A cyclic flow on Teichmüller space

Francesco Bonsante

(joint work with G. Mondello and J.M. Schlenker)

May 15, 2012

Francesco Bonsante ((joint work with G. M A cyclic flow on Teichmüller space

< 同 > < ∃ >

We introduce two new families of deformations on Teichmueller spaces called landslides and smooth grafting.

They can be regarded as a *smooth* version of earthquakes and grafting respectively.

- Earthquakes/grafting depend on the choice of a measured geodesic lamination.
- Landslides/smooth grafting depend on the choice of a fixed hyperbolic structure.

・ 同 ト ・ ヨ ト ・ ヨ

We introduce two new families of deformations on Teichmueller spaces called landslides and smooth grafting.

They can be regarded as a *smooth* version of earthquakes and grafting respectively.

- Earthquakes/grafting depend on the choice of a measured geodesic lamination.
- Landslides/smooth grafting depend on the choice of a fixed hyperbolic structure.

・ 同 ト ・ ヨ ト ・ ヨ

- The grafting of S along λ can be defined by applying some general recipe to surface obtained by bending S along λ in the hyperbolic space.
- The earthquake on S along λ can be defined by applying some (other) general recipe to the surface obtained by bending S along λ in the Anti de Sitter space,
- Landslides and smooth grafting are defined by replacing bent surfaces by constant curvature convex surfaces and applying the same recipes.

• □ > • □ > • □ > •

- The grafting of S along λ can be defined by applying some general recipe to surface obtained by bending S along λ in the hyperbolic space.
- The earthquake on S along λ can be defined by applying some (other) general recipe to the surface obtained by bending S along λ in the Anti de Sitter space,
- Landslides and smooth grafting are defined by replacing bent surfaces by constant curvature convex surfaces and applying the same recipes.

• □ > • □ > • □ > •

- The grafting of S along λ can be defined by applying some general recipe to surface obtained by bending S along λ in the hyperbolic space.
- The earthquake on S along λ can be defined by applying some (other) general recipe to the surface obtained by bending S along λ in the Anti de Sitter space,
- Landslides and smooth grafting are defined by replacing bent surfaces by constant curvature convex surfaces and applying the same recipes.

• • • • • • • • • • • •

- Show that landslides share good properties as earthquakes.
- Prove that earthquakes can be regarded as a limit case of landslides.

- S = differentiable closed oriented surface of genus $g \ge 2$.
- *Teich*(*S*)={hyperbolic metrics on *S*}/*Diffeo*₀(*S*) = {complex strutures on *S*}/*Diffeo*₀(*S*).
- $\mathcal{ML}(S)$ ={measured geodesic laminations of *S*}.

< A >

2-dimensional definition of grafting

Fix λ =measured geodesic lamination on *S*. The grafting along λ is a map

 gr_{λ} : Teich(S) \rightarrow Teich(S)

If $\lambda = (c, a)$ and *h* is a hyperbolic metric, $gr_{\lambda}([h])$ is constructed as follows

- Cut the surface along the *h*-geodesic representative of *c*.
- Insert a Euclidean annulus of width equal to a.

< 🗇 🕨 < 🖻 🕨

Fix λ =measured geodesic lamination on *S*. The grafting along λ is a map

 gr_{λ} : Teich(S) \rightarrow Teich(S)

If $\lambda = (c, a)$ and *h* is a hyperbolic metric, $gr_{\lambda}([h])$ is constructed as follows

- Cut the surface along the *h*-geodesic representative of *c*.
- Insert a Euclidean annulus of width equal to a.

Fix λ =measured geodesic lamination on *S*. The grafting along λ is a map

$$gr_{\lambda}$$
: Teich(S) \rightarrow Teich(S)

If $\lambda = (c, a)$ and *h* is a hyperbolic metric, $gr_{\lambda}([h])$ is constructed as follows

- Cut the surface along the *h*-geodesic representative of *c*.
- Insert a Euclidean annulus of width equal to a.

2-dimensional definition of earthquakes

The right (left) earthquake on (S, h) along λ is a map

E^r_λ : Teich(S) ightarrow Teich(S)

If $\lambda = (c, a)$ then $E_{\lambda}^{r}(h)$ is obtained as follows

- cut *S* along the geodesic representative of *c*.
- re-glue back the surface twisting the gluing map by the factor a.

2-dimensional definition of earthquakes

The right (left) earthquake on (S, h) along λ is a map

 E^r_λ : Teich(S) ightarrow Teich(S)

- If $\lambda = (c, a)$ then $E_{\lambda}^{r}(h)$ is obtained as follows
 - cut *S* along the geodesic representative of *c*.
 - re-glue back the surface twisting the gluing map by the factor a.

