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Landslides and smooth grafting

We introduce two new families of deformations on Teichmueller spaces
called landslides and smooth grafting.
They can be regarded as a smooth version of earthquakes and
grafting respectively.

Earthquakes/grafting depend on the choice of a measured
geodesic lamination.
Landslides/smooth grafting depend on the choice of a fixed
hyperbolic structure.
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Main idea

The grafting of S along λ can be defined by applying some
general recipe to surface obtained by bending S along λ in the
hyperbolic space.
The earthquake on S along λ can be defined by applying some
(other) general recipe to the surface obtained by bending S along
λ in the Anti de Sitter space,
Landslides and smooth grafting are defined by replacing bent
surfaces by constant curvature convex surfaces and applying the
same recipes.
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Goals

Show that landslides share good properties as earthquakes.
Prove that earthquakes can be regarded as a limit case of
landslides.
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Notation

S = differentiable closed oriented surface of genus g ≥ 2.
Teich(S)={hyperbolic metrics on S}/Diffeo0(S) =
{complex strutures on S}/Diffeo0(S).
ML(S)={measured geodesic laminations of S}.
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2-dimensional definition of grafting

Fix λ=measured geodesic lamination on S.
The grafting along λ is a map

grλ : Teich(S)→ Teich(S)

If λ = (c,a) and h is a hyperbolic metric, grλ([h]) is constructed as
follows

Cut the surface along the h-geodesic representative of c.
Insert a Euclidean annulus of width equal to a.
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2-dimensional definition of earthquakes

The right (left) earthquake on (S,h) along λ is a map

E r
λ : Teich(S)→ Teich(S)

If λ = (c,a) then E r
λ(h) is obtained as follows

cut S along the geodesic representative of c.
re-glue back the surface twisting the gluing map by the factor a.
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Bent surfaces in hyperbolic space

The bending of (S,h) into the hyperbolic space along λ is a map
β : H2 = S̃ → H3 that is an isometric embedding on each region of
S̃ \ λ̃.
If λ = (c,a), the map β is construced in the following way:

There exists a representation ρ : π1(S)→ PSL2(C) such that
β(γx) = ρ(γ)β(x) (the holonomy of the bending map).
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Grafting and bent surfaces in hyperbolic 3-manifolds

Let σ : S̃ → H3 be an equivariant locally convex C1-immersion.
For x ∈ S̃, let d(x) ∈ S2

∞ endpoint of the geodesic ray from σ(x)
orthogonal to σ(S̃) and pointing in the concave side.
The map d : S̃ → S2

∞ is an equivariant locally homeomorphism. A
conformal structure is induced on S by d .
Applying this construction on the bending map β, the conformal
structure obtained is grλ(S).
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Grafting and bent surfaces in hyperbolic 3-manifolds

Problem

The map β is not C1, so in general d cannot be defined.

How to fix the problem
A normal vector v of β at x of the bending map is a unit vector of
Tβ(x)H3 which is a (local)support plane for β(S).
Ũ= set of couples (x , v) with x ∈ S̃ and v normal vector of β at x .
The map d : Ũ → S2

∞ can be defined. Moreover Ũ/π1(S) ∼= S.
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The Anti de Sitter space

AdS3= Lorentz space-form of constant curvature −1.

Iso0(AdS3) = PSL2(R)× PSL2(R).
Space-like planes of AdS3 are isometric to H2.
A notion of angle between space-like planes is defined. The angle
is a number in [0,+∞).

Given a hyperbolic metric h on S and a measured geodesic lamination
λ, the bending of S into AdS3 can be defined

α : S̃ → AdS3

The map α is always an embedding.
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Earthquakes and bent surfaces in AdS-manifolds

THM (Mess)
Let λ be a measured geodesic lamination on S. For any hyperbolic
metric h, let (ρl , ρr ) : π1(S)→ Isom(AdS3) be the holonomy of the
bending map α(h, λ). Then ρl and ρr are Fuchsian representations and

H2/ρl = E r
λ(h) H2/ρr = E l

λ(h)
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Codazzi operators

Given a (hyperbolic) metric h on S, ∇= Levi Civita connection of h.
A Codazzi operator b : TS → TS is a solution of Codazzi equation:

d∇b = 0, where (d∇b)(v ,w) = ∇v (bw)−∇w (bv)− b[v ,w ].

