Mean curvature flow in Anti de Sitter space

Francesco Bonsante

(joint work with J.M. Schlenker)

September 8, 2010

(日)

Spacelike graphs in AdS_{n+1} The existence of the mean curvature flow

 $(\mathbf{D}^{n} \rightarrow)$

The space

Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

$$\begin{split} \mathbb{H}^{n} &= (B^{n}, g_{\mathbb{H}}) \text{ where} \\ B^{n} &= \{ (x_{1}, \dots, x_{n}) | \sum x_{i}^{2} < 1 \} \\ g_{\mathbb{H}} &= \frac{4}{(1 - r^{2})^{2}} (dx_{1}^{2} + \dots + dx_{n}^{2}) \qquad r = \sqrt{x_{1}^{2} + \dots + x_{n}^{2}} \end{split}$$

Francesco Bonsante Mean curvature flow in Anti de Sitter space

<ロト <回 > < 回 > < 回 > .

æ

Spacelike graphs in AdS_{n+1} The existence of the mean curvature flow

The spacetime

Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

 AdS_{n+1} =($\mathbb{H}^n \times \mathbb{R}, g$) where

$$g=g_{\mathbb{H}}-\left(\frac{1+r^2}{1-r^2}\right)^2 dt^2$$

It is the space-form of constant curvature -1 in Lorentzian geometry.

・ロト ・ 一日 ト ・ 日 ト

Spacelike graphs in AdS_{n+1} The existence of the mean curvature flow Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

The asymptotic boundary

$\partial_{\infty} AdS_{n+1} = \partial \mathbb{H}^n \times \mathbb{R}$

• The metric *g* blows up on $\partial_{\infty} AdS_{n+1}$.

イロト イポト イヨト イヨト

Spacelike graphs in AdS_{n+1} The existence of the mean curvature flow Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

The asymptotic boundary

$\partial_{\infty} AdS_{n+1} = \partial \mathbb{H}^n \times \mathbb{R}$

- The metric *g* blows up on $\partial_{\infty} AdS_{n+1}$.
- Rescaling g by the factor $(1 r^2)^2$ we have

$$(1 - r^2)^2 g = 4(dx_1^2 + \dots dx_n^2) - (1 + r^2)^2 dt^2$$

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Spacelike graphs in AdS_{n+1} The existence of the mean curvature flow Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

The asymptotic boundary

$$\partial_{\infty} AdS_{n+1} = \partial \mathbb{H}^n \times \mathbb{R}$$

- The metric *g* blows up on $\partial_{\infty}AdS_{n+1}$.
- Rescaling g by the factor $(1 r^2)^2$ we have

$$(1-r^2)^2g = 4(dx_1^2 + \dots dx_n^2) - (1+r^2)^2 dt^2$$

On $\partial_{\infty} AdS_{n+1}$ a conformal Lorentzian structure is defined.

・ロト ・ 一日 ト ・ 日 ト

Spacelike graphs in AdS_{n+1} The existence of the mean curvature flow Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

Spacelike graphs

Let M_0 be a spacelike hypersurface in AdS_{n+1} that is a graph of a function

$$u_0:\mathbb{H}^n\to\mathbb{R}$$

Remark (Mess)

Every complete spacelike surface in AdS_{n+1} is a graph.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Spacelike graphs in AdS_{n+1} The existence of the mean curvature flow Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Spacelike graphs

Let M_0 be a spacelike hypersurface in AdS_{n+1} that is a graph of a function

$$u_0:\mathbb{H}^n\to\mathbb{R}$$

Remark (Mess)

Every complete spacelike surface in AdS_{n+1} is a graph.

Remark

The function u_0 extends to a function $\overline{u}_0 : \overline{\mathbb{H}}^n \to \mathbb{R}$. The graph of \overline{u}_0 is the closure of M_0 into \overline{AdS}^{n+1} .