2-dimensional definition of earthquakes

The right (left) earthquake on (S, h) along λ is a map

 E^r_λ : Teich(S) ightarrow Teich(S)

- If $\lambda = (c, a)$ then $E_{\lambda}^{r}(h)$ is obtained as follows
 - cut *S* along the geodesic representative of *c*.
 - re-glue back the surface twisting the gluing map by the factor a.

Bent surfaces in hyperbolic space

The bending of (S, h) into the hyperbolic space along λ is a map $\beta : \mathbb{H}^2 = \tilde{S} \to \mathbb{H}^3$ that is an isometric embedding on each region of $\tilde{S} \setminus \tilde{\lambda}$.

If $\lambda = (c, a)$, the map β is construced in the following way:

Bent surfaces in hyperbolic space

The bending of *S* into the hyperbolic space along λ is a map $\beta : \mathbb{H}^2 = \tilde{S} \to \mathbb{H}^3$ that is an isometric embedding on each region of $\tilde{S} \setminus \tilde{\lambda}$.

If $\lambda = (c, a)$, the map β is construced in the following way:

There exists a representation $\rho : \pi_1(S) \to PSL_2(\mathbb{C})$ such that $\beta(\gamma x) = \rho(\gamma)\beta(x)$ (the holonomy of the bending map).

Bent surfaces in hyperbolic space

The bending of *S* into the hyperbolic space along λ is a map $\beta : \mathbb{H}^2 = \tilde{S} \to \mathbb{H}^3$ that is an isometric embedding on each region of $\tilde{S} \setminus \tilde{\lambda}$.

If $\lambda = (c, a)$, the map β is construced in the following way:

There exists a representation $\rho : \pi_1(S) \to PSL_2(\mathbb{C})$ such that $\beta(\gamma x) = \rho(\gamma)\beta(x)$ (the holonomy of the bending map).

- Let $\sigma: \tilde{S} \to \mathbb{H}^3$ be an equivariant locally convex C^1 -immersion.
- For x ∈ Š, let d(x) ∈ S²_∞ endpoint of the geodesic ray from σ(x) orthogonal to σ(Š) and pointing in the concave side.
- The map *d* : *S̃* → *S*²_∞ is an equivariant locally homeomorphism. A conformal structure is induced on *S* by *d*.
- Applying this construction on the bending map β, the conformal structure obtained is gr_λ(S).

Grafting and bent surfaces in hyperbolic 3-manifolds

- Let $\sigma : \tilde{S} \to \mathbb{H}^3$ be an equivariant locally convex C^1 -immersion.
- For $x \in \tilde{S}$, let $d(x) \in S^2_{\infty}$ endpoint of the geodesic ray from $\sigma(x)$ orthogonal to $\sigma(\tilde{S})$ and pointing in the concave side.
- The map *d* : *S̃* → *S*²_∞ is an equivariant locally homeomorphism. A conformal structure is induced on *S* by *d*.
- Applying this construction on the bending map β, the conformal structure obtained is gr_λ(S).

Grafting and bent surfaces in hyperbolic 3-manifolds

- Let $\sigma : \tilde{S} \to \mathbb{H}^3$ be an equivariant locally convex C^1 -immersion.
- For x ∈ Š, let d(x) ∈ S²_∞ endpoint of the geodesic ray from σ(x) orthogonal to σ(Š) and pointing in the concave side.
- The map $d: \tilde{S} \to S^2_{\infty}$ is an equivariant locally homeomorphism. A conformal structure is induced on *S* by *d*.
- Applying this construction on the bending map β, the conformal structure obtained is gr_λ(S).

- Let $\sigma: \tilde{S} \to \mathbb{H}^3$ be an equivariant locally convex C^1 -immersion.
- For x ∈ Š, let d(x) ∈ S²_∞ endpoint of the geodesic ray from σ(x) orthogonal to σ(Š) and pointing in the concave side.
- The map *d* : *S̃* → *S*²_∞ is an equivariant locally homeomorphism. A conformal structure is induced on *S* by *d*.
- Applying this construction on the bending map β, the conformal structure obtained is gr_λ(S).

Grafting and bent surfaces in hyperbolic 3-manifolds

Problem

The map β is not C^1 , so in general *d* cannot be defined.

How to fix the problem

A normal vector v of β at x of the bending map is a unit vector of $T_{\beta(x)}\mathbb{H}^3$ which is a (local)support plane for $\beta(S)$. \tilde{U} = set of couples (x, v) with $x \in \tilde{S}$ and v normal vector of β at x. The map $d : \tilde{U} \to S^2_{\infty}$ can be defined. Moreover $\tilde{U}/\pi_1(S) \cong S$.

