Lecture 3
Box-partitions and dimension of spline spaces
over Box-partition

Definition of LR B-splines
some geometric properties

Tor Dokken
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Box-partitions

Box-partitions - Rectangular subdivision of regular
domain d-box R4
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A box in R¢

Given an integer d > 0. A box in R? is a Cartesian product
B =] xx]qg ER,
where each J, = [ay, b ] with a; < by is a closed finite interval in R%. We
also write § = [a, b], where a = [a4, ...,a4], and b = [b4, ..., by].
The interval J, is said to be trivial if a;, = b, and non-trivial otherwise.

The dimension of 8, denoted dim £, is the number of non-trivial
intervals J, in (3.
m We call 8 an [-box or and (I, d)-box if dim g = L.

5 (2,2)-box
(0,1)-box (1,1)-box ’ /
(1,2)-box
0
-1 0 1 2 -1 0 1 2
(0,2)-box
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Important boxes

If dim 8 = d then g is called an element.

If dim f = d — 1 there exists exactly one k such that
Ji. = |a] is trivial. Then B is called a mesh-rectangle, a
k-mesh-rectangle or a (k, a)-mesh-rectangle

Element 2 Element
Mesh-
rectangle
J \ 1 / Mesh-
rectangle
-1 0 1 2 0
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Example: 3D-mesh

Element

N

QQRB E :{817;82:/637)84}

lllustration by: Kjell Fredrik Pettersen,
SINTEF
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Lower-dimensional boxes in the mesh

F,(€) is the set of | -boxes describing the mesh topology,
0<I1<d

F,i(E) is the same as £

Forl < d: F,(E) is the set of [-boxes where higher-
dimensional boxes in £ intersect, or at boundary of Q
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Example: 2D-mesh

dim = 2 (Elements)

bz B
Da B
De Ps
Ps Ps
& =1{B1,02, B3, 84,85, Bs } F, (&) =1{61,52,03,84,B5,06} = &

lllustration by: Kjell Fredrik Pettersen,
SINTEF
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Example: 2D-mesh

dim = 1 (Mesh-rectangles)

V1 g,
73 V4 V5
'82 76 V7 /8
ﬁ4 Y10l V11
B, e 713 V12
s 7/11 V15
V16 V17 V18
E :{/81762953754765166} .7:1(8) :{71;727737"'7718}

lllustration by: Kjell Fredrik Pettersen,
SINTEF
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Example: 2D-mesh

dim=0
o O O3
[ 4 ® . J
% Os Op
(740 * 00'7
oy
Ps st 19
Ps
T4 11 oy, *0y3
& ={B1, B2, 83,084,085, 06} Fo(E) ={01.02.03,...,013}

lllustration by: Kjell Fredrik Pettersen,
SINTEF
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Example: 3D-mesh

dim = 3 (Elements)

P

TB(S) = {61762763)64} = &
E = {61182763934}

lllustration by: Kjell Fredrik Pettersen,
SINTEF
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Example: 3D-mesh

dim = 2 (Mesh-rectangles)

TZ(E) — {713 e 7’-}/21}

P2

E = {Bla 627639 ﬁll}

lllustration by: Kjell Fredrik Pettersen,
SINTEF

11
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Example: 3D-mesh

dim =1

& = {/817 627539 f64}

lllustration by: Kjell Fredrik Pettersen,
SINTEF
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Example: 3D-mesh

E ={p1, B2, B3, B} - Fo(&) ={m1,.... 720}

lllustration by: Kjell Fredrik Pettersen,
SINTEF
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Mesh-rectangles

Example, 3D

Example, 2D

/ .

2-meshrectangle

3-meshrectangle

1-meshrectan

y
‘ 5 / 2-me/ghrectan le
X 1-meshrectangle 9

lllustration by: Kjell Fredrik Pettersen,
SINTEF
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Box-partition

0 € R% a d-box in R4,
A finite collection £ of d-boxes in R% is said to be a box
partition of Q if

1. f7 n B3 =@ forany B7, B35 € €, where B # 5.

