Quasi-conformal minimal Lagrangian diffeomorphisms of the hyperbolic plane

Francesco Bonsante

(joint work with J.M. Schlenker)
January 21, 2010

Quasi-symmetric homeomorphism of a circle

- A homeomorphism $\phi: S_{\infty}^{1} \rightarrow S_{\infty}^{1}$ is quasi-symmetric if there exists K such that

$$
\frac{1}{K} \leq \frac{[\phi(a), \phi(b) ; \phi(c), \phi(d)]}{[a, b ; c, d]} \leq K
$$

for every $a, b, c, d \in S_{\infty}^{1}=\partial \mathbb{H}^{2}$.

Quasi-symmetric homeomorphism of a circle

- A homeomorphism $\phi: S_{\infty}^{1} \rightarrow S_{\infty}^{1}$ is quasi-symmetric if there exists K such that

$$
\frac{1}{K} \leq \frac{[\phi(a), \phi(b) ; \phi(c), \phi(d)]}{[a, b ; c, d]} \leq K
$$

for every $a, b, c, d \in S_{\infty}^{1}=\partial \mathbb{H}^{2}$.

- A homeomorphism $g: S_{\infty}^{1} \rightarrow S_{\infty}^{1}$ is quasi-symmetric iff there exits a quasi-conformal diffeo ϕ of \mathbb{H}^{2} such that $g=\left.\phi\right|_{S_{\infty}^{1}}$.

The universal Teichmüller space

$\mathcal{T}=\left\{\right.$ quasi-conformal diffeomorphisms of $\left.\mathbb{H}^{2}\right\} / \sim$ where $\phi \sim \psi$ is there is $A \in P S L_{2}(\mathbb{R})$ such that

$$
\left.\phi\right|_{S_{\infty}^{1}}=\left.A \circ \psi\right|_{S_{\infty}^{1}} .
$$

The universal Teichmüller space

$\mathcal{T}=\left\{\right.$ quasi-conformal diffeomorphisms of $\left.\mathbb{H}^{2}\right\} / \sim$ where $\phi \sim \psi$ is there is $A \in P S L_{2}(\mathbb{R})$ such that

$$
\left.\phi\right|_{S_{\infty}^{1}}=\left.A \circ \psi\right|_{S_{\infty}^{1}} .
$$

$\mathcal{T}=\left\{\right.$ quasi-symmetric homeomorphisms of $\left.S_{\infty}^{1}\right\} / P S L_{2}(\mathbb{R})$.

Shoen conjecture

Conjecture (Shoen)

For any quasi-symmetric homeomorphism $g: S_{\infty}^{1} \rightarrow S_{\infty}^{1}$ there is a unique quasi-conformal harmonic diffeo Φ of \mathbb{H}^{2} such that $g=\left.\Phi\right|_{S_{\infty}^{1}}$

Main result

THM (B-Schlenker)

For any quasi-symmetric homeomorphism $g: S_{\infty}^{1} \rightarrow S_{\infty}^{1}$ there is a unique quasi-conformal minimal Lagrangian diffeomorphims $\Phi: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$ such that $g=\left.\Phi\right|_{S_{\infty}^{1}}$

Minimal Lagrangian diffeomorphisms

A diffeomorphism $\Phi: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$ is minimal Lagrangian if

- It is area-preserving;
- The graph of Φ is a minimal surface in $\mathbb{H}^{2} \times \mathbb{H}^{2}$.

Minimal Lagrangian maps vs harmonic maps

Given a minimal Lagrangian diffemorphism $\phi: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$, let $S \subset \mathbb{H}^{2} \times \mathbb{H}^{2}$ be its graph, then the projections

$$
\phi_{1}: S \rightarrow \mathbb{H}^{2} \quad \phi_{2}: S \rightarrow \mathbb{H}^{2}
$$

are harmonic maps, and the sum of the corresponding Hopf differentials is 0 .

Minimal Lagrangian maps vs harmonic maps

Given a minimal Lagrangian diffemorphism $\Phi: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$, let $S \subset \mathbb{H}^{2} \times \mathbb{H}^{2}$ be its graph, then the projections

$$
\phi_{1}: S \rightarrow \mathbb{H}^{2} \quad \phi_{2}: S \rightarrow \mathbb{H}^{2}
$$

are harmonic maps, and the sum of the corresponding Hopf differentials is 0 .
Conversely given two harmonic diffeomorphisms u, u^{*} such that the sum of the corresponding Hopf differentials is 0 , then $u \circ\left(u^{*}\right)^{-1}$ is a minimal Lagrangian diffeomorphism.

