Cohomology of moduli spaces OF STABLE n-POINTED CURVES

Especially in low genus or low degree
Emphasis: elementary, algebro-geometric methods

Everything / \mathbb{C}

A smooth n-pointed curve of genus g

pts. p_{i} distinct, numbered.
$\mathcal{M}_{g, n}$ parametrizes isomorphism classes of such objects (for $2 g-2+n>0$).
$\mathcal{M}_{g, n}$ is: connected, quasi-projective orbifold of $\operatorname{dim}_{\mathbb{C}} 3 g-3+n$.

A stable 3 -pointed curve C of genus 5 (two pictures)

Stable, n-pointed means:

- reduced, connected, nodal
- n numbered, distinct, smooth points
- stability: $2 g_{v}-2+l_{v}>0, \forall v$
and its graph:

vertices: components of normalization of C edges: nodes of C
legs: marked points
\forall vertex v :
- $g_{v}=$ genus of component
- $l_{v}=\#$ of half-edges (legs included) stemming from v
genus of $C=\sum g_{v}+\#$ edges $-\#$ vertices +1
$\overline{\mathcal{M}}_{g, n}=$ isomorphism classes of stable, genus g, n pointed curves
$\overline{\mathcal{M}}_{g, n}$ is a connected, projective orbifold, $\mathcal{M}_{g, n}$ dense Zariski open. $\partial \mathcal{M}_{g, n}=\overline{\mathcal{M}}_{g, n} \backslash \mathcal{M}_{g, n}$

Goal: compute rational cohomology of $\overline{\mathcal{M}}_{g, n}$
$\overline{\mathcal{M}}_{g, n}$ complete orbifold implies:

- Poincaré duality holds
- $H^{k}\left(\overline{\mathcal{M}}_{g, n}\right)$ has pure Hodge structure of weight k

What we know on $H^{k}\left(\overline{\mathcal{M}}_{g, n}\right)$

Building blocks of $\overline{\mathcal{M}}_{g, n}$

Γ connected stable graph of genus g with n legs

$$
\xi_{\Gamma}: X_{\Gamma}=\prod \overline{\mathcal{M}}_{g_{v}, l_{v}} \rightarrow \overline{\mathcal{M}}_{g, n}
$$

(identify points corresponding to halves of same edge)

- ξ_{Γ} is finite
- $\operatorname{dim}(L H S)=3 g-3+n-\#$ edges
- restriction to $\prod \mathcal{M}_{g_{v}, l_{v}}$ of ξ_{Γ} is quotient by $\operatorname{Aut}(\Gamma)$; image $\mathcal{M}(\Gamma)$ is an orbifold

Topological stratification:

$$
\overline{\mathcal{M}}_{g, n}=\coprod \mathcal{M}(\Gamma)
$$

Components of $\partial \mathcal{M}_{g, n}=$ closed strata $\overline{\mathcal{M}(\Gamma)}$ s.t. Γ has 1 edge

Types of such Γ :
$-\Gamma_{i r r}$

- $\Gamma_{a, A}=\Gamma_{b, B}, \quad(a+b=g, \quad A \coprod B=\{1, \ldots, n\})$
$\mathrm{A}\{\mathrm{a}$ b b$\} \mathrm{B}$

Use of building blocks - Strategy A

Spectral sequence of cohomology with compact support:

$$
E_{2}^{p, q}=\bigoplus_{\Gamma \text { has } q \text { edges }} H_{c}^{p+q}(\mathcal{M}(\Gamma))
$$

Consequence

$$
\chi\left(\overline{\mathcal{M}}_{g, n}\right)=\sum \chi(\mathcal{M}(\Gamma))
$$

Same for Serre characteristics (Euler char. of $H_{c}^{*}(-)$ in Grothendieck group of mixed Hodge structures)
NB. $H^{k}\left(\overline{\mathcal{M}}_{g, n}\right)$ pure $\forall k$ implies: if Serre characteristic known then Hodge numbers known

Applications:

- generating function for Serre characteristics of $\overline{\mathcal{M}}_{1, n}$ (Getzler '96);
- Serre characteristic of $\overline{\mathcal{M}}_{2, n}, n \leq 3$ (Getzler '98); (both using modular operads)
- generating function for $\chi\left(\overline{\mathcal{M}}_{2, n}\right)$ (Bini, Gaiffi, Polito '98)
NB. Harer ('98): recursive computation of $\chi\left(\overline{\mathcal{M}}_{g, n}\right)$

Example: $\chi\left(\overline{\mathcal{M}}_{1, n}\right)$ (following Bini et al.)

