infty} \to S^1_{\infty}$ there is a unique quasi-conformal minimal Lagrangian diffeomorphims $\Phi: \mathbb{H}^2 \to \mathbb{H}^2$ such that $g = \Phi|_{S^1_{\infty}}$

Minimal Lagrangian diffeomorphisms

- A diffeomorphism $\Phi:\mathbb{H}^2\to\mathbb{H}^2$ is minimal Lagrangian if
 - It is area-preserving;
 - The graph of Φ is a minimal surface in $\mathbb{H}^2 \times \mathbb{H}^2$.

(日)

The result Minimal maps and maximal surfaces Maximal surfaces in AdS_3

Minimal Lagrangian maps vs harmonic maps

Given a minimal Lagrangian diffemorphism $\Phi : \mathbb{H}^2 \to \mathbb{H}^2$, let $S \subset \mathbb{H}^2 \times \mathbb{H}^2$ be its graph, then the projections

$$\phi_1: \boldsymbol{S} \to \mathbb{H}^2 \qquad \phi_2: \boldsymbol{S} \to \mathbb{H}^2$$

are harmonic maps, and the sum of the corresponding Hopf differentials is 0.

• (10) • (10)

Minimal Lagrangian maps vs harmonic maps

Given a minimal Lagrangian diffemorphism $\Phi : \mathbb{H}^2 \to \mathbb{H}^2$, let $S \subset \mathbb{H}^2 \times \mathbb{H}^2$ be its graph, then the projections

 $\phi_1: \boldsymbol{S} \to \mathbb{H}^2 \qquad \phi_2: \boldsymbol{S} \to \mathbb{H}^2$

are harmonic maps, and the sum of the corresponding Hopf differentials is 0.

Conversely given two harmonic diffeomorphisms u, u^* such that the sum of the corresponding Hopf differentials is 0, then $u \circ (u^*)^{-1}$ is a minimal Lagrangian diffeomorphism.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Known results

- Labourie (1992): If S, S' are closed hyperbolic surfaces of the same genus, there is a unique $\Phi : S \to S'$ that is minimal Lagrangian.
- Aiyama-Akutagawa-Wan (2000): Every quasi-symmetric homeomorphism with small dilatation of S^1_{∞} extends to a minimal Lagrangian diffeomorphism.
- Brendle (2008): If K, K' are two convex subsets of ℍ² of the same finite area, there is a unique minimal lagrangian diffeomorphism g : K → K'.

(日)

The AdS geometry

 We use a correspondence between minimal Lagrangian diffeomorphisms of ℍ² and maximal surfaces of AdS₃.

The AdS geometry

- We use a correspondence between minimal Lagrangian diffeomorphisms of H² and maximal surfaces of AdS₃.
- Given a qs homeo g of the circle, we prove that minimal Lagrangian diffeomorphisms extending g correspond bijectively to maximal surfaces in AdS₃ satisfying some asymptotic conditions (determined by g).

The AdS geometry

- We use a correspondence between minimal Lagrangian diffeomorphisms of H² and maximal surfaces of AdS₃.
- Given a qs homeo *g* of the circle, we prove that minimal Lagrangian diffeomorphisms extending *g* correspond bijectively to maximal surfaces in *AdS*₃ satisfying some asymptotic conditions (determined by *g*).
- We prove that there exists a unique maximal surface satisfying these asymptotic conditions.

A (1) < A (1) < A (1) </p>

Remark

The correspondence

 $\{minimal \ Lagrangian \ maps \ of \ \mathbb{H}^2\} \quad \leftrightarrow \{maximal \ surfaces \ in \ AdS_3\}$

is analogous to the classical correspondence

{harmonic diffeomorphisms of \mathbb{H}^2 } \leftrightarrow {surfaces of H = 1 in \mathbb{M}^3 }