2 Ugee B= Q.

§)

€ Mesh-rectangle

€ Element
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u-extended box-mesh
(adding multiplicities)

1 1

1 1 1 1

= A multiplicity u is assigned to each mesh-rectangle

W Supports variable knot multiplicity for Locally Refined B-
splines, and local lower order continuity across mesh-
rectangles.
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Comment

When our work started out we used the index grid for
Knots.

m However, this posed challenges with respect to mesh-rectangles
of multiplicity higher than one and the uniqueness of refinement.

B The generalized dimension formula uses multiplicity, thus to
ensure

m Not straight forward to understand what happens with spline
space dimensionality when two knotline segments converge and
optain the same knot value.

To make a consistent theory we discarded the index
grid.
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Polynomials of component degree

On each element the spline is a polynomial.

We define polynomials of component degree at most

P,k =1,...,d by:

fiRT > R:f(x) = 2 c;x', c; in R forall il.
O<i<p

d —
Iy =

p=(1,..,Pa)
i= (il""id)

\\ \
\>| Polynomial pieces
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Continuity across mesh-rectangles

Given a function f:[a,b] - R, and let y € F,;_, (E) be any
k-mesh-rectangle in [a, b] forsome 1 < k < d.

We say that f € C"(y) if the partial derivatives

aff(x)/ax,i exists and are continuous forj = 0,1, ....,r and
all x e y.

dIf(x)/0x]

exists and are

/ continuous for
A j=01,..,r

o f(x)/ox] 7
exists and are |
continuous for

j=01,...,7
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Piecewise polynomial space

We define the piecewise polynomial space

P,(E) ={f:[a,b] » R:f|g € 11, B € &},
where £ is obtained from € using half-open intervals as for
univate B-splines.

\\ \
B{ Polynomial pieces
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Spline space

Continuity across
Polynomial degree in k-mesh-rectangle y

direction k
We define the spline space

Sp (M. 1) = {f € I (E0D): £ &CP (),

Vy € wajv[)),k =1,..,d}

All k-mesh-rectangles

el 1| ] 2 Specify multiplicity, e.g.,
continuity across mesh-
rectangle




How to measure dimensional of spline space of
degree p over a u-extended box partition (M, u).

Dimension formula develop.éd (Mourrain, Pettersen)

Summing over
all [-boxes of
all dimensions

Dimension influenced by
mesh-rectangle
multiplicity

Combinatorial values
calculated from topological  Homology terms

structure  In the case of 2-variate LR-
splines always zero
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LR B-splines over u-extended box-
mesh
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Refinement by inserting mesh-
rectangles giving a constant split

I 1 | 1 | 1 1 1 | 1 |

1 1

Constant split

Not constant split

SINTEF ~ CIMEEMS Summer School June 18 - June 22, 2012 ~ Cetraro, ltaly * * * ~ "




Idea developed

Interactively specifying mesh- | tgeter witn
Peter Nartoft

rectangles — 2-variate case | niisenand 0dd

_ . Andersen,
A mesh-rectangle is defined by the two the extreme corners | q\NTEE

® (a,b)=(aa+v)
m Where v = (v, v,), with just one of v;, v, zero

Given two points p and g as input. Snap p to the nearest mesh-rectangle to
create p, remember the class of k-mesh-rectangles snapped to, k € {1,2}.
Snap q to the nearest parallel k-meshrectangle to create §.

m Make ¢ where ¢; = min(5}, §;)

m Make w where w; = |5; — §j

pkrj:'tk
Cj,j =k

v
0,j #k ¢ 5
B Define v = (vq,v,), v = { J a /P’B

Provided v; > 0, for j = k, we have a well E"q/

defined mesh-rectangle define by(a, b) = (a,a + v)

When creating mesh-rectangles automatic checks can be run with respect
to the increase of dimensionality, and if the resulting B-splines form a basis.

m Define a = (a;,a;), a; = {
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u-extended LR-mesh

A u -extended LR-mesh is a u-extended box-mesh (M, u)
where either

(M, u) is a tensor-mesh with knot multiplicities or
(M, w) = (M +v,id,) where (M, &) is a u -extended LR-
mesh and y is a constant split of (M, ).