The Anti de Sitter space

 AdS_3 = Lorentz space-form of constant curvature -1.

- $Iso_0(AdS_3) = PSL_2(\mathbb{R}) \times PSL_2(\mathbb{R}).$
- Space-like planes of AdS_3 are isometric to \mathbb{H}^2 .
- A notion of angle between space-like planes is defined. The angle is a number in [0, +∞).

Given a hyperbolic metric *h* on *S* and a measured geodesic lamination λ , the bending of *S* into AdS_3 can be defined

$$\alpha: \tilde{S} \to AdS_3$$

The map α is always an embedding.

 AdS_3 = Lorentz space-form of constant curvature -1.

- $Iso_0(AdS_3) = PSL_2(\mathbb{R}) \times PSL_2(\mathbb{R}).$
- Space-like planes of AdS_3 are isometric to \mathbb{H}^2 .
- A notion of angle between space-like planes is defined. The angle is a number in [0, +∞).

Given a hyperbolic metric *h* on *S* and a measured geodesic lamination λ , the bending of *S* into AdS_3 can be defined

$$\alpha: \tilde{S} \to AdS_3$$

The map α is always an embedding.

 AdS_3 = Lorentz space-form of constant curvature -1.

- $Iso_0(AdS_3) = PSL_2(\mathbb{R}) \times PSL_2(\mathbb{R}).$
- Space-like planes of AdS_3 are isometric to \mathbb{H}^2 .
- A notion of angle between space-like planes is defined. The angle is a number in [0, +∞).

Given a hyperbolic metric *h* on *S* and a measured geodesic lamination λ , the bending of *S* into AdS_3 can be defined

$$\alpha: \tilde{S} \to AdS_3$$

The map α is always an embedding.

THM (Mess)

Let λ be a measured geodesic lamination on *S*. For any hyperbolic metric h, let $(\rho_l, \rho_r) : \pi_1(S) \to \text{Isom}(\text{AdS}_3)$ be the holonomy of the bending map $\alpha(h, \lambda)$. Then ρ_l and ρ_r are Fuchsian representations and

$$\mathbb{H}^2/\rho_l = E_{\lambda}^r(h) \qquad \mathbb{H}^2/\rho_r = E_{\lambda}^l(h)$$

Given a (hyperbolic) metric *h* on *S*, ∇ = Levi Civita connection of *h*. A Codazzi operator *b* : *TS* \rightarrow *TS* is a solution of Codazzi equation:

$$d^{\nabla}b = 0$$
, where $(d^{\nabla}b)(v, w) = \nabla_v(bw) - \nabla_w(bv) - b[v, w]$.

- The shape operators of surfaces in 3 Riemann manifolds are examples of Codazzi operators.
- If b is a non degenerate Codazzi tensor, then the curvature of h(b, b) is simply -K_h/ det b.

Given a (hyperbolic) metric *h* on *S*, ∇ = Levi Civita connection of *h*. A Codazzi operator *b* : *TS* \rightarrow *TS* is a solution of Codazzi equation:

$$d^{\nabla}b = 0$$
, where $(d^{\nabla}b)(v, w) = \nabla_v(bw) - \nabla_w(bv) - b[v, w]$.

- The shape operators of surfaces in 3 Riemann manifolds are examples of Codazzi operators.
- If b is a non degenerate Codazzi tensor, then the curvature of h(b, b) is simply -K_h/ det b.

Labourie operators

- A Labourie operator on a hyperbolic surface (S, h) is an operator
 b: TS → TS such that
 - b is h-self-adjoint positive operator.
 - 2 det b = 1.
 - **3** b solves the Codazzi equation for h: $d^{\nabla}b = 0$.
- If *b* is a Labourie operator, then $h^* = h(b \cdot, b \cdot)$ is hyperbolic.

THM (Labourie)

Given h, h' hyperbolic metric on S, there is a unique h-Labourie operator b on S such that h(b, b) is isotopic to h'.

 Given two hyperbolic metrics (*h*, *h*') on *S*, the Labourie operator of the pair (*h*, *h*') is the *h*-Labourie operator *b* such that *h*(*b*⋅, *b*⋅) ≅ *h*'.