The AdS₃ space The correspondence maximal surfaces vs minimal maps

The Anti de Sitter space

 AdS_3 = model manifolds of Lorentzian geometry of constant curvature -1. $A\tilde{d}S_3 = (\mathbb{H}^2 \times \mathbb{R}, g)$ where

$$g_{(x,t)} = (g_{\mathbb{H}})_x - \phi(x) d\theta^2$$

 $\phi(x) = ch(d_{\mathbb{H}}(x, x_0))^2$ [Lapse function]

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

 $AdS_3 = A\tilde{d}S_3/f$ where $f(x, \theta) = (R_{\pi}(x), \theta + \pi)$ and R_{π} is the rotation of π around x_0

The AdS₃ space The correspondence maximal surfaces vs minimal maps

The boundary of AdS_3

 $\partial_{\infty} AdS_3 \cong S^1 \times S^1.$

- The conformal structure of AdS₃ extends to the boundary.
- Isometries of AdS₃ extend to conformal diffeomorphisms of the boundary.

(日)

The AdS₃ space The correspondence maximal surfaces vs minimal maps

The boundary of AdS_3

 $\partial_{\infty} AdS_3 \cong S^1 \times S^1.$

- The conformal structure of AdS₃ extends to the boundary.
- Isometries of AdS₃ extend to conformal diffeomorphisms of the boundary.
- There are exactly two foliations of ∂_∞AdS₃ by lightlike lines. They are called the left and right foliations.
- Leaves of the left foliation meet leaves of the right foliation exactly in one point.

(日)

The AdS₃ space The correspondence maximal surfaces vs minimal maps

The double foliation of the boundary of AdS_3

Figure: The I behaviour of the double foliation of $\partial_{\infty} \tilde{AdS}_3$.

The AdS₃ space The correspondence maximal surfaces vs minimal maps

The boundary of AdS_3

Figure: Every leaf of the left (right) foliation intersects $\mathcal{S}^1_\infty\times\{0\}$ exactly once.

The AdS₃ space The correspondence maximal surfaces vs minimal maps

The product structure

The map

 $\pi: \partial_{\infty} AdS_3 \rightarrow S^1_{\infty} \times S^1_{\infty}$

obtained by following the left and right leaves is a diffeomorphism.

The AdS₃ space The correspondence maximal surfaces vs minimal maps

Spacelike meridians

• A a-causal curve in $\partial_{\infty}AdS_3$ is locally the graph of an orientation preserving homeomorphism between two intervals of S_{∞}^1 .

The AdS₃ space The correspondence maximal surfaces vs minimal maps

Spacelike meridians

- A a-causal curve in ∂_∞AdS₃ is locally the graph of an orientation preserving homeomorphism between two intervals of S¹_∞.
- A-causal meridians are the graphs of orientation preserving homeomorphisms of S^1_{∞} .

・ロ・ ・ 四・ ・ 回・ ・ 回・

The AdS₃ space The correspondence maximal surfaces vs minimal maps

Figure: Every leaf of the left/right foliation intersects the meridian just in one point

크

The AdS₃ space The correspondence maximal surfaces vs minimal maps

Spacelike surfaces in AdS₃

- A smooth surface S ⊂ AdS₃ is spacelike if the restriction of the metric on TS is a Riemannian metric.
- Spacelike surfaces are locally graphs of some real function *u* defined on some open set of ℍ² verifying

 $\phi^2 ||\nabla u||^2 < 1$.

The AdS₃ space The correspondence maximal surfaces vs minimal maps

Spacelike surfaces in AdS₃

- A smooth surface S ⊂ AdS₃ is spacelike if the restriction of the metric on TS is a Riemannian metric.
- Spacelike surfaces are locally graphs of some real function *u* defined on some open set of ℍ² verifying

 $\phi^2 ||\nabla u||^2 < 1$.

Spacelike compression disks lift in AdS₃ to graphs of entire spacelike functions *u* : ℍ² → ℝ.

The AdS₃ space The correspondence maximal surfaces vs minimal maps

The asymptotic boundary of spacelike graphs

Figure: If $S = \Gamma_u$ is a spacelike graph in $A\tilde{d}S_3$, then *u* extends on the boundary and *S* projects to spacelike compression disk.