The shape operators of surfaces in 3 Riemann manifolds are
examples of Codazzi operators.
If b is a non degenerate Codazzi tensor, then the curvature of
h(b,b) is simply −Kh/det b.
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Labourie operators

A Labourie operator on a hyperbolic surface (S,h) is an operator
b : TS → TS such that

1 b is h-self-adjoint positive operator.
2 det b = 1.
3 b solves the Codazzi equation for h: d∇b = 0.

If b is a Labourie operator, then h? = h(b·,b·) is hyperbolic.

THM (Labourie)

Given h,h′ hyperbolic metric on S, there is a unique h-Labourie
operator b on S such that h(b·,b·) is isotopic to h′.

Given two hyperbolic metrics (h,h′) on S, the Labourie operator of
the pair (h,h′) is the h-Labourie operator b such that h(b·,b·) ∼= h′.
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Definition of landslides

Fix a point [h?] ∈ Teich(S) and θ ∈ R.
Given a hyperbolic metric h on S,
J= complex structure induced by h.
b = b(h,h?)= Labourie operator of the pair (h,h?).
Define bθ = cos(θ/2)Id + sin(θ/2)Jb
bθ is a Codazzi operator and det bθ = 1.
So the metric

Lh?,θ(h) = h(bθ,bθ)

is hyperbolic.

Remark
Lh?,θ is 2π-periodic in θ, and Lh?,π(h) = h?.
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Definition of smooth grafting

With the notation of the previous slice,
let b′s = cosh (s)Id + sinh (s)b.
Then the smooth grafting of S along (h?, s) is the conformal structure
induced by the metric

sgrh?,s(h) = h(b′s,b
′
s)

Remark
Since det b′s is not constant the curvature of sgrh?,s(h) is not constant.
Indeed it is equal to −1/det(b′s).
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Convex constant curvature surfaces in hyperbolic
3-manifolds

A K- hyperbolic immersion is an equivariant locally convex
C2-immersion

σ : S̃ → H3

such that the induced first fundamental form has constant curvature K .
If σ is a K-hyperbolic immersion then

K ∈ [−1,0).
For K ∈ (−1,0) the shape operator B is a positive self-adjoint
operator which solves Codazzi equation and such that
det B = 1 + K .

The third fundamental form III = I(B,B) has constant curvature
K/(1 + K ).
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Description of K - hyperbolic immersions

Prop (Labourie)

Let us fix K ∈ (−1,0). For every pair of hyperbolic metrics h and h? on
S there is a unique K- hyperbolic immersion σK (h,h?) : S̃ → H3 such
that the first fundamental form I is proportional to h and the third
fundamental form is proportional to h?.

Proof.
Let b be the Labourie operator of (h,h?) and define

I =
1
K

h B = (1 + K )1/2b

They are the embedding data of a K immersion which verifies the
conditions of the theorem.

{K- hyperbolic immersions} ↔ Teich(S)× Teich(S)
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Convex constant curvature surfaces in AdS
3-manifolds

A κ-isometric AdS3 immersion is an equivariant map

τ : S̃ → AdS3

such that the induced first metric is Riemannian of constant curvature
κ.
If τ is a κ- AdS immersion then

κ ∈ (−∞,−1].
For κ ∈ (−∞,−1) the shape operator B is a positive self-adjoint
operator which solves Codazzi equation and such that
det B = −κ− 1.

The third fundamental form has constant curvature −κ/(κ+ 1)
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Description of K- AdS immersions

Prop

Let us fix κ ∈ (−∞,−1). For every pair of hyperbolic metrics h and h?

on Teich(S) there is a unique κ- AdS embedding τκ(h,h?) : S̃ → H3

such that the first fundamental form I is proportional to h and the third
fundamental form is proportional to h?

{κ- AdS immersions κ} ↔ Teich(S)× Teich(S)
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The smooth grafting : a 3-dimensional characterization

Let us fix [h?] ∈ Teich(S) and s > 0.
Given a hyperbolic metric h let us consider the K- hyperbolic immersion

σK (h,h?) : S̃ → H3

for K = −cosh (s/2)−1.
For any x ∈ S̃ let d(x) ∈ S2

∞ be the final point of the ray through σk (x)
orthogonal to the immersion.
d : S̃ → S2

∞ is an equivariant map, so it induces a complex structure
on S.