 $\partial \infty M$ = closure of *M* in $\partial_{\infty} A dS_{n+1}$

Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

・ロト ・四ト ・ヨト ・ヨト

The mean curvature flow

Let M_{u_0} be a spacelike graph in AdS_{n+1} . The mean curvature flow starting from M_{u_0} is a map

$$\sigma: M_{u_0} \times [0, T] \rightarrow AdS_{n+1}$$

such that

- For every s the map σ(·, s) is an embedding of M_{u0} onto a spacelike graph M_{us};
- $\frac{\partial \sigma}{\partial s} = H\nu;$
- $\sigma(x,0) = x;$
- $\partial_{\infty}M_{u_s} = \partial_{\infty}M_{u_0}.$

Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

Longtime existence of MCF

Let *M* be a spacelike graph. In general $\partial_{\infty}M$ is achronal.

If $\partial_{\infty} M$ is acausal we prove that there exists a family of spacelike hypersurfaces $(M_s)_{s \in [0,+\infty)}$ such that

- *M_s* are moving by Mean Curvature Flow;
- $M_0 = M;$
- $\partial_{\infty}M_{s} = \partial_{\infty}M;$
- M_s is the graph of a function $u_s : \mathbb{H}^n \to \mathbb{R}$;

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

< 日 > < 回 > < 回 > < 回 > < 回 > <

Longtime existence of MCF

Let *M* be a spacelike graph. In general $\partial_{\infty}M$ is achronal.

If $\partial_{\infty} M$ is acausal we prove that there exists a family of spacelike hypersurfaces $(M_s)_{s \in [0,+\infty)}$ such that

- *M_s* are moving by Mean Curvature Flow;
- $M_0 = M;$
- $\partial_{\infty}M_{s} = \partial_{\infty}M;$
- M_s is the graph of a function $u_s : \mathbb{H}^n \to \mathbb{R}$;.
- For any divergent sequence s_n , there is a subsequence s_{n_k} such that $M_{s_{n_k}}$ converge to a maximal surface N with $\partial_{\infty} N = \partial_{\infty} M$.

Let Γ be a spacelike curve in ∂AdS_3 that is the graph of some function

 $\psi:\partial\mathbb{H}^2\to\mathbb{R}\,.$

Let *K* be the convex hull of Γ . The width of Γ is

 $w(\Gamma) = \sup\{\ell(c) | c \text{ is a timelike path contained in } K\}.$

We have $w(\Gamma) \in [0, \pi/2]$, and $w(\Gamma) = 0$ iff *K* is a totally geodesic plane.

< 日 > < 回 > < 回 > < 回 > < 回 > <

3

Spacelike graphs in AdS_{n+1} The existence of the mean curvature flow Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

Maximal surfaces in AdS₃

THM

If $w(\Gamma) < \pi/2$, then there is a unique maximal surface $M \subset AdS_3$ such that

- $\partial_{\infty}M = \Gamma$.
- There is $\epsilon > 0$ such that $k_M < -\epsilon^2$.

Moreover, the second fundamental form is bounded.

・ロ・ ・ 四・ ・ 回・ ・ 回・

 Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

Quasi-conformal diffeomorphism of the hyperbolic plane

A diffeomorphism φ : ℍ² → ℍ² is quasi-conformal if there exists C < 1 such that

 $\left|\partial_{\bar{z}}\phi\right| < \boldsymbol{C} \left|\partial_{z}\phi\right|.$

 Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Quasi-conformal diffeomorphism of the hyperbolic plane

A diffeomorphism φ : ℍ² → ℍ² is quasi-conformal if there exists C < 1 such that

$$|\partial_{\bar{z}}\phi| < \boldsymbol{C} |\partial_{z}\phi| \,.$$

 Any quasi-conformal diffeomorphism of ℍ² extends to a homeomorphism of S¹_∞ = ∂ℍ² that is quasi-symmetric.

Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

・ロト ・ 一日 ト ・ 日 ト

Quasi-symmetric homeomorphism of a circle

 A homeomorphism g : S¹_∞ → S¹_∞ is quasi-symmetric if there exists K such that

$$\left|rac{g(heta+h)-g(heta)}{g(heta-h)-g(heta)}
ight| < K$$

for every $\theta, h \in \mathbb{R}$.

