Maurizio Cornalba

COHOMOLOGY OF MODULI SPACES
OF STABLE n-POINTED CURVES

Especially in low genus or low degree

Emphasis: elementary,
algebro-geometric methods

Everything /C



A smooth n-pointed curve of genus g

pts. p; distinct, numbered.

M n parametrizes 1somorphism classes of such
objects (for 2g — 2 +n > 0).

M, ., is: connected, quasi-projective orbifold of
dim¢ 39 — 3 + n.
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A stable 3-pointed curve C' of genus 5 (two pictures)

genus O genus 1 genus 2

bl =S

Stable, n-pointed means:

- reduced, connected, nodal
- n numbered, distinct, smooth points
- stability: 2¢g, — 2+ 1, > 0, Vv
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and its graph: '
3

1—-0___12 O

vertices: components of normalization of C
edges: nodes of C
legs: marked points

YV vertex v:
- g, = genus of component
- 1, = # of half-edges (legs included) stemming from v

genus of C' =) g, + # edges — # vertices + 1
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M, ., = isomorphism classes of stable, genus g, n-
pointed curves

My n 18 & connected, projective orbifold, M, ,, dense
Zariski open. OM, ,, = My, \ My,

Goal: compute rational cohomology of M, .,

M, ,, complete orbifold implies:

- Poincaré duality holds
- Hk(/\/lg,n) has pure Hodge structure of weight £
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OO

What we know on H*(M, ,)

.......................................

known
“almost known”

only for n <3

012345 k
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Building blocks of M, ,

I' connected stable graph of genus g with n legs
fF : XF — ngvalv — Mgan
(identify points corresponding to halves of same edge)

- £I‘ is finite

- dim(LHS) =39 — 3+ n — # edges

- restriction to | [ M, i, of & is quotient by Aut(I);
image M(I") is an orbifold

Topological stratification: My = H/\/I(F)
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Components of OM, ,, = closed strata M(I') s.t. T
has 1 edge

Types of such I':

- I'oa =1 B, (a+b=g, AllB=1{1,...,n})

A{a—®C}B
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Use of building blocks — Strategy A

Spectral sequence of cohomology with compact sup-
port:

EY'= @ HEFI(M(D))

I' has g edges

Consequence

X(Mgn) = 3 x(M(T))

Same for Serre characteristics (Euler char. of H}(—)
in Grothendieck group of mixed Hodge structures)

NB. H¥(M, ) pure Vk implies: if Serre characteristic
known then Hodge numbers known

9 M. Cornalba, slides of ICM98 talk



Applications:

- generating function for Serre characteristics of Ml,n

(Getzler "96);

- Serre characteristic of My ,,,n < 3 (Getzler "98);
(both using modular operads)

- generating function for x(Ms,,) (Bini, Gaiffi, Polito
'98)

NB. Harer (’98): recursive computation of x(M, )
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Example: x(M;,) (following Bini et al.)
Goal: compute K1(t) = > x(My.,)t"/n!

Graph patterns in genus 1:

a) N
b) (“necklace”) 7

(solid dot: genus 0; hollow dot: genus 1)
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[' pattern a) graph; Aut(I") always trivial.

h

XMT)) = x(Mam) | [ x(M(T))

1=1

- I'; stable, genus 0, (k; + 1)-pointed;
- h < m;
- N =1 — h -+ Z kz

Contribution of all these I'

ZX(Ml,m)Am/m!,
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(sum over all stable (n 4 1)-pointed genus 0 graphs G)

Recursion for A:

A7
A=1t+ Z X(./\/l(),r,ﬂ_l)ﬁ

X(MO,n—I—l_) = (—1)"(n —2)!

(Mo .nt1 — Mo, fibration; fiber P! minus n points)

X(M1,1) — X(Ml,z) = 1; X(Ml,S) — X(M1,4) = 0;
X(Mi5) = =2
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M1 n+1 — My, fibration for n > 5 =
X(Mi1n) = (=1)"(n —1)!/12, n >4

Similar argument for pattern b), but # Aut(I') = 2
when “necklace” consists of 1 or 2 edges. Final result:

19 23 5, 1
Ki(t)= A+ A%+ — A3+ —A—
() = A+t A+ g T g
1 1
5 log(1+ A) — 5 log(1 —log(1+ A))
no 1 2 3
X(Ml,n) 2 4 12

Serre chars.: calculating those of M, , is hard
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Use of building blocks — Strategy B
(Arbarello — M.C. ’98)

Basic result (Harer '86)
Coho. dimension of M, ,, for constructible sheaves is:

<n-—3 g=20
<49 —95 n=>0
<49 —4+n otherwise

(Check: M, ,, affine for g = 0,1 0or g = 2,n = 0; in
this case bound is dim¢ M, )

Challenge: prove this algebro-geometrically
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COROLLARY.
H"(Mg,n) — H*(OMy,n)
n—4 g=20
itk <d(g,n) =14 2g —2 n =70
20 — 3 +n otherwise

- &
X — Mg ; X = H Xr — My,
I' has 1 edge
COROLLARY. Ifk <d(g,n)
& HY(My) — €D H(Xr)

I' has 1 edge
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Pt.