Lemma
This complex structure is isomorphic to sgrs,h∗(h).
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The landslide: a 3-dimensional characterization

Fix [h?] ∈ Teich(S), θ ∈ [0, π) and h a hyperbolic metric on S.
Let us consider the κ-AdS embedding

τκ(h,h?) : S̃ → AdS3

for κ = cos(θ/2)−1.

Lemma
The left and the right holonomies of τκ(h,b) are Fuchsian
representations ρl and ρr and

H2/ρl = Lh∗,−θ(h) H2/ρr = Lh∗,θ(h).
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Earthquake flow

The earthquake deformation verifies this simple semigroup law

E l
tλ ◦ E l

sλ(h) = E l
(t+s)λ(h)

Teich(S)×ML(S)= trivial fiber bundle on Teich(S).

Remark
There is an R-action on Teich(S)×ML(S) defined by

Et (h, λ) =

{
(E l

tλ(h), λ) if t ≥ 0
(E r

tλ(h), λ) if t ≤ 0
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Flow properties of landslides

For any θ ∈ R/2πZ = S1 let us consider

Lθ : Teich(S)× Teich(S)→ Teich(S)× Teich(S)

defined by Lθ(h,h?) = (Lh?,θ(h),Lh,θ(h?))

Lemma
Lθ ◦ Lθ′ = Lθ+θ′ .

Remark
Lπ(h,h?) = (h?,h).

Francesco Bonsante ((joint work with G. Mondello and J.M. Schlenker))A cyclic flow on Teichmüller space May 15, 2012 25 / 41



Proof of the flow property of the landslides

We may suppose that h? = h(b·,b·).

The Labourie operator of the pair (h?,h) is b−1.
Lh,θ(h?) = Lh?,π+θ(h).
If hθ = Lh?,θ(h) then the Labourie operator of
Lθ(h,h?) = (hθ,hπ+θ) is b−1

θ ◦ b ◦ bθ.

Francesco Bonsante ((joint work with G. Mondello and J.M. Schlenker))A cyclic flow on Teichmüller space May 15, 2012 26 / 41



Earthquake theorem

THM (Kerckhoff/Thurston/Mess)

Given [h] and [h′] in Teich(S) there exists a unique lamination λ such
that

E l
λ([h]) = [h′]
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Earthquake theorem: reformulation

THM (Kerckhoff/Thurston/Mess)

Given [h] and [h′] in Teich(S) and x ∈ R, there exists a unique
lamination λ such that

Ex ([h], λ) = ([h′], λ)
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Landslide theorem

THM (B-Mondello-Schelnker)

Given [h] and [h′] in Teich(S) and θ ∈ S1, there exists a unique
hyperbolic metric h? such that

Lh?,θ(h) = h′
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Landslide theorem: proof

Mess proved that there exists an AdS spacetime M(h,h′) = S × R
such that H2/ρl = (S,h) and H2/ρr = (S,h′).
Barbot, Beguin, Zeghib proved that M contains a unique convex
surface S of constant curvature κ = −1/ cos2(θ/4).
Let h+ = 1

cos2 θ/4 IS and h?+ = 1
sin2 θ/4

IIIS. h+ and h?+ are hyerbolic
metrics.
We have Lh?+,−θ/2(h+) = h and Lh?+,θ/2(h+) = h′.
By the flow properties, if we put h? = Lh+,−θ/2(h∗+) we have that
Lh?,θ(h) = h′
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Complex earthquakes

THM (McMullen)
Fix a hyperbolic surface h and a measured geodesic lamination λ. If H
denotes the upper half plane of C, the map

Ec(h, λ) : H 3 z = t + is 7→ grsλ(E r
tλ(h)) ∈ Teich(S)

is holomorphic.

If we put grs : Teich(S)×ML(S) 3 (h, λ) 7→ grsλ(h) ∈ Teich(S),we
can write

Ec(h, λ)(z) = grs ◦ E−t (h, λ)
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Complex landslides

Let us fix two hyperbolic metrics h and h? on S.