 A homeomorphism g : S¹_∞ → S¹_∞ is quasi-symmetric iff there exists a quasi-conformal diffeo φ of ℍ² such that g = φ|_{S¹_∞}.

Spacelike graphs in AdS_{n+1} The existence of the mean curvature flow

Schoen conjecture

Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

Conjecture (Shoen)

For any quasi-symmetric homeomorphism $g: S^1_{\infty} \to S^1_{\infty}$ there is a unique quasi-conformal harmonic diffeo ϕ of \mathbb{H}^2 such that $g = \phi|_{S^1_{\infty}}$

・ロト ・ 一日 ト ・ 日 ト

Spacelike graphs in AdS_{n+1} The existence of the mean curvature flow

Main result

Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

THM (B-Schlenker)

For any quasi-symmetric homeomorphism $g: S^1_{\infty} \to S^1_{\infty}$ there is a unique quasi-conformal minimal Lagrangian diffeomorphism $\Phi: \mathbb{H}^2 \to \mathbb{H}^2$ such that $g = \Phi|_{S^1_{\infty}}$

・ロト ・四ト ・ヨト ・ヨト

Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

Minimal Lagrangian diffeomorphisms

- A diffeomorphism $\Phi:\mathbb{H}^2\to\mathbb{H}^2$ is minimal Lagrangian if
 - It is area-preserving;
 - The graph of Φ is a minimal surface in $\mathbb{H}^2 \times \mathbb{H}^2$.

・ロト ・ 一日 ト ・ 日 ト

Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

Relation with AdS geometry

 We use a correspondence between minimal Lagrangian diffeomorphisms of ℍ² and maximal surfaces of AdS₃.

(日)

Spacelike graphs in AdS_{n+1} The existence of the mean curvature flow Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

Relation with AdS geometry

- We use a correspondence between minimal Lagrangian diffeomorphisms of ℍ² and maximal surfaces of AdS₃.
- Given a qs homeo g of the circle, we construct a curve Γ_g in ∂_∞AdS₃ such that
 - $w(\Gamma_g) < \pi/2.$
 - Q qc minimal Lagrangian diffeomorphisms extending g correspond bijectively to maximal surfaces in AdS₃ with uniformly negative curvature spanning Γ_g.

(日)

Spacelike graphs in AdS_{n+1} The existence of the mean curvature flow Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

(日)

Relation with AdS geometry

- We use a correspondence between minimal Lagrangian diffeomorphisms of ℍ² and maximal surfaces of AdS₃.
- Given a qs homeo g of the circle, we construct a curve Γ_g in ∂_∞AdS₃ such that
 - $w(\Gamma_g) < \pi/2.$
 - Q qc minimal Lagrangian diffeomorphisms extending g correspond bijectively to maximal surfaces in AdS₃ with uniformly negative curvature spanning Γ_g.
- The result eventually follows from THM 1.

Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

Spacelike graphs in AdS³

Let *M* be a spacelike graph in AdS^3 and let us consider the following tensors on *M*

- γ : the first fundamental form;
- *b*: the shape operator;
- J: the positive rotation of $\pi/2$.

Consider the symmetric two forms

 $\gamma_{\pm}(\mathbf{v}, \mathbf{w}) = \gamma((\mathbf{Id} \pm \mathbf{Jb})(\mathbf{v}), (\mathbf{Id} \pm \mathbf{Jb})(\mathbf{w}))$

THM (Krasnov-Schlenker)

If the sectional curvature of M is negative, then γ_{\pm} are non-degenerated hyperbolic metrics. The metrics γ_{\pm} are complete provided that M has bounded second fundamental form and uniformly negative curvature.

Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

Spacelike graphs in AdS³

In the hypotheses of the theorem there are two isometries

 $\phi_{\pm}:\mathbb{H}^{2}\rightarrow(M,\gamma_{\pm})$

Consider the diffeo $f_M = \phi_+^{-1} \circ \phi_- : \mathbb{H}^2 \to \mathbb{H}^2$:

• f_M is area-preserving.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

Spacelike graphs in AdS³

In the hypotheses of the theorem there are two isometries

 $\phi_{\pm}: \mathbb{H}^2 \to (M, \gamma_{\pm})$

Consider the diffeo $f_M = \phi_+^{-1} \circ \phi_- : \mathbb{H}^2 \to \mathbb{H}^2$:

- *f_M* is area-preserving.
- *f_M* is quasi-conformal:

・ロ・ ・ 四・ ・ 回・ ・ 回・

Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

Spacelike graphs in AdS³

In the hypotheses of the theorem there are two isometries

 $\phi_{\pm}: \mathbb{H}^2 \to (M, \gamma_{\pm})$

Consider the diffeo $f_M = \phi_+^{-1} \circ \phi_- : \mathbb{H}^2 \to \mathbb{H}^2$:

- f_M is area-preserving.
- *f_M* is quasi-conformal: there is *K* < 1
 K = *K*(sup ||*A*||, -1/*k*) such that

 $|\partial_{\bar{z}}f_M| \leq K |\partial_z f_M| \, .$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

 Anti de Sitter space and its asymptotic boundary Mean curvature flow in AdS_{n+1} Motivation

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Spacelike graphs in AdS³

In the hypotheses of the theorem there are two isometries

 $\phi_{\pm}:\mathbb{H}^{2}\rightarrow(M,\gamma_{\pm})$

Consider the diffeo $f_M = \phi_+^{-1} \circ \phi_- : \mathbb{H}^2 \to \mathbb{H}^2$:

- f_M is area-preserving.
- *f_M* is quasi-conformal: there is *K* < 1
 K = *K*(sup ||*A*||, -1/*k*) such that

 $|\partial_{\overline{z}}f_M| \leq K |\partial_z f_M|.$

If *M* is a maximal surface then the graph of *f_M* is a minimal surface in ℍ² × ℍ².

Spacelike functions

A function

$$u:\mathbb{H}^n\to\mathbb{R}$$

is spacelike if its graph

$$M_u = \{(x, u(x)) \in AdS_{n+1} | x \in \mathbb{H}^n\}$$

is spacelike.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

Spacelike functions

A function

$$u:\mathbb{H}^n\to\mathbb{R}$$

is spacelike if its graph

$$M_u = \{(x, u(x)) \in AdS_{n+1} | x \in \mathbb{H}^n\}$$

is spacelike.

The function *u* is spacelike iff

$$\sum \left(\frac{\partial u}{\partial x_i}\right)^2 < \left(\frac{2}{1+r^2}\right)^2.$$

The function u is 4 Lipschitz w.r.t. the Euclidean metric of the ball.

(日)

Spacelike functions

A function

$$u:\mathbb{H}^n\to\mathbb{R}$$

is spacelike if its graph

$$M_u = \{(x, u(x)) \in AdS_{n+1} | x \in \mathbb{H}^n\}$$

is spacelike.

The function *u* is spacelike iff

$$\sum \left(\frac{\partial u}{\partial x_i}\right)^2 < \left(\frac{2}{1+r^2}\right)^2.$$

The function u is 4 Lipschitz w.r.t. the Euclidean metric of the ball.

The function *u* extends to the boundary and $u|_{\partial \mathbb{H}^n}$ is 1-Lipschitz.

Let $\psi : \partial \mathbb{H}^n \to \mathbb{R}$ be a 1-Lipschitz function. Then there is a spacelike function $u : \mathbb{H}^n \to \mathbb{R}$ such that

 $|u|_{\partial \mathbb{H}^2} = \psi$.

・ロト ・四ト ・ヨト ・ヨト

르

Let $\psi : \partial \mathbb{H}^n \to \mathbb{R}$ be a 1-Lipschitz function. Then there is a spacelike function $u : \mathbb{H}^n \to \mathbb{R}$ such that

$$|u|_{\partial \mathbb{H}^2} = \psi$$
.