The AdS₃ space The correspondence maximal surfaces vs minimal maps

Notations

Let S be a spacelike surface in AdS_3 . We consider:

- I= the restriction of the Lorentzian metric on S;
- 2 J= the complex structure on S;
- k= the intrinsic sectional curvature of S;
- $B: TS \rightarrow TS$ = the shape operator;
- $E: TS \rightarrow TS$ = the identity operator;
- H = trB= the mean curvature of the surface S.

The Gauss-Codazzi equations are

 $d^{\nabla}B=0 \qquad k=-1-\det B.$

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

The AdS₃ space The correspondence maximal surfaces vs minimal maps

Maximal surfaces

A surface $S \subset AdS_3$ is maximal if H = 0.

Francesco Bonsante Quasi-conformal minimal Lagrangian diffeomorphisms of the

The AdS₃ space The correspondence maximal surfaces vs minimal maps

From maximal graphs to minimal diffeomorphisms of \mathbb{H}^2

Let S be any spacelike surface in AdS_3 . We consider two bilinear forms on S

 $\mu_I(x,y) = I((E+JB)x, (E+JB)y) \qquad \mu_r = I((E-JB)x, (E-JB)y)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

From maximal graphs to minimal diffeomorphisms of \mathbb{H}^2

Let S be any spacelike surface in AdS_3 . We consider two bilinear forms on S

 $\mu_I(x,y) = I((E+JB)x, (E+JB)y) \qquad \mu_r = I((E-JB)x, (E-JB)y)$

Prop (Krasnov-Schlenker)

Around points where μ_l (resp. μ_r) is not degenerate, it is a hyperbolic metric.

- When *S* is totally geodesic then $I = \mu_I = \mu_r$;
- det(E + JB) = det(E JB) = 1 + det B = -k

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● ○ ○ ○

The AdS₃ space The correspondence maximal surfaces vs minimal maps

From maximal graphs to minimal diffeomorphisms

Let *S* be a spacelike graph:

- if k < 0 then μ_l and μ_r are hyperbolic metrics on *S*;
- if k ≤ −ε < 0 then μ_l and μ_r are complete hyperbolic metrics.

(日)

From maximal graphs to minimal diffeomorphisms

Let *S* be a spacelike graph:

- if k < 0 then μ_l and μ_r are hyperbolic metrics on *S*;
- if k ≤ −ε < 0 then μ_l and μ_r are complete hyperbolic metrics.

Prop

Let S be a maximal graph with uniformly negative curvature and let

$$\phi_{\mathcal{S},\mathcal{I}}: \mathcal{S} \to \mathbb{H}^2 \qquad \phi_{\mathcal{S},\mathcal{I}}: \mathcal{S} \to \mathbb{H}^2.$$

be the developing maps for μ_l and μ_r respectively. The diffeomorphism $\Phi_S = \phi_{S,r} \circ \phi_{S,l}^{-1} : \mathbb{H}^2 \to \mathbb{H}^2$ is minimal Lagrangian. Moreover

- It is C-quasi-conformal for some $C = C(\sup_{S} k)$
- The graph of $\Phi_S|_{S^1_{\infty}}$ is $\partial_{\infty}S$.

The AdS₃ space The correspondence maximal surfaces vs minimal maps

From a minimal Lagrangian map to a maximal surface

Prop

Given any quasi-conformal minimal Lagrangian map $\Phi : \mathbb{H}^2 \to \mathbb{H}^2$ there is a unique maximal surface *S* with uniformly negative curvature producing Φ .

The proof relies on the fact that μ_I and μ_r determines *I* and *B* in some explicit way.

(日)

Given a quasi-symmetric homeo g of S_{∞}^{1} the following facts are equivalent:

- There exists a unique quasi-conformal minimal Lagrangian diffeomorphism Φ of ℍ² such that Φ|_{S¹₂} = g.
- There exists a maximal surface S ⊂ AdS₃ with uniformly negative curvature such that ∂_∞S = Γ_g.

