Stability properties for quasilinear parabolic equations with measure data and applications

Marie-Françoise Bidaut-Véron

Laboratoire de Mathématiques et Physique Théorique, CNRS-UMR 7350,
Faculté des Sciences et Techniques,
Université de Tours (François Rabelais)
(veronmf@univ-tours.fr)

Abstract

Let Ω be a bounded domain of \mathbb{R}^N, and $Q = \Omega \times (0, T)$. We first study problems of the model type

$$
\begin{cases}
 u_t - \Delta_p u = \mu & \text{in } Q, \\
 u = 0 & \text{on } \partial \Omega \times (0, T), \\
 u(0) = u_0 & \text{in } \Omega,
\end{cases}
$$

where $p > 1$, $\mu \in \mathcal{M}_b(Q)$ and $u_0 \in L^1(\Omega)$. Our main result is a stability theorem extending the results of Dal Maso, Murat, Orsina, Prignet, for the elliptic case, valid for quasilinear operators $u \mapsto -\text{div}(A(x, t, \nabla u))$.

As an application, we consider perturbed problems of type

$$
\begin{cases}
 u_t - \Delta_p u + \mathcal{G}(u) = \mu & \text{in } Q, \\
 u = 0 & \text{on } \partial \Omega \times (0, T), \\
 u(0) = u_0 & \text{in } \Omega,
\end{cases}
$$

where $\mathcal{G}(u)$ may be an absorption or a source term. In the model case $\mathcal{G}(u) = \pm |u|^{q-1}u$ ($q > p - 1$), or \mathcal{G} has an exponential type. We give existence results when q is subcritical, or when the measure μ is good in time and satisfies suitable capacity conditions.