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Quasi-symmetric homeomorphism of a circle

A homeomorphism φ : S1
∞ → S1

∞ is quasi-symmetric if
there exists K such that

1
K
≤ [φ(a), φ(b);φ(c), φ(d)]

[a,b; c,d ]
≤ K

for every a,b, c,d ∈ S1
∞ = ∂H2.

A homeomorphism g : S1
∞ → S1

∞ is quasi-symmetric iff
there exits a quasi-conformal diffeo φ of H2 such that
g = φ|S1

∞
.
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The universal Teichmüller space

T = {quasi-conformal diffeomorphisms of H2}/ ∼
where φ ∼ ψ is there is A ∈ PSL2(R) such that

φ|S1
∞

= A ◦ ψ|S1
∞
.

T = {quasi-symmetric homeomorphisms of S1
∞}/PSL2(R).
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Shoen conjecture

Conjecture (Shoen)

For any quasi-symmetric homeomorphism g : S1
∞ → S1

∞ there
is a unique quasi-conformal harmonic diffeo Φ of H2 such that
g = Φ|S1

∞
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Main result

THM (B-Schlenker)

For any quasi-symmetric homeomorphism g : S1
∞ → S1

∞ there
is a unique quasi-conformal minimal Lagrangian
diffeomorphims Φ : H2 → H2 such that g = Φ|S1

∞
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Minimal Lagrangian diffeomorphisms

A diffeomorphism Φ : H2 → H2 is minimal Lagrangian if
It is area-preserving;
The graph of Φ is a minimal surface in H2 ×H2.
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Minimal Lagrangian maps vs harmonic maps

Given a minimal Lagrangian diffemorphism Φ : H2 → H2, let
S ⊂ H2 ×H2 be its graph, then the projections

φ1 : S → H2 φ2 : S → H2

are harmonic maps, and the sum of the corresponding Hopf
differentials is 0.

Conversely given two harmonic diffeomorphisms u,u∗ such
that the sum of the corresponding Hopf differentials is 0, then
u ◦ (u∗)−1 is a minimal Lagrangian diffeomorphism.
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Known results

Labourie (1992): If S,S′ are closed hyperbolic surfaces of
the same genus, there is a unique Φ : S → S′ that is
minimal Lagrangian.
Aiyama-Akutagawa-Wan (2000): Every quasi-symmetric
homeomorphism with small dilatation of S1

∞ extends to a
minimal Lagrangian diffeomorphism.
Brendle (2008): If K , K ′ are two convex subsets of H2 of
the same finite area, there is a unique minimal lagrangian
diffeomorphism g : K → K ′.
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The AdS geometry

We use a correspondence between minimal Lagrangian
diffeomorphisms of H2 and maximal surfaces of AdS3.

Given a qs homeo g of the circle, we prove that minimal
Lagrangian diffeomorphisms extending g correspond
bijectively to maximal surfaces in AdS3 satisfying some
asymptotic conditions (determined by g).
We prove that there exists a unique maximal surface
satisfying these asymptotic conditions.
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Remark
The correspondence

{minimal Lagrangian maps of H2} ↔ {maximal surfaces in AdS3}

is analogous to the classical correspondence

{harmonic diffeomorphisms of H2} ↔ {surfaces of H = 1 in M3}
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The AdS3 space
The correspondence maximal surfaces vs minimal maps

The Anti de Sitter space

AdS3= model manifolds of Lorentzian geometry of constant
curvature −1.

˜AdS3 = (H2 × R,g) where

g(x ,t) = (gH)x − φ(x)dθ2

φ(x) = ch(dH(x , x0))2 [Lapse function]

Francesco Bonsante Quasi-conformal minimal Lagrangian diffeomorphisms of the hyperbolic plane



The result
Minimal maps and maximal surfaces

Maximal surfaces in AdS3

The AdS3 space
The correspondence maximal surfaces vs minimal maps

AdS3 = ˜AdS3/f where
f (x , θ) = (Rπ(x), θ + π) and Rπ is the rotation of π around x0

\pi

x

f(x)
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The AdS3 space
The correspondence maximal surfaces vs minimal maps

The boundary of AdS3

∂∞AdS3 ∼= S1 × S1.

The conformal structure of AdS3 extends to the boundary.
Isometries of AdS3 extend to conformal diffeomorphisms of
the boundary.