Step 1 Step 2 Uniform estimates

AdS results

THM (B-Schlenkler)

We fix a homeomorphism $g: S^1_\infty \to S^1_\infty$.

- There is a maximal graph S such that $\partial_{\infty}S = \Gamma_g$.
- If g is quasi-symmetric then there is a unique S as above with uniformly negative curvature.

Step 1 Step 2 Uniform estimates

Higher dimension result

$$AdS_{n+1} = \mathbb{H}^n \times \mathbb{R}$$

THM (B-Schlenker)

Let Γ be any acausal subset of $\partial_{\infty} AdS_{n+1}$ that is a graph of a function $u : S_{\infty}^{n-1} \to \mathbb{R}$. Then there exists a maximal spacelike graph M in AdS_{n+1} such that $\partial_{\infty}M = \Gamma$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Step 1 Step 2 Uniform estimates

We fix a homeomorphism $g: \mathcal{S}^1_\infty \to \mathcal{S}^1_\infty$.

We consider the lifting of the graph of g in AdS_3 that is a closed curve Γ_g .

We have to find a function *u* such that

- its graph is spacelike $\Rightarrow \phi |\nabla u| < 1$;
- its graph is maximal \Rightarrow Hu = 0;
- the closure of its graph in ∂_{∞} is Γ_g .

Step 1 Step 2 Uniform estimates

The convex hull of Γ_g

There is a minimal convex set K in $A\tilde{d}S_3$ containing Γ_g . Moreover:

•
$$\partial_{\infty}K = \Gamma_g;$$

 The boundary of K is the union of two C^{0,1}-spacelike graphs ∂_−K, ∂₊K;

(日)

Step 1 Step 2 Uniform estimates

The convex hull of Γ_g

크

Step 1 Step 2 Uniform estimates

The approximations surfaces

Let $T_r = B_r(x_0) \times \mathbb{R}^1 \subset AdS_3$ and consider $U_r = T_r \cap \partial_- K$.

Prop (Bartnik)

There is a unique maximal surface S_r contained in T_r such that $\partial U_r = \partial S_r$. Moreover S_r is the graph of some function u_r defined on $B_r(x_0)$.

3 + 4 = 5

Step 1 Step 2 Uniform estimates

The approximations surfaces

Let $T_r = B_r(x_0) \times S^1 \subset AdS_3$ and consider $U_r = T_r \cap \partial_- K$.

Prop (Bartnik)

There is a unique maximal surface S_r contained in T_r such that $\partial U_r = \partial S_r$. Moreover S_r is the graph of some function u_r defined on $B_r(x_0)$.

- E

Step 1 Step 2 Uniform estimates

The existence of the maximal surface

- Step 1 There is a sequence r_n such that $u_n := u_{r_n}$ converge to a function u_{∞} uniformly on compact subset of \mathbb{H}^2 . Moreover if *S* is the graph of u_{∞} we have that $\partial_{\infty}S = \Gamma_g$.
- Step 2 The surface *S* is a maximal surface.

< 同 > < 三 > < 三 >

Step 1 Step 2 Uniform estimates

Surfaces S_r are contained in K

Lemma

If M is a cpt maximal surface such that ∂M is contained in K, then M is contained in K.

By contradiction suppose that M is not contained in K

 $p \in M \setminus K$ = point that maximizes the distance from *K*.

 $q \in \partial K$ = point such that d(p,q) = d(p,K).

P= plane through p orthogonal to [q, p].

P is tangent to *M* and does not disconnect $M \Rightarrow$ principal curvatures at *p* are negative.

Step 1 Step 2 Uniform estimates

The construction of the limit

- $S_r \subset K \Rightarrow u_r$ are uniformly bounded on $B_R(x_0)$.
- $\phi ||\nabla u_r|| < 1 \Rightarrow$ The maps u_r are uniformly Lipschitz on any $B_R(x_0)$.