Known results

- Labourie (1992): If S, S^{\prime} are closed hyperbolic surfaces of the same genus, there is a unique $\Phi: S \rightarrow S^{\prime}$ that is minimal Lagrangian.
- Aiyama-Akutagawa-Wan (2000): Every quasi-symmetric homeomorphism with small dilatation of S_{∞}^{1} extends to a minimal Lagrangian diffeomorphism.
- Brendle (2008): If K, K^{\prime} are two convex subsets of \mathbb{H}^{2} of the same finite area, there is a unique minimal lagrangian diffeomorphism $g: K \rightarrow K^{\prime}$.

The AdS geometry

- We use a correspondence between minimal Lagrangian diffeomorphisms of \mathbb{H}^{2} and maximal surfaces of AdS_{3}.

The AdS geometry

- We use a correspondence between minimal Lagrangian diffeomorphisms of \mathbb{H}^{2} and maximal surfaces of $A d S_{3}$.
- Given a qs homeo g of the circle, we prove that minimal Lagrangian diffeomorphisms extending g correspond bijectively to maximal surfaces in $A d S_{3}$ satisfying some asymptotic conditions (determined by g).

The AdS geometry

- We use a correspondence between minimal Lagrangian diffeomorphisms of \mathbb{H}^{2} and maximal surfaces of AdS_{3}.
- Given a qs homeo g of the circle, we prove that minimal Lagrangian diffeomorphisms extending g correspond bijectively to maximal surfaces in $A d S_{3}$ satisfying some asymptotic conditions (determined by g).
- We prove that there exists a unique maximal surface satisfying these asymptotic conditions.

Remark

The correspondence

$\left\{\right.$ minimal Lagrangian maps of $\left.\mathbb{H}^{2}\right\} \quad \leftrightarrow\left\{\right.$ maximal surfaces in $\left.\mathrm{AdS}_{3}\right\}$
is analogous to the classical correspondence
$\left\{\right.$ harmonic diffeomorphisms of $\left.\mathbb{H}^{2}\right\} \quad \leftrightarrow\left\{\right.$ surfaces of $H=1$ in $\left.\mathbb{M}^{3}\right\}$

The Anti de Sitter space

$\mathrm{AdS}_{3}=$ model manifolds of Lorentzian geometry of constant curvature -1.
$A \tilde{d} S_{3}=\left(\mathbb{H}^{2} \times \mathbb{R}, g\right)$ where

$$
g_{(x, t)}=\left(g_{ت I}\right)_{x}-\phi(x) d \theta^{2}
$$

$\phi(x)=\operatorname{ch}\left(d_{\mathbb{H}}\left(x, x_{0}\right)\right)^{2}$ [Lapse function]
$A d S_{3}=A \tilde{d} S_{3} / f$ where $f(x, \theta)=\left(R_{\pi}(x), \theta+\pi\right)$ and R_{π} is the rotation of π around x_{0}

The boundary of $A d S_{3}$

$\partial_{\infty} A d S_{3} \cong S^{1} \times S^{1}$.

- The conformal structure of $A d S_{3}$ extends to the boundary.
- Isometries of $A d S_{3}$ extend to conformal diffeomorphisms of the boundary.

The boundary of $A d S_{3}$

$\partial_{\infty} A d S_{3} \cong S^{1} \times S^{1}$.

- The conformal structure of $A d S_{3}$ extends to the boundary.
- Isometries of $A d S_{3}$ extend to conformal diffeomorphisms of the boundary.
- There are exactly two foliations of $\partial_{\infty} A d S_{3}$ by lightlike lines. They are called the left and right foliations.
- Leaves of the left foliation meet leaves of the right foliation exactly in one point.

The double foliation of the boundary of AdS_{3}

Figure: The I behaviour of the double foliation of $\partial_{\infty} A \tilde{d} S_{3}$.

The boundary of $A d S_{3}$

Figure: Every leaf of the left (right) foliation intersects $S_{\infty}^{1} \times\{0\}$ exactly once.

