
Maurizio Cornalba

Cohomology of moduli spaces
of stable n-pointed curves

Especially in low genus or low degree

Emphasis: elementary,
algebro-geometric methods

Everything /C
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A smooth n-pointed curve of genus g

pts. pi distinct, numbered.

Mg,n parametrizes isomorphism classes of such
objects (for 2g − 2 + n > 0).

Mg,n is: connected, quasi-projective orbifold of
dimC 3g − 3 + n.
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A stable 3-pointed curve C of genus 5 (two pictures)

p2p1
p3

genus 1genus 0 genus 2

p2
p1 p3

Stable, n-pointed means:

- reduced, connected, nodal
- n numbered, distinct, smooth points
- stability: 2gv − 2 + lv > 0,∀v
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and its graph:

vertices: components of normalization of C
edges: nodes of C
legs: marked points

∀ vertex v:
- gv = genus of component
- lv = # of half-edges (legs included) stemming from v

genus of C =
∑
gv + # edges − # vertices + 1
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Mg,n = isomorphism classes of stable, genus g, n-
pointed curves

Mg,n is a connected, projective orbifold, Mg,n dense
Zariski open. ∂Mg,n = Mg,n \Mg,n

Goal: compute rational cohomology of Mg,n

Mg,n complete orbifold implies:

- Poincaré duality holds
- Hk(Mg,n) has pure Hodge structure of weight k
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What we know on Hk(Mg,n)
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Building blocks of Mg,n

Γ connected stable graph of genus g with n legs

ξΓ : XΓ =
∏
Mgv,lv → Mg,n

(identify points corresponding to halves of same edge)

- ξΓ is finite
- dim(LHS) = 3g − 3 + n− # edges
- restriction to

∏
Mgv,lv of ξΓ is quotient by Aut(Γ);

image M(Γ) is an orbifold

Topological stratification: Mg,n =
∐

M(Γ)
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Components of ∂Mg,n = closed strata M(Γ) s.t. Γ
has 1 edge

Types of such Γ:

- Γirr g-1

- Γa,A = Γb,B , (a+ b = g, A
∐
B = {1, . . . , n})

} ba }BA

8 M. Cornalba, slides of ICM98 talk



Use of building blocks – Strategy A

Spectral sequence of cohomology with compact sup-
port:

Ep,q
2 =

⊕
Γ has q edges

Hp+q
c (M(Γ))

Consequence

χ(Mg,n) =
∑
χ(M(Γ))

Same for Serre characteristics (Euler char. of H∗
c (−)

in Grothendieck group of mixed Hodge structures)

NB. Hk(Mg,n) pure ∀k implies: if Serre characteristic
known then Hodge numbers known
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Applications:

- generating function for Serre characteristics of M1,n

(Getzler ’96);
- Serre characteristic of M2,n, n ≤ 3 (Getzler ’98);

(both using modular operads)
- generating function for χ(M2,n) (Bini, Gaiffi, Polito

’98)
NB. Harer (’98): recursive computation of χ(Mg,n)
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Example: χ(M1,n) (following Bini et al.)
Goal: compute K1(t) =

∑
χ(M1,n)tn/n!

Graph patterns in genus 1:

a)

b) (“necklace”)

(solid dot: genus 0; hollow dot: genus 1)
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Γ pattern a) graph; Aut(Γ) always trivial.

χ(M(Γ)) = χ(M1,m)
h∏

i=1

χ(M(Γi))

- Γi stable, genus 0, (ki + 1)-pointed;
- h ≤ m;
- n = m− h+

∑
ki

Contribution of all these Γ
∑

χ(M1,m)Am/m!,
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A(t) = t+
∑

n≥2,G

χ(M(G))
tn

n!
,

(sum over all stable (n+ 1)-pointed genus 0 graphs G)
Recursion for A:

A = t+
∑
n≥2

χ(M0,n+1)
An

n!

χ(M0,n+1) = (−1)n(n− 2)!

(M0,n+1 → M0,n fibration; fiber P
1 minus n points)

χ(M1,1) = χ(M1,2) = 1; χ(M1,3) = χ(M1,4) = 0;
χ(M1,5) = −2
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M1,n+1 → M1,n fibration for n ≥ 5 =⇒
χ(M1,n) = (−1)n(n− 1)!/12 , n ≥ 4

Similar argument for pattern b), but # Aut(Γ) = 2
when “necklace” consists of 1 or 2 edges. Final result:

K1(t) =
19
12
A+

23
24
A2 +

5
18
A3 +

1
24
A4−

1
12

log(1 +A) − 1
2

log(1 − log(1 +A))

n 1 2 3 · · ·
χ(M1,n) 2 4 12 · · ·

Serre chars.: calculating those of Mg,n is hard
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Use of building blocks – Strategy B
(Arbarello – M.C. ’98)

Basic result (Harer ’86)
Coho. dimension of Mg,n for constructible sheaves is:

≤ n− 3 g = 0
≤ 4g − 5 n = 0
≤ 4g − 4 + n otherwise

(Check: Mg,n affine for g = 0, 1 or g = 2, n = 0; in
this case bound is dimC Mg,n)

Challenge: prove this algebro-geometrically
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Corollary.