We conclude:

- There is a sequence r_n such that u_n = u_{r_n} converge uniformly on compact sets of ℍ² to a function u_∞.
- The graph of the map u_∞ say S is a weakly spacelike surface: it is Lipschitz and satisfies φ|∇u_∞| ≤ 1.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Step 1 Step 2 Uniform estimates

The asymptotic boundary of S

- S is contained in $K \Rightarrow \partial_{\infty} S \subset \Gamma_g$.
- $\partial_{\infty}S$ is a spacelike meridian of $\partial_{\infty}AdS_3$

 $\partial_{\infty} S = \Gamma_g$.

<ロト <回 > < 回 > < 回 > .

э

Step 1 Step 2 Uniform estimates

A possible degeneration

The surface *S* could contain some lightlike ray.

Remark We have to prove that the surfaces S_n are uniformly spacelike in T_{ρ} .

Step 1 Step 2 Uniform estimates

A possible degeneration

The surface *S* could contain some lightlike ray.

Remark We have to prove that the surfaces S_n are uniformly spacelike in T_{ρ} .

Step 1 Step 2 Uniform estimates

A possible degeneration

The surface *S* could contain some lightlike ray.

Remark We have to prove that the surfaces S_n are uniformly spacelike in T_{ρ} .

Step 1 Step 2 Uniform estimates

A possible degeneration

The surface *S* could contain some lightlike ray.

Remark We have to prove that the surfaces S_n are uniformly spacelike in T_R .

(日本) (日本) (日本)

Step 1 Step 2 Uniform estimates

Uniformly spacelike surfaces

Let *U* be a compact domain of \mathbb{H}^2 . The graph of a function $u: U \to \mathbb{R}$ is spacelike if

 $\phi^2 ||\nabla u||^2 < 1$

Step 1 Step 2 Uniform estimates

Uniformly spacelike surfaces

Let *U* be a compact domain of \mathbb{H}^2 . The graph of a function $u: U \to \mathbb{R}$ is spacelike if

 $\phi^2 ||\nabla u||^2 < 1$

A family of graphs over $U - {\{\Gamma_{u_i}\}_{i \in I} \text{ is uniformly spacelike if there exists } \epsilon > 0$ such that

 $\phi^2 ||\nabla u_i||^2 < (1-\epsilon)$

holds for every $x \in U$ and $i \in I$.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Step 1 Step 2 Uniform estimates

The main estimate

Prop

For every R > 0 there is a constant $\epsilon = \epsilon(R, K)$ such that

$$\sup_{B_R(x_0)} \phi |\nabla u_n| < (1-\epsilon)$$

for n > n(R)

The proof is based on the maximum principle using a localization argument due to Bartnik.

Step 1 Step 2 Uniform estimates

The conclusion of the proof of the existence

Let $\Omega_R = \{ u : B_R(x_0) \to \mathbb{R} | \Gamma_u \text{ is spacelike} \}$ We consider the operator $H : \Omega_R \to \mathbb{C}^{\infty}(B_R(x_0))$

Hu(x) = mean curvature at (x, u(x)) of Γ_u .

 $Hu = \sum a_{ij}(x, u, \nabla u)\partial_{ij}u + \sum b_k(x, u, \nabla u)\partial_k u.$ *H* is an elliptic operator on Ω_R at point $u \in \Omega_R$. *H* is uniformly elliptic on any family of uniformly spacelike functions.

・ロット (母) ・ ヨ) ・ ・ ヨ)

Step 1 Step 2 Uniform estimates

How to conclude

- $u_n|_{B_R(x_0)}$ is a uniformly spacelike functions;
- they are solution of a uniformly elliptic equation $Hu_n = 0$;

By standard theory of regularity of elliptic equations \rightarrow the limit u_{∞} is smooth and $Hu_{\infty} = 0$.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

э.

Step 1 Step 2 Uniform estimates

The uniform estimate

The width of the convex hull K

$$\delta = \inf\{d(x, y) | x \in \partial_{-}K, y \in \partial_{+}K\}.$$

Lemma

In general $\delta \in [0, \pi/2]$. It is 0 exactly when g is a symmetric map. If $\delta = \pi/2$ and there are points at distance $\pi/2$, then K is a standard tetrahedron K_0 .