-

Definition of landslides

Fix a point $[h^*] \in Teich(S)$ and $\theta \in \mathbb{R}$. Given a hyperbolic metric *h* on *S*, J= complex structure induced by *h*. $b = b(h, h^*)$ = Labourie operator of the pair (h, h^*) . Define $b_{\theta} = \cos(\theta/2)Id + \sin(\theta/2)Jb$ b_{θ} is a Codazzi operator and det $b_{\theta} = 1$. So the metric

$$L_{h^\star, heta}(h) = h(b_ heta, b_ heta)$$

is hyperbolic.

Remark

$$L_{h^{\star}, heta}$$
 is 2π -periodic in θ , and $L_{h^{\star},\pi}(h) = h^{\star}$.

Definition of landslides

Fix a point $[h^*] \in Teich(S)$ and $\theta \in \mathbb{R}$. Given a hyperbolic metric *h* on *S*, J= complex structure induced by *h*. $b = b(h, h^*)$ = Labourie operator of the pair (h, h^*) . Define $b_{\theta} = \cos(\theta/2)Id + \sin(\theta/2)Jb$ b_{θ} is a Codazzi operator and det $b_{\theta} = 1$. So the metric

$$L_{h^\star, heta}(h) = h(b_ heta, b_ heta)$$

is hyperbolic.

Remark

$$L_{h^{\star}, heta}$$
 is 2π -periodic in θ , and $L_{h^{\star},\pi}(h) = h^{\star}$.

With the notation of the previous slice,

let $b'_s = \cosh(s) ld + \sinh(s) b$.

Then the smooth grafting of *S* along (h^*, s) is the conformal structure induced by the metric

 $sgr_{h^{\star},s}(h) = h(b'_s,b'_s)$

Remark

Since det b'_s is not constant the curvature of $sgr_{h^*,s}(h)$ is not constant. Indeed it is equal to $-1/\det(b'_s)$.

< 同 > < 三 > < 三 >

Convex constant curvature surfaces in hyperbolic 3-manifolds

A K- hyperbolic immersion is an equivariant locally convex C^2 -immersion

 $\sigma:\tilde{\pmb{S}}\to\mathbb{H}^3$

such that the induced first fundamental form has constant curvature *K*. If σ is a K-hyperbolic immersion then

For K ∈ (-1,0) the shape operator B is a positive self-adjoint operator which solves Codazzi equation and such that det B = 1 + K.

The third fundamental form III = I(B, B) has constant curvature K/(1 + K).

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

Description of K- hyperbolic immersions

Prop (Labourie)

Let us fix $K \in (-1,0)$. For every pair of hyperbolic metrics h and h^* on S there is a unique K- hyperbolic immersion $\sigma_K(h, h^*) : \tilde{S} \to \mathbb{H}^3$ such that the first fundamental form I is proportional to h and the third fundamental form is proportional to h^* .

Proof.

Let *b* be the Labourie operator of (h, h^*) and define

$$I = \frac{1}{K}h$$
 $B = (1+K)^{1/2}b$

They are the embedding data of a K immersion which verifies the conditions of the theorem.

{K- hyperbolic immersions} \leftrightarrow *Teich*(*S*) \times *Teich*(*S*)

Description of *K*- hyperbolic immersions

Prop (Labourie)

Let us fix $K \in (-1,0)$. For every pair of hyperbolic metrics h and h^* on S there is a unique K- hyperbolic immersion $\sigma_K(h, h^*) : \tilde{S} \to \mathbb{H}^3$ such that the first fundamental form I is proportional to h and the third fundamental form is proportional to h^* .

Proof.

Let *b* be the Labourie operator of (h, h^*) and define

$$I = \frac{1}{K}h$$
 $B = (1 + K)^{1/2}b$

They are the embedding data of a K immersion which verifies the conditions of the theorem.

$$\{\text{K-hyperbolic immersions}\} \leftrightarrow \textit{Teich}(S) \times \textit{Teich}(S)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Convex constant curvature surfaces in AdS 3-manifolds

A κ -isometric AdS_3 immersion is an equivariant map

$$\tau: \tilde{S} \rightarrow AdS_3$$

such that the induced first metric is Riemannian of constant curvature $\kappa.$

- If τ is a $\kappa\text{-}\operatorname{AdS}$ immersion then
 - $\kappa \in (-\infty, -1]$.
 - For κ ∈ (-∞, -1) the shape operator *B* is a positive self-adjoint operator which solves Codazzi equation and such that det *B* = -κ − 1.

