Fixed points of the composition of earthquakes

Francesco Bonsante

(joint work with J.-M. Schlenker)

July 28, 2010

Francesco Bonsante Fixed points of the composition of earthquakes

< 17 ▶

A B F A B F

The hyperbolic side The AdS side

Earthquakes:definition

Let S be a closed orientable surface S of genus $g \ge 2$. Let us set

- \mathcal{ML}_g = space of measured geodesic laminations on *S*;
- *T_g*= Teichmüller space of *S* = space of hyperbolic metrics on *S* up to isotopy.

Thurston defined two diffeomorphisms of \mathcal{T}_g associated with $\lambda \in \mathcal{ML}_g$

$$E^r_\lambda, E^l_\lambda: \mathcal{T}_g \to \mathcal{T}_g.$$

The hyperbolic side The AdS side

Earthquakes:an example

If the lamination is a weighted curve, then E_{λ}^{r} and E_{λ}^{l} are fractional Dehn twists:

< 17 >

The hyperbolic side The AdS side

Earthquakes: main properties

•
$$E_{\lambda}^r = (E_{\lambda}^l)^{-1};$$

• The map $(t,x)\mapsto E_{t\lambda}^r(x)$ is a flow on \mathcal{T}_g .

THM (Kerckhoff, Thurston, Mess)

Given $\rho, \rho' \in T_g$, there exists a unique pair $(\lambda, \mu) \in \mathcal{ML}_g^2$ such that

$$ho' = {\sf E}^{\sf r}_\lambda(
ho) = {\sf E}^{\sf l}_\mu(
ho)\,.$$

The hyperbolic side The AdS side

Composition of earthquakes

Given two measured geodesic laminations λ and μ one can consider the composition

 $E^r_\mu \circ E^r_\lambda : \mathcal{T}_g \to \mathcal{T}_g$.

- If λ and μ are disjoint, then the composition is simply the earthquake along λ ∪ μ.
- If λ and μ intersect, few things are known.

(日)

The results

Equivalence of the two results Proof of theorems

The result

The hyperbolic side The AdS side

THM 1 (B-Schlenker)

The composition of two right earthquakes $E_{\lambda}^{r} \circ E_{\mu}^{r}$ admits a fixed point in T_{g} iff λ and μ fill up the surface.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The results

Equivalence of the two results Proof of theorems

The result

The hyperbolic side The AdS side

THM 1 (B-Schlenker)

The composition of two right earthquakes $E_{\lambda}^{r} \circ E_{\mu}^{r}$ admits a fixed point in T_{g} iff λ and μ fill up the surface.

Remark

There is some reason to believe that such fixed point is unique.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

 AdS₃=model of 3-dim Lorentzian geometry of const. curv. -1.

The hyperbolic side

The AdS side

- $Isom(AdS_3) = PSL_2(\mathbb{R}) \times PSL_2(\mathbb{R}).$
- AdS_3 is equipped with an asymptotic boundary $\partial_{\infty}AdS_3 = S^1 \times S^1$.
- The action of PSL₂(ℝ) × PSL₂(ℝ) extends on ∂_∞AdS₃ to the product action.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The results

Proof of theorems

The hyperbolic side The AdS side

GH AdS manifolds

Given $\rho, \rho' \in T_g$ we consider the representation

Equivalence of the two results

 $h = (h_{\rho}, h_{\rho'}) : \pi_1(S) \to PSL_2(\mathbb{R}) \times PSL_2(\mathbb{R}) = Isom(AdS_3)$.

Prop (Mess)

There is a maximal convex open domain $\Omega \subset \mathsf{AdS}_3$ such that

- Ω is h-invariant;
- *M*_{ρ,ρ'} = Ω/*h* is a GH AdS spacetime diffeomorphic to S × ℝ.

The closure of Ω in $\partial_{\infty}AdS_3$ is an embedded curve Γ_h .