The product structure

The map

$$
\pi: \partial_{\infty} A d S_{3} \rightarrow S_{\infty}^{1} \times S_{\infty}^{1}
$$

obtained by following the left and right leaves is a diffeomorphism.

Spacelike meridians

- A a-causal curve in $\partial_{\infty} A d S_{3}$ is locally the graph of an orientation preserving homeomorphism between two intervals of S_{∞}^{1}.

Spacelike meridians

- A a-causal curve in $\partial_{\infty} A d S_{3}$ is locally the graph of an orientation preserving homeomorphism between two intervals of S_{∞}^{1}.
- A-causal meridians are the graphs of orientation preserving homeomorphisms of S_{∞}^{1}.

Figure: Every leaf of the left/right foliation intersects the meridian just in one point

Spacelike surfaces in AdS_{3}

- A smooth surface $S \subset A d S_{3}$ is spacelike if the restriction of the metric on $T S$ is a Riemannian metric.
- Spacelike surfaces are locally graphs of some real function u defined on some open set of \mathbb{H}^{2} verifying

$$
\phi^{2}\|\nabla u\|^{2}<1
$$

Spacelike surfaces in AdS_{3}

- A smooth surface $S \subset A d S_{3}$ is spacelike if the restriction of the metric on $T S$ is a Riemannian metric.
- Spacelike surfaces are locally graphs of some real function u defined on some open set of \mathbb{H}^{2} verifying

$$
\phi^{2}\|\nabla u\|^{2}<1 .
$$

- Spacelike compression disks lift in $A \tilde{d} S_{3}$ to graphs of entire spacelike functions $u: \mathbb{H}^{2} \rightarrow \mathbb{R}$.

The asymptotic boundary of spacelike graphs

Figure: If $S=\Gamma_{u}$ is a spacelike graph in $A \tilde{d} S_{3}$, then u extends on the boundary and S projects to spacelike compression disk.

Notations

Let S be a spacelike surface in $A d S_{3}$. We consider:
(1) $I=$ the restriction of the Lorentzian metric on S;
(2) $J=$ the complex structure on S;
(3) $k=$ the intrinsic sectional curvature of S;
(4) $B: T S \rightarrow T S=$ the shape operator;
(5) $E: T S \rightarrow T S=$ the identity operator;
(6) $H=\operatorname{tr} B=$ the mean curvature of the surface S.

The Gauss-Codazzi equations are

$$
d^{\nabla} B=0 \quad k=-1-\operatorname{det} B
$$

Maximal surfaces

A surface $S \subset A d S_{3}$ is maximal if $H=0$.

From maximal graphs to minimal diffeomorphisms of \mathbb{H}^{2}

Let S be any spacelike surface in $A d S_{3}$. We consider two bilinear forms on S

$$
\mu_{l}(x, y)=I((E+J B) x,(E+J B) y) \quad \mu_{r}=I((E-J B) x,(E-J B) y)
$$

From maximal graphs to minimal diffeomorphisms of \mathbb{H}^{2}

Let S be any spacelike surface in $A d S_{3}$. We consider two bilinear forms on S
$\mu_{l}(x, y)=I((E+J B) x,(E+J B) y) \quad \mu_{r}=I((E-J B) x,(E-J B) y)$

Prop (Krasnov-Schlenker)

Around points where $\mu_{I}\left(r e s p . \mu_{r}\right)$ is not degenerate, it is a hyperbolic metric.

- When S is totally geodesic then $I=\mu_{I}=\mu_{r}$;
- $\operatorname{det}(E+J B)=\operatorname{det}(E-J B)=1+\operatorname{det} B=-k$

From maximal graphs to minimal diffeomorphisms

Let S be a spacelike graph:

- if $k<0$ then μ_{l} and μ_{r} are hyperbolic metrics on S;
- if $k \leq-\epsilon<0$ then μ_{l} and μ_{r} are complete hyperbolic metrics.

From maximal graphs to minimal diffeomorphisms

Let S be a spacelike graph:

- if $k<0$ then μ_{l} and μ_{r} are hyperbolic metrics on S;
- if $k \leq-\epsilon<0$ then μ_{l} and μ_{r} are complete hyperbolic metrics.