The third fundamental form has constant curvature $-\kappa/(\kappa+1)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Description of K- AdS immersions

Prop

Let us fix $\kappa \in (-\infty, -1)$. For every pair of hyperbolic metrics h and h^* on Teich(S) there is a unique κ - AdS embedding $\tau_{\kappa}(h, h^*) : \tilde{S} \to \mathbb{H}^3$ such that the first fundamental form I is proportional to h and the third fundamental form is proportional to h^*

 $\{\kappa$ - AdS immersions $\kappa\} \leftrightarrow Teich(S) \times Teich(S)$

The smooth grafting : a 3-dimensional characterization

Let us fix $[h^*] \in Teich(S)$ and s > 0.

Given a hyperbolic metric h let us consider the K- hyperbolic immersion

$$\sigma_{\mathcal{K}}(h,h^{\star}): \tilde{S} \to \mathbb{H}^3$$

for $K = -\cosh(s/2)^{-1}$.

For any $x \in \tilde{S}$ let $d(x) \in S^2_{\infty}$ be the final point of the ray through $\sigma_k(x)$ orthogonal to the immersion.

 $d: S \to S^2_{\infty}$ is an equivariant map, so it induces a complex structure on *S*.

Lemma

This complex structure is isomorphic to $sgr_{s,h^*}(h)$.

・ 同 ト ・ ヨ ト ・ ヨ

The smooth grafting : a 3-dimensional characterization

Let us fix $[h^*] \in Teich(S)$ and s > 0.

Given a hyperbolic metric h let us consider the K- hyperbolic immersion

$$\sigma_{\mathcal{K}}(h,h^{\star}): \tilde{S} \rightarrow \mathbb{H}^3$$

for $K = -\cosh(s/2)^{-1}$. For any $x \in \tilde{S}$ let $d(x) \in S^2_{\infty}$ be the final point of the ray through $\sigma_k(x)$ orthogonal to the immersion.

 $d: \tilde{S} \to S^2_{\infty}$ is an equivariant map, so it induces a complex structure on *S*.

Lemma

This complex structure is isomorphic to $sgr_{s,h^*}(h)$.

(*) * (*) *)

The landslide: a 3-dimensional characterization

Fix $[h^*] \in Teich(S)$, $\theta \in [0, \pi)$ and *h* a hyperbolic metric on *S*. Let us consider the κ -AdS embedding

$$au_{\kappa}(\pmb{h},\pmb{h}^{\star}): \tilde{\pmb{S}}
ightarrow \pmb{AdS}_{3}$$

for $\kappa = \cos(\theta/2)^{-1}$.

Lemma

The left and the right holonomies of $au_{\kappa}(h,b)$ are Fuchsian representations ho_l and ho_r and

$$\mathbb{H}^2/\rho_I = L_{h^*,-\theta}(h) \qquad \mathbb{H}^2/\rho_r = L_{h^*,\theta}(h).$$

・ 同 ト ・ ヨ ト ・ ヨ

Fix $[h^*] \in Teich(S)$, $\theta \in [0, \pi)$ and *h* a hyperbolic metric on *S*. Let us consider the κ -AdS embedding

$$au_\kappa(\pmb{h},\pmb{h}^\star): ilde{\pmb{\mathcal{S}}}
ightarrow extsf{AdS}_3$$

for $\kappa = \cos(\theta/2)^{-1}$.

Lemma

The left and the right holonomies of $\tau_{\kappa}(h, b)$ are Fuchsian representations ρ_l and ρ_r and

$$\mathbb{H}^2/\rho_I = L_{h^*,-\theta}(h) \qquad \mathbb{H}^2/\rho_r = L_{h^*,\theta}(h).$$

∃ → < ∃ →</p>

Earthquake flow

The earthquake deformation verifies this simple semigroup law

```
E_{t\lambda}^{\prime}\circ E_{s\lambda}^{\prime}(h)=E_{(t+s)\lambda}^{\prime}(h)
```

$Teich(S) \times ML(S)$ = trivial fiber bundle on Teich(S).

Remark

There is an \mathbb{R} -action on Teich $(S) \times \mathcal{ML}(S)$ defined by

$$E_t(h,\lambda) = \begin{cases} (E_{t\lambda}^l(h),\lambda) & \text{if } t \ge 0\\ (E_{t\lambda}^r(h),\lambda) & \text{if } t \le 0 \end{cases}$$

A (1) > A (2) > A

The earthquake deformation verifies this simple semigroup law

```
E_{t\lambda}^{\prime}\circ E_{s\lambda}^{\prime}(h)=E_{(t+s)\lambda}^{\prime}(h)
```

 $Teich(S) \times ML(S)$ = trivial fiber bundle on Teich(S).

