Maurizio Cornalba

Cohomology of moduli spaces of stable n-pointed curves

Especially in low genus or low degree

Emphasis: elementary, algebro-geometric methods

Everything $/\mathbb{C}$

A smooth *n*-pointed curve of genus g

pts. p_i distinct, numbered.

 $\mathcal{M}_{g,n}$ parametrizes isomorphism classes of such objects (for 2g - 2 + n > 0).

 $\mathcal{M}_{g,n}$ is: connected, quasi-projective orbifold of $\dim_{\mathbb{C}} 3g - 3 + n$.

A stable 3-pointed curve C of genus 5 (two pictures)

3

Stable, *n*-pointed means:

- reduced, connected, nodal
- n numbered, distinct, smooth points
- stability: $2g_v 2 + l_v > 0, \forall v$

vertices: components of normalization of C**edges:** nodes of C**legs:** marked points

 \forall vertex v:

- $g_v = \text{genus of component}$
- $l_v = \#$ of half-edges (legs included) stemming from v

genus of $C = \sum g_v + \# \text{ edges} - \# \text{ vertices} + 1$

 $\overline{\mathcal{M}}_{g,n}$ = isomorphism classes of stable, genus g, n-pointed curves

 $\overline{\mathcal{M}}_{g,n}$ is a connected, projective orbifold, $\mathcal{M}_{g,n}$ dense Zariski open. $\partial \mathcal{M}_{g,n} = \overline{\mathcal{M}}_{g,n} \setminus \mathcal{M}_{g,n}$

Goal: compute rational cohomology of $\overline{\mathcal{M}}_{g,n}$

 $\overline{\mathcal{M}}_{g,n}$ complete orbifold implies:

- Poincaré duality holds
- $H^k(\overline{\mathcal{M}}_{g,n})$ has pure Hodge structure of weight k

What we know on $H^k(\overline{\mathcal{M}}_{g,n})$

Building blocks of $\overline{\mathcal{M}}_{g,n}$

 Γ connected stable graph of genus g with n legs

$$\xi_{\Gamma}: X_{\Gamma} = \prod \overline{\mathcal{M}}_{g_v, l_v} \to \overline{\mathcal{M}}_{g, n}$$

(identify points corresponding to halves of same edge)

- ξ_{Γ} is finite
- dim(LHS) = 3g 3 + n # edges
- restriction to $\prod \mathcal{M}_{g_v, l_v}$ of ξ_{Γ} is quotient by $\operatorname{Aut}(\Gamma)$; image $\mathcal{M}(\Gamma)$ is an orbifold

Topological stratification:

$$\overline{\mathcal{M}}_{g,n} = \coprod \mathcal{M}(\Gamma)$$

Components of $\partial \mathcal{M}_{g,n}$ = closed strata $\overline{\mathcal{M}(\Gamma)}$ s.t. Γ has 1 edge

Types of such Γ :

- Γ_{irr}

Use of building blocks – Strategy A

Spectral sequence of cohomology with compact support:

$$E_2^{p,q} = \bigoplus H_c^{p+q}(\mathcal{M}(\Gamma))$$

 Γ has q edges

Consequence

$$\chi(\overline{\mathcal{M}}_{g,n}) = \sum \chi(\mathcal{M}(\Gamma))$$

Same for Serre characteristics (Euler char. of $H_c^*(-)$ in Grothendieck group of mixed Hodge structures) NB. $H^k(\overline{\mathcal{M}}_{g,n})$ pure $\forall k$ implies: if Serre characteristic

known then Hodge numbers known

Applications:

- generating function for Serre characteristics of $\overline{\mathcal{M}}_{1,n}$ (Getzler '96);
- Serre characteristic of $\overline{\mathcal{M}}_{2,n}, n \leq 3$ (Getzler '98); (both using modular operads)
- generating function for $\chi(\overline{\mathcal{M}}_{2,n})$ (Bini, Gaiffi, Polito '98)
- NB. Harer ('98): recursive computation of $\chi(\overline{\mathcal{M}}_{g,n})$

Example: $\chi(\overline{\mathcal{M}}_{1,n})$ (following Bini et al.) Goal: compute $K_1(t) = \sum \chi(\overline{\mathcal{M}}_{1,n})t^n/n!$

Graph patterns in genus 1:

(solid dot: genus 0; hollow dot: genus 1)

 Γ pattern a) graph; Aut(Γ) always trivial.

$$\chi(\mathcal{M}(\Gamma)) = \chi(\mathcal{M}_{1,m}) \prod_{i=1}^{h} \chi(\mathcal{M}(\Gamma_i))$$

- Γ_i stable, genus 0, $(k_i + 1)$ -pointed;
- $h \leq m;$
- $n = m h + \sum k_i$