There are two functions

 $u_{\pm}:\mathbb{H}^n\to\mathbb{R}$

such that

- they extend ψ ;
- if u is any spacelike function extending ψ then

 $u_{-}(x) \leq u(x) \leq u_{+}(x).$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

3

The domain D_{ψ}

$D_{\psi} = \{(x,t) | u_{-}(x) \leq t \leq u_{+}(x)\}$

- If *u* is a spacelike function extending ψ, then M_u is contained in D_ψ.
- D_{ψ} is a convex region of AdS_{n+1} .

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The convex hull of M_u

Let *u* be a spacelike function and $\psi = u|_{\partial \mathbb{H}^n}$.

- The convex hull of M_u say K_u is contained in D_{ψ} .
- If the graph of ψ is a-causal, then K_u is contained in the interior of D_ψ.

A B F A B F

The convex hull of M_u

Let *u* be a spacelike function and $\psi = u|_{\partial \mathbb{H}^n}$.

- The convex hull of M_u say K_u is contained in D_{ψ} .
- If the graph of ψ is a-causal, then K_u is contained in the interior of D_ψ.
- For any *p* in the interior of D_{ψ} , $I^+(p) \cap K_u$ is a compact region.

< 同 > < 回 > < 回 > <

Proof of the main estimate

The modified version of the flow

The modified mean curvature flow is a map

$$\hat{\sigma}: \mathbb{H}^n \times [0, T] \to AdS_{n+1}$$

such that

- $\hat{\sigma}(\mathbf{x}, \mathbf{s}) = (\mathbf{x}, \mathbf{u}_{\mathbf{s}}(\mathbf{x}));$
- *u_s* is a spacelike function;
- $g(\frac{\partial \hat{\sigma}}{\partial s}, \nu) = -H;$
- $u_s(x) = u_0(x)$ for every $x \in \partial \mathbb{H}^n$ and $s \leq T$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The statement

Proof of the main estimate

THM

Let M_0 be a spacelike graph in AdS_{n+1} such that $\partial_{\infty}M_0$ is acausal. Then there is a modified MCF

$$\hat{\sigma}: \mathbb{H}^n imes [0, +\infty) o AdS_{n+1}$$

starting from M₀.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э

Scheme of the proof

Step 1: Let M^k be the intersection of M_0 with $C_k = B(0, k) \times \mathbb{R}$. Prove that there is a MCF M_s^k for $s \in (0, +\infty)$ such that $M_0^k = M^k$;

$$\partial M_s^k = \partial M^k;$$

③ M_s^k is the graph of a function $u_s^{(k)} : B(0, k) \to \mathbb{R}$.

Step 2: Prove that for every r > 0 and T > 0 the family

$$\{u^{(k)}|_{B(0,r)\times[1/T,+\infty)}\}$$

is compact in the space of spacelike functions with respect to the topology of $C^{\infty}(B(0, r) \times [1/T, +\infty))$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Scheme of the proof

Proof of the main estimate

By a diagonal process we find a sequence k_n such that $u^{(k_n)}$ converges to some map

 $u: \mathbb{H}^n imes (0, +\infty) \to \mathbb{R}$

in the topology of $C^{\infty}(\mathbb{H}^n \times (0, +\infty))$. We have that $\hat{\sigma}(x, s) = (x, u(x, s))$ is a modified MCF.

Step3: Prove that u(x, s) converges to u_0 as $s \to 0$ and that $u(x, s) = \psi(x)$ for $x \in \partial \mathbb{H}^2$ and $s \in [0, +\infty)$.

・ロト ・ 一日 ト ・ 日 ト

Let M^k be the intersection of M_{u_0} with the cylinder $C_k = B(0, k) \times \mathbb{R}$. Ecker \Rightarrow There exists a smooth family of surfaces M_s^k moving by MCF such that

• M_s^k is the graph of some spacelike function $u_s^{(k)}: B(0, k) \to \mathbb{R}.$

•
$$\partial M_s^k = \partial M^k$$
.