Remark

There is an \mathbb{R} -action on Teich $(S) \times \mathcal{ML}(S)$ defined by

$$E_t(h,\lambda) = \begin{cases} (E_{t\lambda}^l(h),\lambda) & \text{if } t \ge 0\\ (E_{t\lambda}^r(h),\lambda) & \text{if } t \le 0 \end{cases}$$

э

Flow properties of landslides

For any $\theta \in \mathbb{R}/2\pi\mathbb{Z} = S^1$ let us consider

 $L_{\theta}: \textit{Teich}(S) imes \textit{Teich}(S) o \textit{Teich}(S) imes \textit{Teich}(S)$

defined by $L_{\theta}(h, h^{\star}) = (L_{h^{\star}, \theta}(h), L_{h, \theta}(h^{\star}))$

Lemma $L_{\theta} \circ L_{\theta'} = L_{\theta+\theta'}.$ Remark

 $L_{\pi}(h,h^{\star})=(h^{\star},h).$

Proof of the flow property of the landslides

We may suppose that $h^* = h(b \cdot, b \cdot)$.

- The Labourie operator of the pair (h^*, h) is b^{-1} .
- $L_{h,\theta}(h^*) = L_{h^*,\pi+\theta}(h).$
- If h_θ = L_{h[⋆],θ}(h) then the Labourie operator of L_θ(h, h[⋆]) = (h_θ, h_{π+θ}) is b_θ⁻¹ ∘ b ∘ b_θ.

THM (Kerckhoff/Thurston/Mess)

Given [h] and [h'] in Teich(S) there exists a unique lamination λ such that

 $E_{\lambda}^{\prime}([h]) = [h^{\prime}]$

Earthquake theorem: reformulation

THM (Kerckhoff/Thurston/Mess)

Given [h] and [h'] in Teich(S) and $x \in \mathbb{R}$, there exists a unique lamination λ such that

 $E_{x}([h],\lambda)=([h'],\lambda)$

THM (B-Mondello-Schelnker)

Given [h] and [h'] in Teich(S) and $\theta \in S^1$, there exists a unique hyperbolic metric h^{*} such that

$$L_{h^\star, heta}(h)=h'$$

- Mess proved that there exists an AdS spacetime M(h, h') = S × ℝ such that H²/ρ_l = (S, h) and H²/ρ_r = (S, h').
- Barbot, Beguin, Zeghib proved that *M* contains a unique convex surface *S* of constant curvature $\kappa = -1/\cos^2(\theta/4)$.
- Let $h_+ = \frac{1}{\cos^2 \theta/4} l_S$ and $h_+^* = \frac{1}{\sin^2 \theta/4} III_S$. h_+ and h_+^* are hyerbolic metrics.
- We have $L_{h_{+}^{\star},-\theta/2}(h_{+}) = h$ and $L_{h_{+}^{\star},\theta/2}(h_{+}) = h'$.
- By the flow properties, if we put $h^* = L_{h_+,-\theta/2}(h^*_+)$ we have that $L_{h^*,\theta}(h) = h'$

- Mess proved that there exists an AdS spacetime M(h, h') = S × ℝ such that H²/ρ_I = (S, h) and H²/ρ_r = (S, h').
- Barbot, Beguin, Zeghib proved that *M* contains a unique convex surface *S* of constant curvature $\kappa = -1/\cos^2(\theta/4)$.
- Let $h_+ = \frac{1}{\cos^2 \theta/4} I_S$ and $h_+^* = \frac{1}{\sin^2 \theta/4} III_S$. h_+ and h_+^* are hyerbolic metrics.
- We have $L_{h_{+}^{\star},-\theta/2}(h_{+}) = h$ and $L_{h_{+}^{\star},\theta/2}(h_{+}) = h'$.
- By the flow properties, if we put $h^* = L_{h_+,-\theta/2}(h^*_+)$ we have that $L_{h^*,\theta}(h) = h'$

- Mess proved that there exists an AdS spacetime M(h, h') = S × ℝ such that H²/ρ_I = (S, h) and H²/ρ_r = (S, h').
- Barbot, Beguin, Zeghib proved that *M* contains a unique convex surface *S* of constant curvature $\kappa = -1/\cos^2(\theta/4)$.
- Let $h_+ = \frac{1}{\cos^2 \theta/4} I_S$ and $h_+^* = \frac{1}{\sin^2 \theta/4} III_S$. h_+ and h_+^* are hyerbolic metrics.
- We have $L_{h_{+}^{\star},-\theta/2}(h_{+}) = h$ and $L_{h_{+}^{\star},\theta/2}(h_{+}) = h'$.
- By the flow properties, if we put h^{*} = L_{h+,-θ/2}(h^{*}₊) we have that L_{h^{*},θ}(h) = h'