・ロ・ ・ 四・ ・ 回・ ・ 回・

э

Step 1 Step 2 Uniform estimates

The standard tetrahedron

크

Step 1 Step 2 Uniform estimates

Characterization of quasi-symmetric maps

Prop

The following facts are equivalent:

- **1** g is a quasi-symmetric homeomorphism.
- 2 δ < π/2.</p>
- 3 Any maximal surface S such that $\partial_{\infty}S = \Gamma_g$ has uniformly negative curvature.

(日)

Step 1 Step 2 Uniform estimates

 $(3) \Rightarrow (1)$

S determines a quasi-conformal minimal Lagrangian map Φ such that $\Phi|_{S_{\infty}^1} = g$. Thus g is quasi-symmetric.

Step 1 Step 2 Uniform estimates

Suppose there exists $x_n \in \partial_- K$ and $y_n \in \partial_+ K$ such that $d(x_n, y_n) \to \pi/2$ We find a sequence of isometries γ_n of AdS_3 such that

•
$$\gamma_n(x_n) = x_0$$
.

 $(1) \Rightarrow (2)$

• the geodesic joining $\gamma_n(x_n)$ to $\gamma_n(y_n)$ is vertical.

э.

Step 1 Step 2 Uniform estimates

Let
$$K_n = \gamma_n(K)$$
.

 $(1) \Rightarrow (2)$

• $\partial_{\infty}K_n = \Gamma_{g_n}$ and $\{g_n\}$ are uniformly quasi-symmetric.

•
$$K_n \to K_0$$
 and $\Gamma_{g_n} \to \partial_{\infty} K_0$.

<ロ> <同> <同> < 同> < 同> < 同> <

Ξ.

Step 1 Step 2 Uniform estimates

$$(1) \Rightarrow (2)$$

Let $K_n = \gamma_n(K)$.

• $\partial_{\infty}K_n = \Gamma_{g_n}$ and $\{g_n\}$ are uniformly quasi-symmetric.

•
$$K_n \to K_0$$
 and $\Gamma_{g_n} \to \partial_\infty K_0$.

 The boundary of K₀ cannot be approximated by a family of uniformly quasi-symmetric maps.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Step 1 Step 2 Uniform estimates

$$(2) \Rightarrow (3)$$

We consider $\chi = \log(-(\det B)/4)$. We have $k = -1 + e^{4\chi}$ and

$$\Delta \chi = k$$

[Schlenker-Krasnov]. If *p* is a local maximum for *k* then $k(p) \le 0$. Moreover if k(p) = 0, then *S* is flat and $K = K_0$.

A D > A B > A B > A B >

э.

Step 1 Step 2 Uniform estimates

$$(2) \Rightarrow (3)$$

Lemma

If $\delta < \pi/2$ then $\sup_{S} ||B|| < C$.

Francesco Bonsante Quasi-conformal minimal Lagrangian diffeomorphisms of the

・ロト ・部ト ・ヨト ・ヨト

æ

Step 1 Step 2 Uniform estimates

 $(2) \Rightarrow (3)$

Take any sequence x_n such that $k(x_n) \to \sup k$. Let γ_n be a sequence such that $\gamma_n(x_n) = x_0$ and $\nu_n(x) = e$ (where ν_n is the normal field of $S_n = \gamma_n(S)$. $S_n \to S_\infty$ and $x \in S_\infty$, $k_\infty = \sup k$ and x is a local maximum for k_∞ . $\sup k \le 0$.

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> ○ Q ()

Step 1 Step 2 Uniform estimates

$$(2) \Rightarrow (3)$$

If sup k = 0 then S_{∞} is a flat maximal surface \rightarrow its convex core is K_0 . In particular $\delta(K_0) = \pi/2$ On the other hand $K_n = \gamma_n(S_n) \rightarrow K_0$.

•
$$\delta(K_n) = \delta < \pi/2.$$

•
$$\delta(K_n) \rightarrow \delta(K_0) = \pi/2.$$

<ロ> <同> <同> < 同> < 同> < 同> <