Contribution of all these Γ

$$\sum \chi(\mathcal{M}_{1,m})A^m/m!,$$

$$A(t) = t + \sum_{n \ge 2, G} \chi(\mathcal{M}(G)) \frac{t^n}{n!},$$

(sum over all stable (n + 1)-pointed genus 0 graphs G) Recursion for A:

$$A = t + \sum_{n \ge 2} \chi(\mathcal{M}_{0,n+1}) \frac{A^n}{n!}$$
$$\chi(\mathcal{M}_{0,n+1}) = (-1)^n (n-2)!$$
$$(\mathcal{M}_{0,n+1} \to \mathcal{M}_{0,n} \text{ fibration}; \text{ fiber } \mathbb{P}^1 \text{ minus } n \text{ points})$$
$$\chi(\mathcal{M}_{1,1}) = \chi(\mathcal{M}_{1,2}) = 1; \quad \chi(\mathcal{M}_{1,3}) = \chi(\mathcal{M}_{1,4}) = 0;$$
$$\chi(\mathcal{M}_{1,5}) = -2$$

$$\mathcal{M}_{1,n+1} \to \mathcal{M}_{1,n}$$
 fibration for $n \ge 5 \implies$
 $\chi(\mathcal{M}_{1,n}) = (-1)^n (n-1)!/12, \qquad n \ge 4$

Similar argument for pattern b), but $\# \operatorname{Aut}(\Gamma) = 2$ when "necklace" consists of 1 or 2 edges. Final result:

$$K_{1}(t) = \frac{19}{12}A + \frac{23}{24}A^{2} + \frac{5}{18}A^{3} + \frac{1}{24}A^{4} - \frac{1}{12}\log(1+A) - \frac{1}{2}\log(1-\log(1+A))$$

$$n \qquad 1 \quad 2 \quad 3 \quad \cdots \\ \chi(\overline{\mathcal{M}}_{1,n}) \qquad 2 \quad 4 \quad 12 \quad \cdots$$

Serre chars.: calculating those of $\mathcal{M}_{g,n}$ is hard

Use of building blocks – Strategy B (Arbarello – M.C. '98)

Basic result (Harer '86) Coho. dimension of $\mathcal{M}_{g,n}$ for constructible sheaves is:

$$\leq n - 3 \qquad g = 0 \\ \leq 4g - 5 \qquad n = 0 \\ \leq 4g - 4 + n \qquad \text{otherwise}$$

(Check: $\mathcal{M}_{g,n}$ affine for g = 0, 1 or g = 2, n = 0; in this case bound is $\dim_{\mathbb{C}} \mathcal{M}_{g,n}$)

Challenge: prove this algebro-geometrically

COROLLARY.

$$H^{k}(\overline{\mathcal{M}}_{g,n}) \hookrightarrow H^{k}(\partial \mathcal{M}_{g,n})$$

if $k \leq d(g,n) = \begin{cases} n-4 & g=0\\ 2g-2 & n=0\\ 2g-3+n & otherwise \end{cases}$

$$X_{\Gamma} \to \overline{\mathcal{M}}_{g,n} ; \qquad X = \prod_{\substack{\Gamma \text{ has } 1 \text{ edge}}} X_{\Gamma} \xrightarrow{\xi} \overline{\mathcal{M}}_{g,n}$$

COROLLARY. If $k \leq d(g, n)$
 $\xi^* : H^k(\overline{\mathcal{M}}_{g,n}) \hookrightarrow \bigoplus_{\substack{\Gamma \text{ has } 1 \text{ edge}}} H^k(X_{\Gamma})$

Pf.

 $W_{k-1}(H^k(\partial \mathcal{M}_{g,n})) = \ker(H^k(\partial \mathcal{M}_{g,n}) \to \bigoplus H^k(X_{\Gamma})).$ If $\xi^*(\alpha) = 0$, α maps to $W_{k-1}(H^k(\partial \mathcal{M}_{g,n}))$, hence $\alpha \in W_{k-1}H^k(\overline{\mathcal{M}}_{g,n}) = 0$ by strictness (ρ injective).

THEOREM.
$$H^k(\overline{\mathcal{M}}_{g,n}) = 0, \ k = 1, 3, 5, \ \forall g, n.$$

(NB: $\overline{\mathcal{M}}_{g,n}$ is known to be simply connected) *Pf.* Induction on k, g, n. X_{Γ} product of $\overline{\mathcal{M}}_{\gamma,\nu}$ s.t. $\gamma < g$ or $\gamma = g, \nu < n$. Enough to do **finite** # of cases s.t. k > d(g, n), i.e.,

- for
$$k = 1$$
: $\overline{\mathcal{M}}_{0,3} = \text{point}, \ \overline{\mathcal{M}}_{0,4} = \mathbb{P}^1, \ \overline{\mathcal{M}}_{1,1} = \mathbb{P}^1;$

NB: method works for odd cohomology, if one can handle initial cases

Upper limit of applicability $k = 9 \ (H^{11}(\overline{\mathcal{M}}_{1,11}) \neq 0)$) Qı

vestion:
$$H^k(\overline{\mathcal{M}}_{g,n}) = 0$$
 for $k = 7, 9$ and all g, n ?