- Mess proved that there exists an AdS spacetime M(h, h') = S × ℝ such that H²/ρ_l = (S, h) and H²/ρ_r = (S, h').
- Barbot, Beguin, Zeghib proved that *M* contains a unique convex surface *S* of constant curvature $\kappa = -1/\cos^2(\theta/4)$.
- Let $h_+ = \frac{1}{\cos^2 \theta/4} I_S$ and $h_+^* = \frac{1}{\sin^2 \theta/4} III_S$. h_+ and h_+^* are hyerbolic metrics.
- We have $L_{h_{+}^{\star},- heta/2}(h_{+}) = h$ and $L_{h_{+}^{\star}, heta/2}(h_{+}) = h'$.
- By the flow properties, if we put h^{*} = L_{h+,-θ/2}(h^{*}₊) we have that L_{h^{*},θ}(h) = h'

- Mess proved that there exists an AdS spacetime M(h, h') = S × ℝ such that H²/ρ_I = (S, h) and H²/ρ_r = (S, h').
- Barbot, Beguin, Zeghib proved that *M* contains a unique convex surface *S* of constant curvature $\kappa = -1/\cos^2(\theta/4)$.
- Let $h_+ = \frac{1}{\cos^2 \theta/4} I_S$ and $h_+^* = \frac{1}{\sin^2 \theta/4} III_S$. h_+ and h_+^* are hyerbolic metrics.
- We have $L_{h_{+}^{\star},- heta/2}(h_{+}) = h$ and $L_{h_{+}^{\star}, heta/2}(h_{+}) = h'$.
- By the flow properties, if we put $h^* = L_{h_+,-\theta/2}(h^*_+)$ we have that $L_{h^*,\theta}(h) = h'$

THM (McMullen)

Fix a hyperbolic surface h and a measured geodesic lamination λ . If \mathbb{H} denotes the upper half plane of \mathbb{C} , the map

$${\it E_c}(h,\lambda): \mathbb{H}
i z = t + {\it is} \mapsto gr_{s\lambda}({\it E_{t\lambda}^r}(h)) \in {\it Teich}(S)$$

is holomorphic.

If we put gr_s : $Teich(S) \times ML(S) \ni (h, \lambda) \mapsto gr_{s\lambda}(h) \in Teich(S)$,we can write

$$E_c(h,\lambda)(z) = gr_s \circ E_{-t}(h,\lambda)$$

・ 同 ト ・ ヨ ト ・ ヨ

Complex landslides

Let us fix two hyperbolic metrics h and h^* on S.

THM (B-Mondello-Schlenker)Let us put $L_{\theta}(h, h^{\star}) = (h_{\theta}, h_{\theta}^{\star})$ The map $L_{C}(h, h^{\star}) : S^{1} \times [0, +\infty) \ni \theta + is \mapsto sgr_{h_{-\theta}^{\star},s}(h_{-\theta}) \in Teich(S)$

is a holomorphic embedding.

- If we put $sgr_s(h, h^*) = sgr_{s,h^*}(h)$ we have $L_C(h, h^*)(\theta + is) = sgr_s \circ L_{-\theta}(h, h^*)$.
- Notice that $L_C(L_{\theta_0}(h, h^*))(\theta + is) = L_C(h, h^*)((\theta \theta_0) + is).$

Complex landslides

Let us fix two hyperbolic metrics h and h^* on S.

THM (B-Mondello-Schlenker) Let us put $L_{\theta}(h, h^{\star}) = (h_{\theta}, h_{\theta}^{\star})$ The map $L_{C}(h, h^{\star}) : S^{1} \times [0, +\infty) \ni \theta + is \mapsto sgr_{h_{-\theta}^{\star}, s}(h_{-\theta}) \in Teich(S)$

is a holomorphic embedding.

- If we put $sgr_s(h, h^*) = sgr_{s,h^*}(h)$ we have $L_C(h, h^*)(\theta + is) = sgr_s \circ L_{-\theta}(h, h^*)$.
- Notice that $L_C(L_{\theta_0}(h, h^*))(\theta + is) = L_C(h, h^*)((\theta \theta_0) + is).$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Earthquakes and grafting as limit of landslides and smooth grafting

THM (B-Mondello-Schlenker)

Let h_n^* be a diverging sequence in Teichmuller space converging to a point $[\lambda]$ in the Thurston boundary of Teich(S). Take $\theta_n \to 0$ such that $\theta_n \ell_{h_n^*}(\gamma) \to \iota(\lambda, \gamma)$ for every $\gamma \in \pi_1(S)$ Then