・ロト ・ 一日 ト ・ 日 ト

Proof of the main estimate

Proof of the main estimate

The gradient function

Given a spacelike hypersurface *M* in AdS_{n+1} , let ν be the normal field. The gradient function on *M* is defined by

$$v_M(x) = -\langle \nu(x), \frac{1}{|\partial_t|} \partial_t \rangle.$$

< 同 > < 回 > < 回 > <

Proof of the main estimate

The gradient function

Given a spacelike hypersurface *M* in AdS_{n+1} , let ν be the normal field. The gradient function on *M* is defined by

$$v_M(x) = -\langle \nu(x), \frac{1}{|\partial_t|} \partial_t \rangle.$$

Suppose that we have a family of modified MCF $\sigma_k : \Omega \times [0, T] \rightarrow AdS_{n+1}$ ans set $N_{k,s} = \sigma_k(\Omega, s)$. Suppose that there are constants $h, c, c_0, c_1, c_2, \ldots$ such that for every $s \in [0, T]$ and every $k \in \mathbb{N}$

$$\begin{aligned} \sup_{N_{k,s}} |t| &\leq h \\ \sup_{N_{k,s}} v < c \\ \sup_{N_{k,s}} |\nabla^m A|^2 < c_m \qquad \text{for } m = 0, 1, ... \end{aligned}$$

then, up to some subsequence, σ_k converges to some modified MCF $\sigma_{\infty} : \Omega \times [0, T] \rightarrow AdS_{n+1}$ in C^{∞}-topology.

MCF and convex hull

Proof of the main estimate

Let *K* be the convex hull of M_0 . By maximum principle, M_s^k is contained in *K* for every k > 0 and s > 0.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

MCF and convex hull

Proof of the main estimate

Let *K* be the convex hull of M_0 . By maximum principle, M_s^k is contained in *K* for every k > 0 and s > 0. An a-priori height estimate for M_s^k :

 $\sup_{M_s^k \cap C_r} |t| \le \sup_{K \cap C_r} |t| \,.$

Francesco Bonsante Mean curvature flow in Anti de Sitter space

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Proof of the main estimate

The main estimate

Prop

For every r > 0 there are constants c, c_0, c_1, c_2, \ldots such that

 $\sup_{M_s^k \cap C_r} v < c \\ \sup_{M_s^k \cap C_r} |\nabla^m A| < c_m \, .$

for $k > \overline{k}(r)$.

The proof is based on the maximum principle using a localization argument due to Ecker.

< 日 > < 回 > < 回 > < 回 > < 回 > <

э

Proof of the main estimate

The future of a point in AdS_{n+1}

Given $p \in AdS_{n+1}$ we consider the function $\tau : I^+(p) \to \mathbb{R}$ that is the Lorentzian distance from p

 $\tau(q) = \sup\{\ell(c) | c \text{ causal path joining } p \text{ to } q\}$

For $\epsilon \geq 0$ we put $I_{\epsilon}^+(p) = \tau^{-1}((\epsilon, +\infty))$.

< 同 > < 回 > < 回 > <

Proof of the main estimate

The future of a point in AdS_{n+1}

Given $p \in AdS_{n+1}$ we consider the function $\tau : I^+(p) \to \mathbb{R}$ that is the Lorentzian distance from p

 $\tau(q) = \sup\{\ell(c) | c \text{ causal path joining } p \text{ to } q\}$

For $\epsilon \geq 0$ we put $I_{\epsilon}^+(p) = \tau^{-1}((\epsilon, +\infty))$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Ecker estimate

Let $p \in AdS_{n+1}$ be such that $I^+(p) \cap K$ is compact. We consider any family of surfaces N_s moving by MCF such that

- $N_s \subset K;$
- $\partial N_s \cap (I^+(p) \cap K) = \emptyset$

We find a uniform estimate for v_{N_s} , *A* and $|\nabla^m A|$ on the domain $I_{\epsilon}^+(p) \cap K$