Goal: compute $K_{1}(t)=\sum \chi\left(\overline{\mathcal{M}}_{1, n}\right) t^{n} / n$!
Graph patterns in genus 1:
a)

b) ("necklace")

(solid dot: genus 0 ; hollow dot: genus 1)
Γ pattern a) graph; $\operatorname{Aut}(\Gamma)$ always trivial.

$$
\chi(\mathcal{M}(\Gamma))=\chi\left(\mathcal{M}_{1, m}\right) \prod_{i=1}^{h} \chi\left(\mathcal{M}\left(\Gamma_{i}\right)\right)
$$

- Γ_{i} stable, genus $0,\left(k_{i}+1\right)$-pointed;
- $h \leq m$;
- $n=m-h+\sum k_{i}$

Contribution of all these Γ

$$
\sum \chi\left(\mathcal{M}_{1, m}\right) A^{m} / m!
$$

$$
A(t)=t+\sum_{n \geq 2, G} \chi(\mathcal{M}(G)) \frac{t^{n}}{n!}
$$

(sum over all stable ($n+1$)-pointed genus 0 graphs G) Recursion for A :

$$
\begin{aligned}
& A=t+\sum_{n \geq 2} \chi\left(\mathcal{M}_{0, n+1}\right) \frac{A^{n}}{n!} \\
& \chi\left(\mathcal{M}_{0, n+1}\right)=(-1)^{n}(n-2)!
\end{aligned}
$$

$\left(\mathcal{M}_{0, n+1} \rightarrow \mathcal{M}_{0, n}\right.$ fibration; fiber \mathbb{P}^{1} minus n points $)$

$$
\begin{aligned}
& \chi\left(\mathcal{M}_{1,1}\right)=\chi\left(\mathcal{M}_{1,2}\right)=1 ; \quad \chi\left(\mathcal{M}_{1,3}\right)=\chi\left(\mathcal{M}_{1,4}\right)=0 ; \\
& \chi\left(\mathcal{M}_{1,5}\right)=-2
\end{aligned}
$$

$\mathcal{M}_{1, n+1} \rightarrow \mathcal{M}_{1, n}$ fibration for $n \geq 5 \Longrightarrow$

$$
\chi\left(\mathcal{M}_{1, n}\right)=(-1)^{n}(n-1)!/ 12, \quad n \geq 4
$$

Similar argument for pattern b), but $\# \operatorname{Aut}(\Gamma)=2$ when "necklace" consists of 1 or 2 edges. Final result:

$$
\begin{aligned}
& \quad K_{1}(t)=\frac{19}{12} A+\frac{23}{24} A^{2}+\frac{5}{18} A^{3}+\frac{1}{24} A^{4}- \\
& \frac{1}{12} \log (1+A)-\frac{1}{2} \log (1-\log (1+ \\
& n\left(\overline{\mathcal{M}}_{1, n}\right)
\end{aligned} \quad \begin{array}{rrrl}
1 & 2 & 3 & \cdots
\end{array}
$$

$$
\frac{1}{12} \log (1+A)-\frac{1}{2} \log (1-\log (1+A))
$$

Serre chars.: calculating those of $\mathcal{M}_{g, n}$ is hard

Use of building blocks - Strategy B

(Arbarello - M.C. '98)
Basic result (Harer '86)
Coho. dimension of $\mathcal{M}_{g, n}$ for constructible sheaves is:

$$
\begin{array}{ll}
\leq n-3 & g=0 \\
\leq 4 g-5 & n=0 \\
\leq 4 g-4+n & \text { otherwise }
\end{array}
$$

(Check: $\mathcal{M}_{g, n}$ affine for $g=0,1$ or $g=2, n=0$; in this case bound is $\operatorname{dim}_{\mathbb{C}} \mathcal{M}_{g, n}$)
Challenge: prove this algebro-geometrically

Corollary.