Computing $H^2(\overline{\mathcal{M}}_{q,n})$

$$\pi: \overline{\mathcal{M}}_{g,n+1} \to \overline{\mathcal{M}}_{g,n}$$

(forget last pt.). Section σ_i :

 $D_{i} = \text{divisor on } \overline{\mathcal{M}}_{g,n+1} \text{ corresponding to } \sigma_{i}$ $\kappa_{a} = \pi_{*}(K^{a+1}) \in H^{2a}(\overline{\mathcal{M}}_{g,n}) ; \quad K = c_{1}(\omega_{\pi}(\sum D_{i}))$ $\psi_{i} = c_{1}(\sigma_{i}^{*}(\omega_{\pi})) \in H^{2}(\overline{\mathcal{M}}_{g,n})$ $\delta_{\Gamma} = \text{orbifold fundamental class of } \overline{\mathcal{M}(\Gamma)}.$ $\delta_{\Gamma} \in H^{2l}(\overline{\mathcal{M}}_{g,n}), \text{ where } l = \# \text{edges of } \Gamma$

THEOREM. (Harer, essentially) $H^2(\overline{\mathcal{M}}_{g,n})$ generated by κ_1 , ψ_i 's, δ_{Γ} 's, Γ with 1 edge (natural classes). No relations if $g \geq 3$, explicit relations if g < 3.

Strategy of inductive pf. (Arbarello-M.C.):

a) direct check for
$$2 > d(g, n)$$

b) $2 \le d(g, n)$: supp. result known for $\overline{\mathcal{M}}_{\gamma,\nu}, \gamma < g$ or
 $\gamma = g, \nu < n.$
 $\alpha \in H^2(\overline{\mathcal{M}}_{g,n})$
 $\alpha_{\Gamma} = \xi^*_{\Gamma}(\alpha)$ (Γ with 1 edge). Then:

i) α_{Γ} is natural (induction hypothesis)

- ii) pullbacks of α_{Γ} , $\alpha_{\Gamma'}$ to $X_{\Gamma} \times_{\overline{\mathcal{M}}_{a,n}} X_{\Gamma'}$ are equal
- iii) explicit formulas for pullbacks of natural classes via maps ξ_{Γ}

Using iii), linear algebra shows that all collections β_{Γ} of classes satisfying compatibility ii) come from a natural class $\beta \in H^2(\overline{\mathcal{M}}_{g,n})$. Conclusion by injectivity of

$$H^2(\overline{\mathcal{M}}_{g,n}) \to \bigoplus H^2(X_{\Gamma})$$

 Γ has 1 edge

A sample compatibility computation

THEOREM. $\xi_{irr}^* : H^k(\overline{\mathcal{M}}_{g,n}) \to H^k(\overline{\mathcal{M}}_{g-1,n+2})$ is injective if $k \leq \min(2g-2,g+5)$

Toy case: k = 2, g = 3, n = 0 $\xi_{irr}^*(x) = 0$. Must show that $\xi_{\Gamma}^*(x) = 0$ for all other Γ with one edge. There is only $G = \Gamma_{1,\emptyset}$

 $\xi_G^*(x) = (y, z), 0 = \alpha^*(y, z) = (y', z)$, hence z = 0. Same argument shows that y = 0.

$H^k(\overline{\mathcal{M}}_{g,n})$ for higher even k

Problems:

- 1. Do initial cases of induction (OK for k = 4)
- 2. Do linear algebra.

New hurdle: relations among natural classes not fully known, even for k = 4. New relations in degree 4 recently discovered by Getzler and Belorousski-Pandharipande.

A list of wishes

- 1. Compute $H^4(\overline{\mathcal{M}}_{g,n})$; show it is generated by natural classes and find all relations among these.
- 2. Decide whether $H^k(\overline{\mathcal{M}}_{g,n})$ is zero for k = 7, 9.
- 3. Prove Harer's bound on the cohomological dimension of $\mathcal{M}_{g,n}$ algebro-geometrically.
- 4. Understand conceptually why natural classes on boundary components of $\overline{\mathcal{M}}_{g,n}$ which patch together come from a natural class on $\overline{\mathcal{M}}_{g,n}$.
- 5. Decide whether the even cohomology of $\overline{\mathcal{M}}_{g,n}$ consists entirely of natural classes.

25

6. ...