Hk(Mg,n) ↪→ Hk(∂Mg,n)

if k ≤ d(g, n) =



n− 4 g = 0
2g − 2 n = 0
2g − 3 + n otherwise

XΓ → Mg,n ; X =
∐

Γ has 1 edge

XΓ

ξ
−→ Mg,n

Corollary. If k ≤ d(g, n)

ξ∗ : Hk(Mg,n) ↪→
⊕

Γ has 1 edge

Hk(XΓ)
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Pf.
Wk−1(Hk(∂Mg,n)) = ker(Hk(∂Mg,n) →

⊕
Hk(XΓ)).

If ξ∗(α) = 0, α maps to Wk−1(Hk(∂Mg,n)), hence
α ∈Wk−1H

k(Mg,n) = 0 by strictness (ρ injective).

Theorem. Hk(Mg,n) = 0, k = 1, 3, 5, ∀g, n.

(NB: Mg,n is known to be simply connected)

Pf. Induction on k, g, n. XΓ product of Mγ,ν s.t. γ <
g or γ = g, ν < n. Enough to do finite # of cases s.t.
k > d(g, n), i.e.,

- for k = 1: M0,3 = point, M0,4 = P
1, M1,1 = P

1;
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- for k = 3, 5 all initial cases doable “by hand” save:
- M1,5, M2,2, M2,3, covered by Getzler’s results
- M3, M3,1 can be deduced from knowledge (Looi-

jenga ’93) of cohomology of M3,M3,1.
Examples: M2, M2,1 dominated by M0,6, M0,7,
h3(M1,3) = 2−2h1(M1,3)+2h2(M1,3)−χ(M1,3) = 0
since h2(M1,3) = 5.

NB: method works for odd cohomology, if one can
handle initial cases

Upper limit of applicability k = 9 (H11(M1,11) = 0)

Question: Hk(Mg,n) = 0 for k = 7, 9 and all g, n?
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Computing H2(Mg,n)

π : Mg,n+1 → Mg,n

(forget last pt.). Section σi:

1
i n

1
Pn+1 i

1
n

Di = divisor on Mg,n+1 corresponding to σi

κa = π∗(Ka+1) ∈ H2a(Mg,n) ; K = c1(ωπ(
∑
Di))

ψi = c1(σ∗
i (ωπ)) ∈ H2(Mg,n)
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δΓ = orbifold fundamental class of M(Γ).
δΓ ∈ H2l(Mg,n), where l = #edges of Γ

Theorem. (Harer, essentially) H2(Mg,n) generated
by κ1, ψi’s, δΓ’s, Γ with 1 edge (natural classes). No
relations if g ≥ 3, explicit relations if g < 3.

Strategy of inductive pf. (Arbarello-M.C.):
a) direct check for 2 > d(g, n)
b) 2 ≤ d(g, n): supp. result known for Mγ,ν , γ < g or

γ = g, ν < n.
α ∈ H2(Mg,n)
αΓ = ξ∗Γ(α) (Γ with 1 edge). Then:
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i) αΓ is natural
(induction hypothesis)

ii) pullbacks of αΓ, αΓ′ to XΓ ×Mg,n
XΓ′ are equal

iii) explicit formulas for pullbacks of natural classes
via maps ξΓ

Using iii), linear algebra shows that all collections βΓ

of classes satisfying compatibility ii) come from a nat-
ural class β ∈ H2(Mg,n). Conclusion by injectivity
of

H2(Mg,n) →
⊕

Γ has 1 edge

H2(XΓ)
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A sample compatibility computation

Theorem. ξ∗irr : Hk(Mg,n) → Hk(Mg−1,n+2)
is injective if k ≤ min(2g − 2, g + 5)

Toy case: k = 2, g = 3, n = 0
ξ∗irr(x) = 0. Must show that ξ∗Γ(x) = 0 for all other Γ
with one edge. There is only G = Γ1,∅

M1,3 ×M1,1 w

u

α

M2,2

u

ξirr

M2,1 ×M1,1 w

ξG M3
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ξ∗G(x) = (y, z), 0 = α∗(y, z) = (y′, z), hence z = 0.
Same argument shows that y = 0.
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Hk(Mg,n) for higher even k

Problems:
1. Do initial cases of induction (OK for k = 4)
2. Do linear algebra.

New hurdle: relations among natural classes not
fully known, even for k = 4. New relations in degree
4 recently discovered by Getzler and
Belorousski-Pandharipande.
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A list of wishes

1. Compute H4(Mg,n); show it is generated by natu-
ral classes and find all relations among these.

2. Decide whether Hk(Mg,n) is zero for k = 7, 9.
3. Prove Harer’s bound on the cohomological dimen-

sion of Mg,n algebro-geometrically.
4. Understand conceptually why natural classes on

boundary components of Mg,n which patch to-
gether come from a natural class on Mg,n.

5. Decide whether the even cohomology of Mg,n con-
sists entirely of natural classes.

6. . . .
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