Lemma

For every T > 0, there are constants $c, c_0, c_1, ...$ only depending on p, K, T, ϵ such that for every N_s as above with s > 1/T

$$\sup_{l_{\epsilon}^{+}(p)\cap N_{s}} v \leq c$$

$$\sup_{l_{\epsilon}^{+}(p)\cap N_{s}} |\nabla^{m} A| < c_{m}.$$

Proof of the main estimate

The main estimate

Let $K_r = K \cap C_r$. There is a finite family of points $p_1 \dots, p_n \in D$ and numbers $\epsilon_1, \dots, \epsilon_n$ such that $K_r \subset \bigcup I_{\epsilon_i}^+(p_j)$.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

э

The main estimate

Let $K_r = K \cap C_r$. There is a finite family of points $p_1 \dots, p_n \in D$ and numbers $\epsilon_1, \dots, \epsilon_n$ such that $K_r \subset \bigcup I_{\epsilon_j}^+(p_j)$. For k >> 0, $\partial M_s^k \cap I^+(p_j) = \emptyset$ for $j = 1, \dots, n$. So there exists c such that for every $j = 1, \dots, k$

 $\sup_{M^k_s \cap I^+_{\epsilon_j}(p_j)} v < c \, .$

for s > 1/T. In particular

 $\sup_{M_s^k \cap K_r} v \leq c.$

・ロット (母) ・ ヨ) ・ ・ ヨ)

3

Step 3: The condition at infinity

We prove that for every k for every $x \in B(0, k)$ and for every s we have that

$$u_{-}(x) \leq u^{(k)}(x,s) \leq u_{+}(x)$$

As a consequence we have that

$$u_{-}(x) \leq u(x,s) \leq u_{+}(x)$$

for every $x \in \mathbb{H}^n$ and for every $s \in [0, +\infty)$. Since u_- and u_+ coincides with u_0 on the boundary, then the same holds for every $u(\cdot, s)$.

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Proof of the main estimate

An a priori estimate for *H*

$$\left(rac{\partial}{\partial s}-\Delta
ight)(sH^2)\leq H^2-rac{n}{2}sH^4$$

Francesco Bonsante Mean curvature flow in Anti de Sitter space

Proof of the main estimate

An a priori estimate for H

$$\left(rac{\partial}{\partial oldsymbol{s}}-\Delta
ight)(oldsymbol{s}oldsymbol{H}^2)\leq oldsymbol{H}^2-rac{n}{2}oldsymbol{s}oldsymbol{H}^4$$

If Ω is a compact domain in \mathbb{H}^n and

$$\sigma: \Omega \times [0, T] \rightarrow AdS_{n+1}$$

is a MCF such that $\sigma(x, s) = \sigma(x, 0)$ for every s > 0, then H(x, s) = 0 for every $x \in \partial \Omega$ and every s > 0. By maximum principle we get

$$H_{\max}^2(s) \leq \frac{2}{ns}$$

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Proof of the main estimate

Estimate for H on M_{u_s}

By the previous argument for every $u_s^{(k)}$ we get

$$H^2_{u^{(k)}_s}(x) < \frac{2}{ns}$$

for every $x \in B(0, k)$.

・ロト ・ 一日 ト ・ 日 ト

Estimate for H on M_{u_s}

By the previous argument for every $u_s^{(k)}$ we get

for every $x \in B(0, k)$. Passing to the limit

$$H_{u_s}^2 < \frac{2}{ns}$$

for every $x \in \mathbb{H}^n$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Proof of the main estimate

Proof of the main estimate

Step 3: convergence of u(x, s) as $s \to 0$

Since $\partial_s u_s^{(k)} v = H$ we derive that

$$\partial_{s} u_{s}^{(k)} \leq \sqrt{\frac{2}{ns}}$$

In particular we get

$$|u_s^{(k)}(x) - u_0(x)| \le \sqrt{\frac{2s}{n}}.$$

Passing to the limit on k we have

$$|u(x,s)-u_0(x)|\leq \sqrt{\frac{2s}{n}}$$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・