There are exactly two foliations of ∂∞AdS3 by lightlike
lines. They are called the left and right foliations.
Leaves of the left foliation meet leaves of the right foliation
exactly in one point.
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The AdS3 space
The correspondence maximal surfaces vs minimal maps

The double foliation of the boundary of AdS3

Figure: The l behaviour of the double foliation of ∂∞ ˜AdS3.
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The AdS3 space
The correspondence maximal surfaces vs minimal maps

The boundary of AdS3

Figure: Every leaf of the left (right) foliation intersects S1
∞ × {0} exactly

once.
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The AdS3 space
The correspondence maximal surfaces vs minimal maps

The product structure

The map
π : ∂∞AdS3 → S1

∞ × S1
∞

obtained by following the left and right leaves is a
diffeomorphism.
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The AdS3 space
The correspondence maximal surfaces vs minimal maps

Spacelike meridians

A a-causal curve in ∂∞AdS3 is locally the graph of an
orientation preserving homeomorphism between two
intervals of S1

∞.

A-causal meridians are the graphs of orientation
preserving homeomorphisms of S1

∞ .
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The AdS3 space
The correspondence maximal surfaces vs minimal maps

g(x)
x

Figure: Every leaf of the left/right foliation intersects the meridian just in one
point
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The AdS3 space
The correspondence maximal surfaces vs minimal maps

Spacelike surfaces in AdS3

A smooth surface S ⊂ AdS3 is spacelike if the restriction of
the metric on TS is a Riemannian metric.
Spacelike surfaces are locally graphs of some real function
u defined on some open set of H2 verifying

φ2||∇u||2 < 1 .

Spacelike compression disks lift in ˜AdS3 to graphs of entire
spacelike functions u : H2 → R.
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The AdS3 space
The correspondence maximal surfaces vs minimal maps

The asymptotic boundary of spacelike graphs

Figure: If S = Γu is a spacelike graph in ˜AdS3, then u extends on the
boundary and S projects to spacelike compression disk.
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The AdS3 space
The correspondence maximal surfaces vs minimal maps

Notations

Let S be a spacelike surface in AdS3. We consider:
1 I= the restriction of the Lorentzian metric on S;
2 J= the complex structure on S;
3 k= the intrinsic sectional curvature of S;
4 B : TS → TS= the shape operator;
5 E : TS → TS= the identity operator;
6 H = trB= the mean curvature of the surface S.

The Gauss-Codazzi equations are

d∇B = 0 k = −1− det B .
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The AdS3 space
The correspondence maximal surfaces vs minimal maps

Maximal surfaces

A surface S ⊂ AdS3 is maximal if H = 0.
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The AdS3 space
The correspondence maximal surfaces vs minimal maps

From maximal graphs to minimal diffeomorphisms of
H2

Let S be any spacelike surface in AdS3. We consider two
bilinear forms on S

µl(x , y) = I((E+JB)x , (E+JB)y) µr = I((E−JB)x , (E−JB)y)

Prop (Krasnov-Schlenker)
Around points where µl (resp. µr ) is not degenerate, it is a
hyperbolic metric.

When S is totally geodesic then I = µl = µr ;
det(E + JB) = det(E − JB) = 1 + det B = −k
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The AdS3 space
The correspondence maximal surfaces vs minimal maps

From maximal graphs to minimal diffeomorphisms

Let S be a spacelike graph:
if k < 0 then µl and µr are hyperbolic metrics on S;
if k ≤ −ε < 0 then µl and µr are complete hyperbolic
metrics.

Prop
Let S be a maximal graph with uniformly negative curvature
and let

φS,l : S → H2 φS,r : S → H2 .

be the developing maps for µl and µr respectively.
The diffeomorphism ΦS = φS,r ◦ φ−1

S,l : H2 → H2 is minimal
Lagrangian. Moreover

It is C-quasi-conformal for some C = C(supS k)

The graph of ΦS|S1
∞

is ∂∞S.
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The AdS3 space
The correspondence maximal surfaces vs minimal maps

From a minimal Lagrangian map to a maximal surface

Prop
Given any quasi-conformal minimal Lagrangian map
Φ : H2 → H2 there is a unique maximal surface S with uniformly
negative curvature producing Φ.