 $L_{h_n^\star,\theta_n}(h) \to E_{\lambda/2}^l(h) \qquad sgr_{h_n^\star,\theta_n}(h) \to gr_{\lambda/2}(h)$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Convergence of constant curvature surfaces to bent surfaces

- Let h_n^{*} be a sequence of hyperbolic metrics converging to a point $[\lambda] \in \mathcal{PML}(\mathcal{S}) = \partial \mathcal{T}.$
- Take $\theta_n \to 0$ such $\theta_n \ell_{h_n^*}(\gamma) \to \iota(\lambda, c)$ for every $\gamma \in \pi_1(S)$
- Define $k_n = -1 + \theta_n^2/2$ and $\kappa_n = -1 \theta_n^2/2$. Then
 - $\sigma_{k_n}(h, h_n^{\star}): \tilde{S} \to \mathbb{H}^3$ converges to the bending map $\beta(h, \lambda)$.
 - $\tau_{\kappa_n}(h, h_n^{\star}) : \tilde{S} \to AdS_3$ converges to the bending map $\alpha(h, \lambda)$.

B N 4 B N

Degeneration of distance on a couple of normalized metrics

THM (B-Mondello-Schlenker)

Take a diverging sequence of Labourie operatrs b_n such that $h_n^* = h(b_n, b_n)$ converges to $[\lambda]$ and take $\theta_n \to 0$ as above. Then, for any arc c transverse to the h-realization of λ , the h_n^* -length of c rescaled by θ_n converges to the intersection of c with the h-realization of the lamination λ .

∃ → < ∃ →</p>

Definition of the center

Notice that $S^1 \times [0, +\infty) \cong \Delta^*$. Given h, h^* we have defined

$$L_{C}(h, h^{\star}) : \Delta^{*} \rightarrow \textit{Teich}(S)$$

Lemma

The map $CL(h, h^*)$ extends to 0.

The center of h, h^* is the point $c(h, h^*) = CL(h, h^*)(0)$.

Remark

The center is fixed by the S^1 -action:

```
c(L_{\theta}(h,h^{\star}))=c(h,h^{\star}).
```

< 同 > < 三 > < 三 >

A 2-dimensional characterization

The point $c = c(h, h^*)$ is characterized by the property that the Hopf differential of the harmonic maps

$$(\mathcal{S}, \mathcal{c})
ightarrow (\mathcal{S}, h) \qquad (\mathcal{S}, \mathcal{c})
ightarrow (\mathcal{S}, h^{\star})$$

are opposite.

A 3-dimensional characterization

The point $c = c(h, h^*)$ represents the conformal class of the second fundamental form of the AdS immersion $\tau_k(h, h^*)$.

A B > A B >

The lanslide flow is conjugated to the S^1 -flow on T^*T

Given a point $c \in Teich(S)$ and a quadratic differential $\phi \in T^*(Teich(S))$ we denote by $h(c, \phi)$ the hyperbolic metric on S such that the Hopf differential of the harmonic map $(S, c) \to (S, h(c, \phi))$ is ϕ $[h(c, \phi)$ is well defined by a result of Wolf]

Prop

The map

$$\mathcal{T}^*(\mathit{Teich}(\mathcal{S}))
i (\mathcal{c}, \phi)
ightarrow (\mathit{h}(\mathcal{c}, -\phi), \mathit{h}(\mathcal{c}, \phi)) \in \mathit{Teich}(\mathcal{S}) imes \mathit{Teich}(\mathcal{S})$$

is a diffeomrophism conjugating the S^1 -landslide action on Teich(S) × Teich(S) with the natural S^1 action on $T^*(Teich(S))$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The S^1 action on $T^*Teich(S)$ extends to a $SL_2(\mathbb{R})$ -action. Consider the unipotent subrgoup $U(2) \cong \mathbb{R}$ in $SL_2(\mathbb{R})$. The restriction of the action of U(2) on $T^*Teich(S)$ is called the unipotent flow.

THM (Mirzakhani)

The unipotent flow on T^* Teich(S) is measurably conjugated to the earthquake flow on Teich(S) $\times ML(S)$.

∃ → < ∃ →</p>

Consider on $Teich(S) \times Teich(S)$ the symplectic form $\omega = \omega_{WP} \oplus \omega_{WP}$. Let $E : Teich(S) \times Teich(S) \rightarrow \mathbb{R}$ be the function

 $E(h, h^*) =$ energy of the harmonic map $(S, c) \rightarrow (S, h)$

Prop

 L_{θ} is the Hamiltonian flow of E.

Prop

For any h^* fixed, the function $E(\cdot, h^*)$ is strictly convex on WP geodesics.

∃ → ∢

< A >