LR B-spline
Let (M, 1) be an u-extended LR-mesh in R%. A function

B:R% - R is called an LR B-spline of degree p on (M, ) if B
Is a tensor-product B-spline with minimal support in (M, u).
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Splines on a u-extended LR-mesh

We define as sequence of u-extended LR-meshes
(M, 1), ., (Mg, g ) With corresponding collections of

minimal support B-splines By, ..., B,.

Forj=1,..,qg — 1 creating (]\/[j+1,uj+1) = (]v[] + yj,uj,yj)
from (]\/[j,uj) involves inserting a mesh-rectangles y; that
iIncreases the number of B-splines. More specifically:

y; splits (]V[] u j) in a constant split.
at least on B-spline in B; does not have minimal support
in (~7V[j+1».uj+1)-
After inserting y; we start a process to generate a collection
of minimal support B-splines B, over (M4, f;1+1) from B;.
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Going from (M, u;) to (M1, ij+1)

[ [ ] L I .

(Mj F‘j) (Mj+1'l‘j+1)

B-spline from B; that has to be split to generate B, .,
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LR B-Spline Refinement step
Cubic example: One line

Insert knot line segments that at least span the
width of one basis function

Four B-splines functions * 4 B-splines to be removed
that do not have minimal « 5 B-splines to be added
Support in the refined mesh + Dimension increase 1
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Refinement of LR B-splines is
focused on the tensor product B-

splines
Let d be a positive integer, suppose p = (py, ..., pg) has
nonnegative components (the degrees), and let y,; =
(Vi1 - Yip,+2) De @ nondecreasing (knot) sequence
k=1,..,d. We define a tensor product B-spline
Bly4, .., v4]: R* > R by

- ~ " d )
Blys, . ¥alGa, o xa) (1 | | B G,
k=1
\_ \ J \J
Tensor product B- Product of
spline. Univariate B-splines.
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Refinement of a tensor
product B-spline

The support of B is given by the cartesian product
supp(B) = [y1,1, ---;}’1,pk+2] X X Va1, "-'yd,pk+2]-
Suppose we insert a knot z in (yy 1, .-, Vi p,+2) forsome 1 < k < d.
Then
BY]| = a1 B|Y |+a,;B[Y,]
Where Y,;and Y, are the knot vectors of the resulting tensor product
B-splines, and

( 1 yk,pk+1 =z< yk,pk+2
a; =1 <7 ka1

yk,l <z< yk,pk-l-l
Vkpr+1 — Vi1

( 1 Vi1 = Z = Yi2
Ay = < yk,pk+2 —Z

Ye2 < Z < Yipr+2

Y kpr+2 — Vk,2

a, and a, calculated by Oslo Algorithm/Boehms algorithm
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LR B-splines and partition of unity

The LR B-spline refinement starts from a partition of
unity tensor product B-spline basis.

By accumulating the weights a; and a, as scaling
factors for the LR B-splines, partition of unity is
maintained throughout the refinement for the scaled
collection of tensor product B-splines

The partition of unity properties gives the coefficients of
LR B-splines the same geometric interpretation as B-
splines and T-splines.

B However, the spatial interrelation of the coefficients is more
intricate than for T-splines as the refinement strategies are more
generic than for T-splines.

m This is, however, no problem as in general algorithms calculate
the coefficients both in FEA and CAD.
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Example LR B-spline refinement

© © @ LRB-spline demo

Video by PhD fellow Kjetil A. Johannessen, NTNU, Trondheim, Norway.

SINTEF CIME-EMS Summer School June 18 - June 22, 2012 - Cetraro, Italy