The proof relies on the fact that µl and µr determines I and B in
some explicit way.
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The AdS3 space
The correspondence maximal surfaces vs minimal maps

Given a quasi-symmetric homeo g of S1
∞ the following facts are

equivalent:
There exists a unique quasi-conformal minimal Lagrangian
diffeomorphism Φ of H2 such that Φ|S1

∞
= g.

There exists a maximal surface S ⊂ AdS3 with uniformly
negative curvature such that ∂∞S = Γg .
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Step 1
Step 2
Uniform estimates

AdS results

THM (B-Schlenkler)

We fix a homeomorphism g : S1
∞ → S1

∞.

There is a maximal graph S such that ∂∞S = Γg .
If g is quasi-symmetric then there is a unique S as above
with uniformly negative curvature.
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Step 1
Step 2
Uniform estimates

Higher dimension result

AdSn+1 = Hn × R

THM (B-Schlenker)
Let Γ be any acausal subset of ∂∞AdSn+1 that is a graph of a
function u : Sn−1

∞ → R. Then there exists a maximal spacelike
graph M in AdSn+1 such that ∂∞M = Γ.
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Step 1
Step 2
Uniform estimates

We fix a homeomorphism g : S1
∞ → S1

∞.

We consider the lifting of the graph of g in ˜AdS3 that is a closed
curve Γg .
We have to find a function u such that

its graph is spacelike⇒ φ|∇u| < 1;
its graph is maximal⇒ Hu = 0;
the closure of its graph in ∂∞ is Γg .
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Step 1
Step 2
Uniform estimates

The convex hull of Γg

There is a minimal convex set K in ˜AdS3 containing Γg .
Moreover:

∂∞K = Γg ;
The boundary of K is the union of two C0,1-spacelike
graphs ∂−K , ∂+K ;
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Step 1
Step 2
Uniform estimates

The approximations surfaces

Let Tr = Br (x0)× R1 ⊂ AdS3 and consider Ur = Tr ∩ ∂−K .

Prop (Bartnik)
There is a unique maximal surface Sr contained in Tr such that
∂Ur = ∂Sr . Moreover Sr is the graph of some function ur
defined on Br (x0).

T_r

K
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Step 1
Step 2
Uniform estimates

The existence of the maximal surface

Step 1 There is a sequence rn such that un := urn converge to a
function u∞ uniformly on compact subset of H2. Moreover
if S is the graph of u∞ we have that ∂∞S = Γg .

Step 2 The surface S is a maximal surface.
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Step 1
Step 2
Uniform estimates

Surfaces Sr are contained in K

Lemma
If M is a cpt maximal surface such that ∂M is contained in K ,
then M is contained in K .

By contradiction suppose that M is not contained in K

p ∈ M \ K = point that maximizes the distance from K .
q ∈ ∂K = point such that d(p, q) = d(p, K ).
P= plane through p orthogonal to [q, p].
P is tangent to M and does not disconnect M ⇒ principal curvatures at p are
negative.
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Step 1
Step 2
Uniform estimates

The construction of the limit

Sr ⊂ K ⇒ ur are uniformly bounded on BR(x0).
φ||∇ur || < 1⇒ The maps ur are uniformly Lipschitz on any
BR(x0).

We conclude:

There is a sequence rn such that un = urn converge
uniformly on compact sets of H2 to a function u∞.
The graph of the map u∞ – say S – is a weakly spacelike
surface: it is Lipschitz and satisfies φ|∇u∞| ≤ 1.
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Step 1
Step 2
Uniform estimates

The asymptotic boundary of S

S is contained in K ⇒ ∂∞S ⊂ Γg .
∂∞S is a spacelike meridian of ∂∞AdS3

∂∞S = Γg .
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Step 1
Step 2
Uniform estimates

A possible degeneration

The surface S could contain some lightlike ray.