Prop

Let S be a maximal graph with uniformly negative curvature and let

$$
\phi_{S, I}: S \rightarrow \mathbb{H}^{2} \quad \phi_{S, r}: S \rightarrow \mathbb{H}^{2}
$$

be the developing maps for μ_{l} and μ_{r} respectively. The diffeomorphism $\Phi_{S}=\phi_{S, r} \circ \phi_{S, l}^{-1}: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$ is minimal Lagrangian. Moreover

- It is C-quasi-conformal for some $C=C\left(\sup _{S} k\right)$
- The graph of $\left.\Phi_{S}\right|_{S_{\infty}^{1}}$ is $\partial_{\infty} S$.

From a minimal Lagrangian map to a maximal surface

Prop

Given any quasi-conformal minimal Lagrangian map $\Phi: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$ there is a unique maximal surface S with uniformly negative curvature producing Φ.

The proof relies on the fact that μ_{l} and μ_{r} determines I and B in some explicit way.

Given a quasi-symmetric homeo g of S_{∞}^{1} the following facts are equivalent:

- There exists a unique quasi-conformal minimal Lagrangian diffeomorphism Φ of \mathbb{H}^{2} such that $\left.\Phi\right|_{S_{\infty}^{1}}=g$.
- There exists a maximal surface $S \subset A d S_{3}$ with uniformly negative curvature such that $\partial_{\infty} S=\Gamma_{g}$.

AdS results

THM (B-Schlenkler)

We fix a homeomorphism g : $S_{\infty}^{1} \rightarrow S_{\infty}^{1}$.

- There is a maximal graph S such that $\partial_{\infty} S=\Gamma_{g}$.
- If g is quasi-symmetric then there is a unique S as above with uniformly negative curvature.

Higher dimension result

$A d S_{n+1}=\mathbb{H}^{n} \times \mathbb{R}$

THM (B-Schlenker)

Let Γ be any acausal subset of $\partial_{\infty} A d S_{n+1}$ that is a graph of a function $u: S_{\infty}^{n-1} \rightarrow \mathbb{R}$. Then there exists a maximal spacelike graph M in $A d S_{n+1}$ such that $\partial_{\infty} M=\Gamma$.

We fix a homeomorphism $g: S_{\infty}^{1} \rightarrow S_{\infty}^{1}$.

We consider the lifting of the graph of g in $A \tilde{d} S_{3}$ that is a closed curve Γ_{g}.
We have to find a function u such that

- its graph is spacelike $\Rightarrow \phi|\nabla u|<1$;
- its graph is maximal $\Rightarrow H u=0$;
- the closure of its graph in ∂_{∞} is Γ_{g}.

The convex hull of Γ_{g}

There is a minimal convex set K in $A \tilde{d} S_{3}$ containing Γ_{g}. Moreover:

- $\partial_{\infty} K=\Gamma_{g}$;
- The boundary of K is the union of two $\mathrm{C}^{0,1}$-spacelike graphs $\partial_{-} K, \partial_{+} K$;

The result
Minimal maps and maximal surfaces Maximal surfaces in AdS_{3}

The convex hull of Γ_{g}

The approximations surfaces

$$
\text { Let } T_{r}=B_{r}\left(x_{0}\right) \times \mathbb{R}^{1} \subset A d S_{3} \text { and consider } U_{r}=T_{r} \cap \partial_{-} K \text {. }
$$

Prop (Bartnik)

There is a unique maximal surface S_{r} contained in T_{r} such that $\partial U_{r}=\partial S_{r}$. Moreover S_{r} is the graph of some function u_{r} defined on $B_{r}\left(x_{0}\right)$.

The approximations surfaces

$$
\text { Let } T_{r}=B_{r}\left(x_{0}\right) \times S^{1} \subset A d S_{3} \text { and consider } U_{r}=T_{r} \cap \partial_{-} K \text {. }
$$

Prop (Bartnik)

There is a unique maximal surface S_{r} contained in T_{r} such that $\partial U_{r}=\partial S_{r}$. Moreover S_{r} is the graph of some function u_{r} defined on $B_{r}\left(x_{0}\right)$.

The existence of the maximal surface

Step 1 There is a sequence r_{n} such that $u_{n}:=u_{r_{n}}$ converge to a function u_{∞} uniformly on compact subset of \mathbb{H}^{2}. Moreover if S is the graph of u_{∞} we have that $\partial_{\infty} S=\Gamma_{g}$.
Step 2 The surface S is a maximal surface.