$$
\begin{gathered}
H^{k}\left(\overline{\mathcal{M}}_{g, n}\right) \hookrightarrow H^{k}\left(\partial \mathcal{M}_{g, n}\right) \\
\text { if } k \leq d(g, n)= \begin{cases}n-4 & g=0 \\
2 g-2 & n=0 \\
2 g-3+n & \text { otherwise }\end{cases}
\end{gathered}
$$

$$
X_{\Gamma} \rightarrow \overline{\mathcal{M}}_{g, n} ; \quad X \underset{\Gamma \text { has } 1 \text { edge }}{=\coprod_{\Gamma}} \xrightarrow{\xi} \overline{\mathcal{M}}_{g, n}
$$

Corollary. If $k \leq d(g, n)$

$$
\xi^{*}: H^{k}\left(\overline{\mathcal{M}}_{g, n}\right) \hookrightarrow \underset{\Gamma \text { has } 1 \text { edge }}{\hookrightarrow} H^{k}\left(X_{\Gamma}\right)
$$

16

Pf.
$W_{k-1}\left(H^{k}\left(\partial \mathcal{M}_{g, n}\right)\right)=\operatorname{ker}\left(H^{k}\left(\partial \mathcal{M}_{g, n}\right) \rightarrow \bigoplus H^{k}\left(X_{\Gamma}\right)\right)$. If $\xi^{*}(\alpha)=0, \alpha$ maps to $W_{k-1}\left(H^{k}\left(\partial \mathcal{M}_{g, n}\right)\right)$, hence $\alpha \in W_{k-1} H^{k}\left(\overline{\mathcal{M}}_{g, n}\right)=0$ by strictness (ρ injective).

Theorem. $H^{k}\left(\overline{\mathcal{M}}_{g, n}\right)=0, k=1,3,5, \forall g, n$.
(NB: $\overline{\mathcal{M}}_{g, n}$ is known to be simply connected)
Pf. Induction on k, g, n. X_{Γ} product of $\overline{\mathcal{M}}_{\gamma, \nu}$ s.t. $\gamma<$ g or $\gamma=g, \nu<n$. Enough to do finite \# of cases s.t. $k>d(g, n)$, i.e.,

- for $k=1: \overline{\mathcal{M}}_{0,3}=$ point, $\overline{\mathcal{M}}_{0,4}=\mathbb{P}^{1}, \overline{\mathcal{M}}_{1,1}=\mathbb{P}^{1}$;
- for $k=3,5$ all initial cases doable "by hand" save:
- $\overline{\mathcal{M}}_{1,5}, \overline{\mathcal{M}}_{2,2}, \overline{\mathcal{M}}_{2,3}$, covered by Getzler's results
- $\overline{\mathcal{M}}_{3}, \overline{\mathcal{M}}_{3,1}$ can be deduced from knowledge (Looijenga '93) of cohomology of $\mathcal{M}_{3}, \mathcal{M}_{3,1}$.
Examples: $\overline{\mathcal{M}}_{2}, \overline{\mathcal{M}}_{2,1}$ dominated by $\overline{\mathcal{M}}_{0,6}, \overline{\mathcal{M}}_{0,7}$, $h^{3}\left(\overline{\mathcal{M}}_{1,3}\right)=2-2 h^{1}\left(\overline{\mathcal{M}}_{1,3}\right)+2 h^{2}\left(\overline{\mathcal{M}}_{1,3}\right)-\chi\left(\overline{\mathcal{M}}_{1,3}\right)=0$ since $h^{2}\left(\overline{\mathcal{M}}_{1,3}\right)=5$.

NB: method works for odd cohomology, if one can handle initial cases

Upper limit of applicability $k=9\left(H^{11}\left(\overline{\mathcal{M}}_{1,11}\right) \neq 0\right)$
Question: $H^{k}\left(\overline{\mathcal{M}}_{g, n}\right)=0$ for $k=7,9$ and all g, n ?

Computing $H^{2}\left(\overline{\mathcal{M}}_{g, n}\right)$

$$
\pi: \overline{\mathcal{M}}_{g, n+1} \rightarrow \overline{\mathcal{M}}_{g, n}
$$

(forget last pt.). Section σ_{i} :