THM (B-Mondello-Schlenker)

Let us put Lθ(h,h?) = (hθ,h?θ) The map

LC(h,h?) : S1 × [0,+∞) 3 θ + is 7→ sgrh?−θ,s(h−θ) ∈ Teich(S)

is a holomorphic embedding.

If we put sgrs(h,h?) = sgrs,h?(h) we have
LC(h,h?)(θ + is) = sgrs ◦ L−θ(h,h?) .
Notice that LC(Lθ0(h,h?))(θ + is) = LC(h,h∗)((θ − θ0) + is).
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Earthquakes and grafting as limit of landslides and
smooth grafting

THM (B-Mondello-Schlenker)
Let h?n be a diverging sequence in Teichmuller space converging to a
point [λ] in the Thurston boundary of Teich(S).
Take θn → 0 such that
θn`h?n (γ)→ ι(λ, γ) for every γ ∈ π1(S)
Then

Lh?n ,θn (h)→ E l
λ/2(h) sgrh?n ,θn (h)→ grλ/2(h)
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Convergence of constant curvature surfaces to bent
surfaces

Let h∗n be a sequence of hyperbolic metrics converging to a point
[λ] ∈ PML(S) = ∂T .
Take θn → 0 such θn`h?n (γ)→ ι(λ, c) for every γ ∈ π1(S)

Define kn = −1 + θ2
n/2 and κn = −1− θ2

n/2. Then
I σkn (h,h?n) : S̃ → H3 converges to the bending map β(h, λ).
I τκn (h,h?n) : S̃ → AdS3 converges to the bending map α(h, λ).
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Degeneration of distance on a couple of normalized
metrics

THM (B-Mondello-Schlenker)
Take a diverging sequence of Labourie operatrs bn such that
h?n = h(bn,bn) converges to [λ] and take θn → 0 as above.
Then, for any arc c transverse to the h-realization of λ, the h?n-length of
c rescaled by θn converges to the intersection of c with the
h-realization of the lamination λ.
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Definition of the center

Notice that S1 × [0,+∞) ∼= ∆∗.
Given h,h? we have defined

LC(h,h?) : ∆∗ → Teich(S)

Lemma
The map CL(h,h?) extends to 0.

The center of h,h? is the point c(h,h?) = CL(h,h?)(0).

Remark

The center is fixed by the S1-action:

c(Lθ(h,h?)) = c(h,h?).
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A characterization of the center

A 2-dimensional characterization
The point c = c(h,h?) is characterized by the property that the Hopf
differential of the harmonic maps

(S, c)→ (S,h) (S, c)→ (S,h?)

are opposite.

A 3-dimensional characterization
The point c = c(h,h?) represents the conformal class of the second
fundamental form of the AdS immersion τk (h,h?).
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The lanslide flow is conjugated to the S1-flow on T ∗T

Given a point c ∈ Teich(S) and a quadratic differential
φ ∈ T ∗(Teich(S)) we denote by h(c, φ) the hyperbolic metric on S such
that the Hopf differential of the harmonic map (S, c)→ (S,h(c, φ)) is φ
[h(c, φ) is well defined by a result of Wolf]

Prop
The map

T ∗(Teich(S)) 3 (c, φ)→ (h(c,−φ),h(c, φ)) ∈ Teich(S)× Teich(S)

is a diffeomrophism conjugating the S1-landslide action on
Teich(S)× Teich(S) with the natural S1 action on T ∗(Teich(S)).
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Comparison with earthquake case

The S1 action on T ∗Teich(S) extends to a SL2(R)-action. Consider the
unipotent subrgoup U(2) ∼= R in SL2(R). The restriction of the action of
U(2) on T ∗Teich(S) is called the unipotent flow.

THM (Mirzakhani)

The unipotent flow on T ∗Teich(S) is measurably conjugated to the
earthquake flow on Teich(S)×ML(S).
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The landslide flow is Hamiltonian

Consider on Teich(S)× Teich(S) the symplectic form ω = ωWP ⊕ ωWP .
Let E : Teich(S)× Teich(S)→ R be the function

E(h,h?) = energy of the harmonic map (S, c)→ (S,h)

Prop
Lθ is the Hamiltonian flow of E.
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Convexity of E

Prop

For any h? fixed, the function E(·,h?) is strictly convex on WP
geodesics.
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