Surfaces S_{r} are contained in K

Lemma

If M is a cpt maximal surface such that ∂M is contained in K, then M is contained in K.

By contradiction suppose that M is not contained in K

$p \in M \backslash K=$ point that maximizes the distance from K.
$q \in \partial K=$ point such that $d(p, q)=d(p, K)$.
$P=$ plane through p orthogonal to $[q, p]$.
P is tangent to M and does not disconnect $M \Rightarrow$ principal curvatures at p are negative.

The construction of the limit

- $S_{r} \subset K \Rightarrow u_{r}$ are uniformly bounded on $B_{R}\left(x_{0}\right)$.
- $\phi\left\|\nabla u_{r}\right\|<1 \Rightarrow$ The maps u_{r} are uniformly Lipschitz on any $B_{R}\left(x_{0}\right)$.

We conclude:

- There is a sequence r_{n} such that $u_{n}=u_{r_{n}}$ converge uniformly on compact sets of \mathbb{H}^{2} to a function u_{∞}.
- The graph of the map u_{∞} - say S - is a weakly spacelike surface: it is Lipschitz and satisfies $\phi\left|\nabla u_{\infty}\right| \leq 1$.

The asymptotic boundary of S

- S is contained in $K \Rightarrow \partial_{\infty} S \subset \Gamma_{g}$.
- $\partial_{\infty} S$ is a spacelike meridian of $\partial_{\infty} A d S_{3}$

$$
\partial_{\infty} S=\Gamma_{g} .
$$

A possible degeneration

The surface S could contain some lightlike ray.

Remark

We have to prove that the surfaces S_{n} are uniformly spacelike in T_{ρ}.

A possible degeneration

The surface S could contain some lightlike ray.

Remark

We have to prove that the surfaces S_{n} are uniformly spacelike in T_{ρ}.

A possible degeneration

The surface S could contain some lightlike ray.

Remark

We have to prove that the surfaces S_{n} are uniformly spacelike in T_{ρ}.

A possible degeneration

The surface S could contain some lightlike ray.

Remark

We have to prove that the surfaces S_{n} are uniformly spacelike in T_{R}.

Uniformly spacelike surfaces

Let U be a compact domain of \mathbb{H}^{2}.
The graph of a function $u: U \rightarrow \mathbb{R}$ is spacelike if

$$
\phi^{2}\|\nabla u\|^{2}<1
$$

Uniformly spacelike surfaces

Let U be a compact domain of \mathbb{H}^{2}.
The graph of a function $u: U \rightarrow \mathbb{R}$ is spacelike if

$$
\phi^{2}\|\nabla u\|^{2}<1
$$

A family of graphs over $U-\left\{\Gamma_{u_{i}}\right\}_{i \in l}$ is uniformly spacelike if there exists $\epsilon>0$ such that

$$
\phi^{2}\left\|\nabla u_{i}\right\|^{2}<(1-\epsilon)
$$

holds for every $x \in U$ and $i \in I$.

The main estimate

Prop

For every $R>0$ there is a constant $\epsilon=\epsilon(R, K)$ such that

$$
\sup _{B_{R}\left(x_{0}\right)} \phi\left|\nabla u_{n}\right|<(1-\epsilon)
$$

for $n>n(R)$
The proof is based on the maximum principle using a localization argument due to Bartnik.

The conclusion of the proof of the existence

Let $\Omega_{R}=\left\{u: B_{R}\left(x_{0}\right) \rightarrow \mathbb{R} \mid \Gamma_{u}\right.$ is spacelike $\}$
We consider the operator $H: \Omega_{R} \rightarrow \mathbb{C}^{\infty}\left(B_{R}\left(x_{0}\right)\right)$

$$
H u(x)=\text { mean curvature at }(x, u(x)) \text { of } \Gamma_{u} .
$$

$H u=\sum a_{i j}(x, u, \nabla u) \partial_{i j} u+\sum b_{k}(x, u, \nabla u) \partial_{k} u$.
H is an elliptic operator on Ω_{R} at point $u \in \Omega_{R}$.
H is uniformly elliptic on any family of uniformly spacelike functions.

How to conclude

- $\left.u_{n}\right|_{B_{R}\left(x_{0}\right)}$ is a uniformly spacelike functions;
- they are solution of a uniformly elliptic equation $H u_{n}=0$;

By standard theory of regularity of elliptic equations \rightarrow the limit u_{∞} is smooth and $H u_{\infty}=0$.