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

э

The results

Equivalence of the two results Proof of theorems The hyperbolic side The AdS side

The convex core

æ

The conve core

The hyperbolic side The AdS side

 The convex hull of Γ_h is an invariant domain in Ω that projects to the convex core of M_{ρ,ρ'}, that is the minimal convex deformation retract of M_{ρ,ρ'}.

(日)

The conve core

The hyperbolic side The AdS side

- The convex hull of Γ_h is an invariant domain in Ω that projects to the convex core of $M_{\rho,\rho'}$, that is the minimal convex deformation retract of $M_{\rho,\rho'}$.
- If $\rho = \rho'$, then K is a totally geodesic surface.

(日)

The conve core

- The convex hull of Γ_h is an invariant domain in Ω that projects to the convex core of $M_{\rho,\rho'}$, that is the minimal convex deformation retract of $M_{\rho,\rho'}$.
- If $\rho = \rho'$, then K is a totally geodesic surface.
- If ρ ≠ ρ', the convex core is ≅ S × [0, 1]: its boundary components are called the upper and the lower boundary and are denoted by ∂₊K and ∂₋K.

A (B) + A (B) + A (B) +

The hyperbolic side

The AdS side

The results

Equivalence of the two results Proof of theorems The hyperbolic side The AdS side

The convex core

æ

The hyperbolic side The AdS side

The geometry of the boundary of K

- $\partial \tilde{K}$ is the union of spacelike totally geodesic convex ideal polygons bent along a lamination.
- $\partial_{\pm}K$ carries a hyperbolic structure μ_{\pm}
- The bending locus is a geodesic lamination λ_± equipped with a transverse measure that encodes the amount of bending.

< 同 > < 三 > < 三 >

The hyperbolic side The AdS side

The bending map

We consider the map

$$B: \mathcal{T} imes \mathcal{T} \setminus \Delta o \mathcal{ML}_g imes \mathcal{ML}_g$$

where $B(\rho, \rho') = (\lambda_+, \lambda_-)$ are the bending laminations of $M_{\rho, \rho'}$.

THM 2 (B-Schlenker)

The image of B is the set \mathcal{FML}_g of pairs of measured geodesic laminations that fill up the surface.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The hyperbolic side The AdS side

The bending map

We consider the map

$$B: \mathcal{T} imes \mathcal{T} \setminus \Delta o \mathcal{ML}_g imes \mathcal{ML}_g$$

where $B(\rho, \rho') = (\lambda_+, \lambda_-)$ are the bending laminations of $M_{\rho,\rho'}$.

THM 2 (B-Schlenker)

The image of B is the set \mathcal{FML}_g of pairs of measured geodesic laminations that fill up the surface.

Conjecture

B is a 1-to-1 correspondence between $T \times T \setminus \Delta$ and \mathcal{FML}_g .

The hyperbolic side The AdS side

Comparison with the quasi-Fuchsian case

We consider the map

$$B_H: \mathcal{T}_g imes \mathcal{T}_g \setminus \Delta o \mathcal{ML}_g imes \mathcal{ML}_g$$

defined by associating ρ , ρ' with the pairs of bending laminations of the Quasi-Fuchsian manfold corresponding to ρ , ρ' through the Bers parameterization.

THM (Bonahon-Otal)

The image of B_H is the set of pairs of laminations that fill the surface which have no closed curve with weight bigger than π .

The hyperbolic side The AdS side

Remark

- In Lorentzian geometry the angle between two spacelike planes is a well-defined number in [0, +∞).
- The maps B and B_H have a very different behavior.

э

Mess diagram

Let ρ, ρ' be two hyperbolic structures on *S* and consider

- the hyperbolic structures μ₊, μ₋ on the boundary of the convex core of M_{ρ,ρ'};
- the bending laminations λ_+, λ_- .