$D_{i}=$ divisor on $\overline{\mathcal{M}}_{g, n+1}$ corresponding to σ_{i}
$\kappa_{a}=\pi_{*}\left(K^{a+1}\right) \in H^{2 a}\left(\overline{\mathcal{M}}_{g, n}\right) ; \quad K=c_{1}\left(\omega_{\pi}\left(\sum D_{i}\right)\right)$
$\psi_{i}=c_{1}\left(\sigma_{i}^{*}\left(\omega_{\pi}\right)\right) \in H^{2}\left(\overline{\mathcal{M}}_{g, n}\right)$
$\delta_{\Gamma}=$ orbifold fundamental class of $\overline{\mathcal{M}(\Gamma)}$. $\delta_{\Gamma} \in H^{2 l}\left(\overline{\mathcal{M}}_{g, n}\right)$, where $l=\#$ edges of Γ
Theorem. (Harer, essentially) $H^{2}\left(\overline{\mathcal{M}}_{g, n}\right)$ generated by κ_{1}, ψ_{i} 's, δ_{Γ} 's, Γ with 1 edge (natural classes). No relations if $g \geq 3$, explicit relations if $g<3$.

Strategy of inductive pf. (Arbarello-M.C.):
a) direct check for $2>d(g, n)$
b) $2 \leq d(g, n)$: supp. result known for $\overline{\mathcal{M}}_{\gamma, \nu}, \gamma<g$ or $\gamma=g, \nu<n$.
$\alpha \in H^{2}\left(\overline{\mathcal{M}}_{g, n}\right)$
$\alpha_{\Gamma}=\xi_{\Gamma}^{*}(\alpha)$ (Γ with 1 edge). Then:
i) α_{Γ} is natural (induction hypothesis)
ii) pullbacks of $\alpha_{\Gamma}, \alpha_{\Gamma^{\prime}}$ to $X_{\Gamma} \times \overline{\mathcal{M}}_{g, n} X_{\Gamma^{\prime}}$ are equal
iii) explicit formulas for pullbacks of natural classes via maps ξ_{Γ}

Using iii), linear algebra shows that all collections β_{Γ} of classes satisfying compatibility ii) come from a natural class $\beta \in H^{2}\left(\overline{\mathcal{M}}_{g, n}\right)$. Conclusion by injectivity of

$$
H^{2}\left(\overline{\mathcal{M}}_{g, n}\right) \rightarrow \bigoplus_{\Gamma \text { has } 1 \text { edge }}^{\rightarrow} H^{2}\left(X_{\Gamma}\right)
$$

A sample compatibility computation

Theorem. $\quad \xi_{i r r}^{*}: H^{k}\left(\overline{\mathcal{M}}_{g, n}\right) \rightarrow H^{k}\left(\overline{\mathcal{M}}_{g-1, n+2}\right)$
is injective if $k \leq \min (2 g-2, g+5)$
Toy case: $k=2, g=3, n=0$
$\xi_{i r r}^{*}(x)=0$. Must show that $\xi_{\Gamma}^{*}(x)=0$ for all other Γ with one edge. There is only $G=\Gamma_{1, \emptyset}$

$$
\begin{aligned}
\overline{\mathcal{M}}_{1,3} & \times \overline{\mathcal{M}}_{1,1} \\
\quad \alpha & \downarrow \\
\overline{\mathcal{M}}_{2,1} & \times \overline{\mathcal{M}}_{2,2} \\
& \xi_{\text {irr }} \downarrow
\end{aligned}
$$

$\xi_{G}^{*}(x)=(y, z), 0=\alpha^{*}(y, z)=\left(y^{\prime}, z\right)$, hence $z=0$. Same argument shows that $y=0$.

$H^{k}\left(\overline{\mathcal{M}}_{g, n}\right)$ for higher even k

Problems:

1. Do initial cases of induction (OK for $k=4$)
2. Do linear algebra.

New hurdle: relations among natural classes not fully known, even for $k=4$. New relations in degree 4 recently discovered by Getzler and Belorousski-Pandharipande.

A list of wishes

1. Compute $H^{4}\left(\overline{\mathcal{M}}_{g, n}\right)$; show it is generated by natural classes and find all relations among these.
2. Decide whether $H^{k}\left(\overline{\mathcal{M}}_{g, n}\right)$ is zero for $k=7,9$.
3. Prove Harer's bound on the cohomological dimension of $\mathcal{M}_{g, n}$ algebro-geometrically.
4. Understand conceptually why natural classes on boundary components of $\overline{\mathcal{M}}_{g, n}$ which patch together come from a natural class on $\overline{\mathcal{M}}_{g, n}$.
5. Decide whether the even cohomology of $\overline{\mathcal{M}}_{g, n}$ consists entirely of natural classes.
6. ...