The uniform estimate

The width of the convex hull K

$$
\delta=\inf \left\{d(x, y) \mid x \in \partial_{-} K, y \in \partial_{+} K\right\} .
$$

Lemma

In general $\delta \in[0, \pi / 2]$. It is 0 exactly when g is a symmetric map.
If $\delta=\pi / 2$ and there are points at distance $\pi / 2$, then K is a standard tetrahedron K_{0}.

The result
Minimal maps and maximal surfaces Maximal surfaces in AdS_{3}

The standard tetrahedron

Characterization of quasi-symmetric maps

Prop

The following facts are equivalent:
(1) g is a quasi-symmetric homeomorphism.
(2) $\delta<\pi / 2$.
(3) Any maximal surface S such that $\partial_{\infty} S=\Gamma_{g}$ has uniformly negative curvature.

$(3) \Rightarrow(1)$

S determines a quasi-conformal minimal Lagrangian map Φ such that $\left.\Phi\right|_{S_{\infty}^{1}}=g$.
 Thus g is quasi-symmetric.

$(1) \Rightarrow(2)$

Suppose there exists $x_{n} \in \partial_{-} K$ and $y_{n} \in \partial_{+} K$ such that $d\left(x_{n}, y_{n}\right) \rightarrow \pi / 2$
We find a sequence of isometries γ_{n} of $A d S_{3}$ such that

- $\gamma_{n}\left(x_{n}\right)=x_{0}$.
- the geodesic joining $\gamma_{n}\left(x_{n}\right)$ to $\gamma_{n}\left(y_{n}\right)$ is vertical.

$(1) \Rightarrow(2)$

Let $K_{n}=\gamma_{n}(K)$.

- $\partial_{\infty} K_{n}=\Gamma_{g_{n}}$ and $\left\{g_{n}\right\}$ are uniformly quasi-symmetric.
- $K_{n} \rightarrow K_{0}$ and $\Gamma_{g_{n}} \rightarrow \partial_{\infty} K_{0}$.

$(1) \Rightarrow(2)$

Let $K_{n}=\gamma_{n}(K)$.

- $\partial_{\infty} K_{n}=\Gamma_{g_{n}}$ and $\left\{g_{n}\right\}$ are uniformly quasi-symmetric.
- $K_{n} \rightarrow K_{0}$ and $\Gamma_{g_{n}} \rightarrow \partial_{\infty} K_{0}$.
- The boundary of K_{0} cannot be approximated by a family of uniformly quasi-symmetric maps.

$(2) \Rightarrow(3)$

We consider $\chi=\log (-(\operatorname{det} B) / 4)$. We have $k=-1+e^{4 \chi}$ and

$$
\Delta \chi=k
$$

[Schlenker-Krasnov].
If p is a local maximum for k then $k(p) \leq 0$. Moreover if $k(p)=0$, then S is flat and $K=K_{0}$.

The result
Minimal maps and maximal surfaces Maximal surfaces in AdS_{3}

Step 1
Step 2
Uniform estimates

$(2) \Rightarrow(3)$

Lemma

If $\delta<\pi / 2$ then $\sup _{S}\|B\|<C$.

$(2) \Rightarrow(3)$

Take any sequence x_{n} such that $k\left(x_{n}\right) \rightarrow$ sup k. Let γ_{n} be a sequence such that $\gamma_{n}\left(x_{n}\right)=x_{0}$ and $\nu_{n}(x)=e$ (where ν_{n} is the normal field of $S_{n}=\gamma_{n}(S)$.
$S_{n} \rightarrow S_{\infty}$ and $x \in S_{\infty}, k_{\infty}=\sup k$ and x is a local maximum for k_{∞}.
sup $k \leq 0$.

$(2) \Rightarrow(3)$

If sup $k=0$ then S_{∞} is a flat maximal surface \rightarrow its convex core is K_{0}. In particular $\delta\left(K_{0}\right)=\pi / 2$ On the other hand $K_{n}=\gamma_{n}\left(S_{n}\right) \rightarrow K_{0}$.

- $\delta\left(K_{n}\right)=\delta<\pi / 2$.
- $\delta\left(K_{n}\right) \rightarrow \delta\left(K_{0}\right)=\pi / 2$.