Wi (H* (0M ) = ker(HH(O0Mg,0) — @ H*(Xr)).
If & (o) = 0, o maps to Wi_1(H"(0My,,5)), hence

o € Wi_1H*(M, ) = 0 by strictness (p injective).
THEOREM. H*(M,,) =0,k =1,3,5, Vg,n.

NB: M, ,, is known to be simply connected
g,

Pf. Induction on k, g,n. X product of M%V s.t. v <
gor vy =g, v <n. Enough to do finite # of cases s.t.
k>d(g,n), i.e.,

_ fOI' k — 1: M(),g — point, WOA — Pl, Ml,l — Pl?
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- for k = 3,5 all initial cases doable “by hand” save:
- ﬂl,g,, ﬂz,g, MZ,S, covered by Getzler’s results
- M3, M3 can be deduced from knowledge (Looi-
jenga ’93) of cohomology of M3, M3 ;.
Examples: M, M 1 dominated by ./\/lo 6, Mo,
hg(./\/ll 3) = 2-92h! (./\/ll 3)—|—2h (./\/11 3) (./\/lljg) =0
since h?(Mj3) = 5.

NB: method works for odd cohomology, if one can
handle initial cases

Upper limit of applicability k =9 (H''(M1.11) # 0)
Question: H*(M,,) =0 for k=7,9 and all g,n?
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Computing H*(M, ,)

(forget last pt.) Sectlon 0

v 7<IP’1

D, = divisor on M g.n+1 corresponding to o;
ke = T (KT € H2a(ﬂg,n) . K =ci1(w:O_Dy))
V; = c1(0; (wn)) € H2(mg,n)
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or = orbifold fundamental class of M(T").
or € H2l(/\/lg,n), where [ = #edges of I

THEOREM. (Harer, essentially) H*(M, ,) generated
by k1, ¥;’s, o0r’s, I with 1 edge (natural classes). No
relations if g > 3, explicit relations if g < 3.

Strategy of inductive pf. (Arbarello-M.C.):

a) direct check for 2 > d(g,n)

b) 2 < d(g,n): supp. result known for M., ,,, v < g or
Y=g,V <n.
o€ H*(M,.,)
ar = & (a) (I with 1 edge). Then:
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i) ar is natural
(induction hypothesis)
ii) pullbacks of ar, ar: to Xr XX, X1/ are equal
iii) explicit formulas for pullbacks of natural classes
via maps &r

Using iii), linear algebra shows that all collections Gr
of classes satisfying compatibility ii) come from a nat-
ural class 8 € H?(M, ,). Conclusion by injectivity
of

H*(M,y,) — €D H*(Xr)

I' has 1 edge
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A sample compatibility computation

THEOREM. * L HF(M ) — HN (M1 o)

LTrT

is injective if k < min(2g — 2,9 + 5)

Toy case: k=2,g=3,n=0
* -(x) = 0. Must show that & () = 0 for all other T

rr

with one edge. There is only G = 1"y g
ml,?) X ml,l > Mo o

Y

8 gz’rr

__ __ gG __
./\/lgjl X ./\/l171 >./\/l3
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NI

LN L

(a(x) = (y,2), 0 = a*(y,2) = (¥, 2), hence z = 0.
Same argument shows that y = 0.
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H*(M,.,) for higher even k

Problems:

1. Do initial cases of induction (OK for k = 4)

2. Do linear algebra.
New hurdle: relations among natural classes not
fully known, even for £ = 4. New relations in degree
4 recently discovered by Getzler and
Belorousski-Pandharipande.
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A list of wishes

. Compute H*(M,.,,); show it is generated by natu-
ral classes and find all relations among these.

. Decide whether H*(M, ) is zero for k = 7,9.

. Prove Harer’s bound on the cohomological dimen-
sion of M, ,, algebro-geometrically.

. Understand conceptually why natural classes on
boundary components of Mg,n which patch to-
gether come from a natural class on M, .

. Decide whether the even cohomology of M, ,, con-
sists entirely of natural classes.
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