Mess discovered the following relation between these objects:

э

Consequence of Mess diagram

From Mess diagram we have

$$\rho' = E_{2\lambda_+}^r(\rho) = E_{2\lambda_-}^l(\rho)$$

These relations uniquely determine λ_+ and λ_- .

< 17 ▶

A B > A B >

Equivalence between Thm 1 and Thm 2.

Prop

The pair (λ, μ) lies in the image of $B \Leftrightarrow E_{2\mu}^r \circ E_{2\lambda}^r$ admits a fixed point.

(⇒)

- Suppose that there are ρ, ρ' such that λ, μ are the bending laminations of *M*_{ρ,ρ'}
- We have that

$$\Xi_{2\lambda}^r(\rho) = E_{2\mu}^l(\rho) = \rho'$$

• In particular $\rho = E_{2\mu}^r \circ E_{2\lambda}^r(\rho)$.

(日)

The image of B is contained in \mathcal{FML}_{g}

The bending laminations λ_+, λ_- of an AdS manifold *M* fill up the surface:

• (10) • (10)

The image of *B* is contained in \mathcal{FML}_g

The bending laminations λ_+, λ_- of an AdS manifold *M* fill up the surface:

We have to prove that any loop *c* must intersect either λ_+ or λ_- . By contradiction suppose that $\iota(c, \lambda) = \iota(c, \mu) = 0$. Let c_+ and c_- denote the geodesic representative of *c* in $\partial_+ K$, $\partial_- K$

 c_+ and c_- are geodesic of *M* and are freely homotopic.

The scheme of the proof

- Step 1 Given $(\lambda, \mu) \in \mathcal{FML}_g$, there is $\epsilon > 0$ such that $(t\lambda, t\mu)$ are realized as bending laminations of some GH AdS space for every $t < \epsilon$.
- Step 2 The map $B : \mathcal{T}_g \times \mathcal{T}_g \setminus \Delta \to \mathcal{FML}_g$ is proper.
- Step 3 Given $(\lambda, \mu) \in \mathcal{FML}_g$ there is $\epsilon' > 0$ such that $(t\lambda, t\mu)$ are uniquely realized as bending laminations of some GH AdS manifold for every $t < \epsilon'$.

The scheme of the proof

- Step 1 Given $(\lambda, \mu) \in \mathcal{FML}_g$, there is $\epsilon > 0$ such that $(t\lambda, t\mu)$ are realized as bending laminations of some GH AdS space for every $t < \epsilon$.
- Step 2 The map $B : \mathcal{T}_g \times \mathcal{T}_g \setminus \Delta \to \mathcal{FML}_g$ is proper.
- Step 3 Given $(\lambda, \mu) \in \mathcal{FML}_g$ there is $\epsilon' > 0$ such that $(t\lambda, t\mu)$ are uniquely realized as bending laminations of some GH AdS manifold for every $t < \epsilon'$.

Conclusion: since the map is proper, the degree can be defined. By step 3, the degree is equal to 1 and the surjectivity follows

(4) (日本)

- Analog of Bonahon result for quasi-Fuchsian manifolds.
- The proof uses hyperbolic geometry, in particular Kerckhoff results on the length

< 17 ×

(4) (3) (4) (4) (4)

It is based on the following estimate obtained by studying the geometry of the convex core

Lemma

Given $\lambda, \mu \in \mathcal{ML}_g$ and $\rho \in \mathcal{T}_g$ such that

$$E_{\lambda}^{r}(\rho) = E_{\mu}^{l}(\rho)$$

then we have

- If $I_{\lambda}(\rho) \geq 1$ then $I_{\lambda}(\rho) \leq C\iota(\lambda,\mu)$.
- If $l_{\lambda}(\rho) < 1$ then $l_{\lambda}^{2}(\rho) \leq C\iota(\lambda,\mu)$.

(日)

- Analog of Series result for quasi-Fuchsian manifolds.
- The proof uses the second part of the estimate stated in the previous slice.

< 17 ×

(4) (3) (4) (4) (4)