Remark
We have to prove that the surfaces Sn are uniformly spacelike
in Tρ.
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Step 1
Step 2
Uniform estimates

Uniformly spacelike surfaces

Let U be a compact domain of H2.
The graph of a function u : U → R is spacelike if

φ2||∇u||2 < 1

A family of graphs over U – {Γui}i∈I is uniformly spacelike if
there exists ε > 0 such that

φ2||∇ui ||2 < (1− ε)

holds for every x ∈ U and i ∈ I.
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Step 1
Step 2
Uniform estimates

The main estimate

Prop

For every R > 0 there is a constant ε = ε(R,K ) such that

sup
BR(x0)

φ|∇un| < (1− ε)

for n > n(R)

The proof is based on the maximum principle using a
localization argument due to Bartnik.
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Step 1
Step 2
Uniform estimates

The conclusion of the proof of the existence

Let ΩR = {u : BR(x0)→ R|Γu is spacelike}
We consider the operator H : ΩR → C∞(BR(x0))

Hu(x) = mean curvature at (x ,u(x)) of Γu .

Hu =
∑

aij(x ,u,∇u)∂iju +
∑

bk (x ,u,∇u)∂ku.
H is an elliptic operator on ΩR at point u ∈ ΩR.
H is uniformly elliptic on any family of uniformly spacelike
functions.
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Step 1
Step 2
Uniform estimates

How to conclude

un|BR(x0) is a uniformly spacelike functions;
they are solution of a uniformly elliptic equation Hun = 0;

By standard theory of regularity of elliptic equations→ the limit
u∞ is smooth and Hu∞ = 0.
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Step 1
Step 2
Uniform estimates

The uniform estimate

The width of the convex hull K

δ = inf{d(x , y)|x ∈ ∂−K , y ∈ ∂+K} .

Lemma
In general δ ∈ [0, π/2]. It is 0 exactly when g is a symmetric
map.
If δ = π/2 and there are points at distance π/2, then K is a
standard tetrahedron K0.
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Step 1
Step 2
Uniform estimates

The standard tetrahedron

(a,b)

(b,a)

(a,a) (b,b)
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Step 1
Step 2
Uniform estimates

Characterization of quasi-symmetric maps

Prop
The following facts are equivalent:

1 g is a quasi-symmetric homeomorphism.
2 δ < π/2.
3 Any maximal surface S such that ∂∞S = Γg has uniformly

negative curvature.
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(3)⇒ (1)

S determines a quasi-conformal minimal Lagrangian map Φ
such that Φ|S1

∞
= g.

Thus g is quasi-symmetric.
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(1)⇒ (2)

Suppose there exists xn ∈ ∂−K and yn ∈ ∂+K such that
d(xn, yn)→ π/2
We find a sequence of isometries γn of AdS3 such that

γn(xn) = x0.
the geodesic joining γn(xn) to γn(yn) is vertical.

Francesco Bonsante Quasi-conformal minimal Lagrangian diffeomorphisms of the hyperbolic plane



The result
Minimal maps and maximal surfaces

Maximal surfaces in AdS3

Step 1
Step 2
Uniform estimates

(1)⇒ (2)

Let Kn = γn(K ).
∂∞Kn = Γgn and {gn} are uniformly quasi-symmetric.
Kn → K0 and Γgn → ∂∞K0.

The boundary of K0 cannot be approximated by a family of
uniformly quasi-symmetric maps.
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(2)⇒ (3)

We consider χ = log(−(det B)/4). We have k = −1 + e4χ and

∆χ = k

[Schlenker-Krasnov].
If p is a local maximum for k then k(p) ≤ 0. Moreover if
k(p) = 0, then S is flat and K = K0.
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(2)⇒ (3)

Lemma
If δ < π/2 then supS ||B|| < C.
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(2)⇒ (3)

Take any sequence xn such that k(xn)→ sup k .
Let γn be a sequence such that γn(xn) = x0 and νn(x) = e
(where νn is the normal field of Sn = γn(S).
Sn → S∞ and x ∈ S∞, k∞ = sup k and x is a local maximum
for k∞.
sup k ≤ 0.
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(2)⇒ (3)

If sup k = 0 then S∞ is a flat maximal surface→ its convex
core is K0. In particular δ(K0) = π/2
On the other hand Kn = γn(Sn)→ K0.

δ(Kn) = δ < π/2.
δ(Kn)→ δ(K0) = π/2.

Francesco Bonsante Quasi-conformal minimal Lagrangian diffeomorphisms of the hyperbolic plane


	The result
	Minimal maps and maximal surfaces
	The AdS3 space
	The correspondence maximal surfaces vs minimal maps

	Maximal surfaces in AdS3
	Step 1
	Step 2
	Uniform estimates


