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Earthquakes:definition

Let S be a closed orientable surface S of genus g ≥ 2. Let us
set

MLg= space of measured geodesic laminations on S;
Tg= Teichmüller space of S = space of hyperbolic metrics
on S up to isotopy.

Thurston defined two diffeomorphisms of Tg associated with
λ ∈MLg

E r
λ,E

l
λ : Tg → Tg .
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Earthquakes:an example

If the lamination is a weighted curve, then E r
λ and E l

λ are
fractional Dehn twists:
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Earthquakes: main properties

E r
λ = (E l

λ)−1;
The map (t , x) 7→ E r

tλ(x) is a flow on Tg .

THM (Kerckhoff, Thurston, Mess)

Given ρ, ρ′ ∈ Tg , there exists a unique pair (λ, µ) ∈ML2
g such

that
ρ′ = E r

λ(ρ) = E l
µ(ρ) .
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Composition of earthquakes

Given two measured geodesic laminations λ and µ one can
consider the composition

E r
µ ◦ E r

λ : Tg → Tg .

If λ and µ are disjoint, then the composition is simply the
earthquake along λ ∪ µ.
If λ and µ intersect, few things are known.
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The result

THM 1 (B-Schlenker)

The composition of two right earthquakes E r
λ ◦ E r

µ admits a
fixed point in Tg iff λ and µ fill up the surface.

Remark
There is some reason to believe that such fixed point is unique.
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AdS space

AdS3=model of 3-dim Lorentzian geometry of const. curv.
−1.
Isom(AdS3) = PSL2(R)× PSL2(R).
AdS3 is equipped with an asymptotic boundary
∂∞AdS3 = S1 × S1.
The action of PSL2(R)× PSL2(R) extends on ∂∞AdS3 to
the product action.
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GH AdS manifolds

Given ρ, ρ′ ∈ Tg we consider the representation

h = (hρ,hρ′) : π1(S)→ PSL2(R)× PSL2(R) = Isom(AdS3) .

Prop (Mess)
There is a maximal convex open domain Ω ⊂ AdS3 such that

Ω is h-invariant;
Mρ,ρ′ = Ω/h is a GH AdS spacetime diffeomorphic to
S × R.

The closure of Ω in ∂∞AdS3 is an embedded curve Γh.
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The convex core
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The conve core

The convex hull of Γh is an invariant domain in Ω that
projects to the convex core of Mρ,ρ′ , that is the minimal
convex deformation retract of Mρ,ρ′ .

If ρ = ρ′, then K is a totally geodesic surface.
If ρ 6= ρ′, the convex core is ∼= S × [0,1]: its boundary
components are called the upper and the lower boundary
and are denoted by ∂+K and ∂−K .
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The geometry of the boundary of K

∂K̃ is the union of spacelike totally geodesic convex ideal
polygons bent along a lamination.
∂±K carries a hyperbolic structure µ±
The bending locus is a geodesic lamination λ± equipped
with a transverse measure that encodes the amount of
bending.
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The bending map

We consider the map

B : T × T \∆→MLg ×MLg

where B(ρ, ρ′) = (λ+, λ−) are the bending laminations of Mρ,ρ′ .

THM 2 (B-Schlenker)
The image of B is the set FMLg of pairs of measured
geodesic laminations that fill up the surface.

Conjecture

B is a 1-to-1 correspondence between T × T \∆ and FMLg .
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Comparison with the quasi-Fuchsian case

We consider the map

BH : Tg × Tg \∆→MLg ×MLg

defined by associating ρ, ρ′ with the pairs of bending
laminations of the Quasi-Fuchsian manfold corresponding to
ρ, ρ′ through the Bers parameterization.

THM (Bonahon-Otal)
The image of BH is the set of pairs of laminations that fill the
surface which have no closed curve with weight bigger than π.
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Remark
In Lorentzian geometry the angle between two spacelike
planes is a well-defined number in [0,+∞).
The maps B and BH have a very different behavior.
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Mess diagram

Let ρ, ρ′ be two hyperbolic structures on S and consider
the hyperbolic structures µ+, µ− on the boundary of the
convex core of Mρ,ρ′ ;
the bending laminations λ+, λ−.

Mess discovered the following relation between these objects:

µ+
E l

λ+

��~~
~~

~~
~~ E r

λ+

  
AA

AA
AA

AA

ρ ρ′

µ−
E r

λ−

__@@@@@@@@ E l
λ−

>>}}}}}}}}
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Consequence of Mess diagram

From Mess diagram we have

ρ′ = E r
2λ+

(ρ) = E l
2λ−(ρ)

These relations uniquely determine λ+ and λ−.
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Equivalence between Thm 1 and Thm 2.

Prop

The pair (λ, µ) lies in the image of B ⇔ E r
2µ ◦ E r

2λ admits a fixed
point.

(⇒)
Suppose that there are ρ, ρ′ such that λ, µ are the bending
laminations of Mρ,ρ′

We have that
E r

2λ(ρ) = E l
2µ(ρ) = ρ′

In particular ρ = E r
2µ ◦ E r

2λ(ρ).

Francesco Bonsante Fixed points of the composition of earthquakes



The results
Equivalence of the two results

Proof of theorems

The image of B is contained in FMLg

The bending laminations λ+, λ− of an AdS manifold M fill up
the surface:

We have to prove that any loop c must intersect either λ+ or λ−.
By contradiction suppose that ι(c, λ) = ι(c, µ) = 0. Let c+ and
c− denote the geodesic representative of c in ∂+K , ∂−K
c+ and c− are geodesic of M and are freely homotopic.
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The scheme of the proof

Step 1 Given (λ, µ) ∈ FMLg , there is ε > 0 such that (tλ, tµ) are
realized as bending laminations of some GH AdS space for
every t < ε.

Step 2 The map B : Tg × Tg \∆→ FMLg is proper.
Step 3 Given (λ, µ) ∈ FMLg there is ε′ > 0 such that (tλ, tµ) are

uniquely realized as bending laminations of some GH AdS
manifold for every t < ε′.

Conclusion: since the map is proper, the degree can be
defined. By step 3, the degree is equal to 1 and the surjectivity
follows
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Step 1

Analog of Bonahon result for quasi-Fuchsian manifolds.
The proof uses hyperbolic geometry, in particular Kerckhoff
results on the length
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Step 2

It is based on the following estimate obtained by studying the
geometry of the convex core

Lemma
Given λ, µ ∈MLg and ρ ∈ Tg such that

E r
λ(ρ) = E l

µ(ρ)

then we have
If lλ(ρ) ≥ 1 then lλ(ρ) ≤ Cι(λ, µ).
If lλ(ρ) < 1 then l2λ(ρ) ≤ Cι(λ, µ) .
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Step 3

Analog of Series result for quasi-Fuchsian manifolds.
The proof uses the second part of the estimate stated in
the previous slice.
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