Lecture 3 Box-partitions and dimension of spline spaces over Box-partition

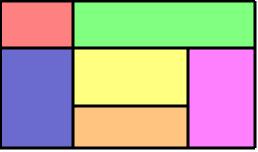
Definition of LR B-splines some geometric properties

Tor Dokken

Box-partitions

Box-partitions - Rectangular subdivision of regular domain d-box \mathbb{R}^d

 $\Omega \subseteq \mathbb{R}^d$ $\Omega = [a_1, b_1] \times \dots \times [a_d, b_d]$ $a_i < b_i, \ 1 \le i \le d$



 $\Omega\subseteq \mathbb{R}^2$

Subdivision of Ω into smaller d -boxes

$$\mathcal{E} = \{\beta_1, \dots, \beta_1\}$$

$$\beta_1 \cup \beta_2 \cup \dots \cup \beta_n = \Omega$$

$$\beta_i^o \cap \beta_j^o = \emptyset, \ i \neq j$$

$$\begin{array}{c|c} \beta_1 & \beta_2 \\ \hline \beta_3 & \beta_4 & \beta_6 \\ \hline \beta_5 & \end{array}$$

$$\boldsymbol{\mathcal{E}} = \{\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6\}$$

A box in \mathbb{R}^d

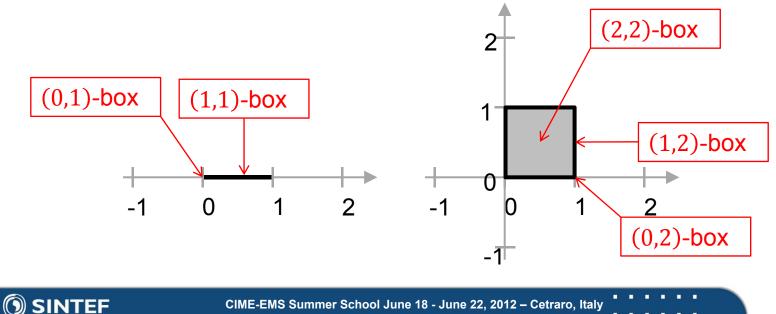
Given an integer $d \ge 0$. A box in \mathbb{R}^d is a Cartesian product

$$\beta = J_1 \times \cdots \times J_d \subseteq \mathbb{R}^d,$$

where each $J_k = [a_k, b_k]$ with $a_k \le b_k$ is a closed finite interval in \mathbb{R}^d . We also write $\beta = [a, b]$, where $a = [a_1, ..., a_d]$, and $b = [b_1, ..., b_d]$.

- The interval J_k is said to be **trivial** if $a_k = b_k$ and **non-trivial** otherwise.
- The **dimension** of β , denoted dim β , is the number of non-trivial intervals J_k in β .

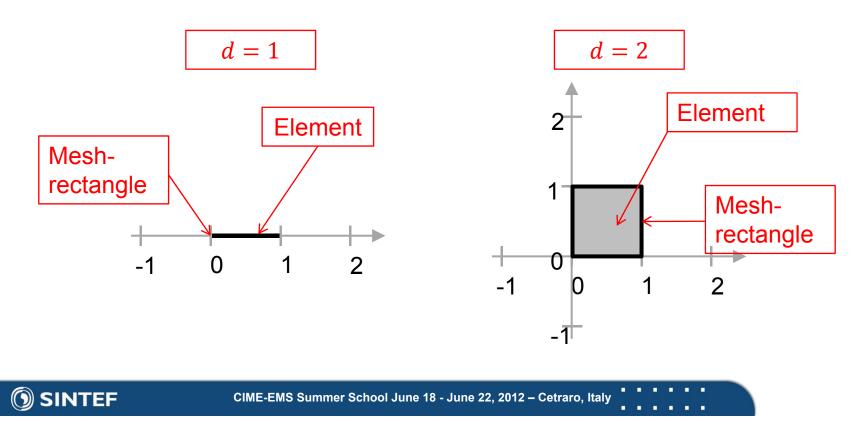
• We call β an *l*-box or and (l, d)-box if dim $\beta = l$.



Important boxes

If dim $\beta = d$ then β is called an **element**.

If dim $\beta = d - 1$ there exists exactly one k such that $J_k = [a]$ is trivial. Then β is called a **mesh-rectangle**, a k-mesh-rectangle or a (k, a)-mesh-rectangle



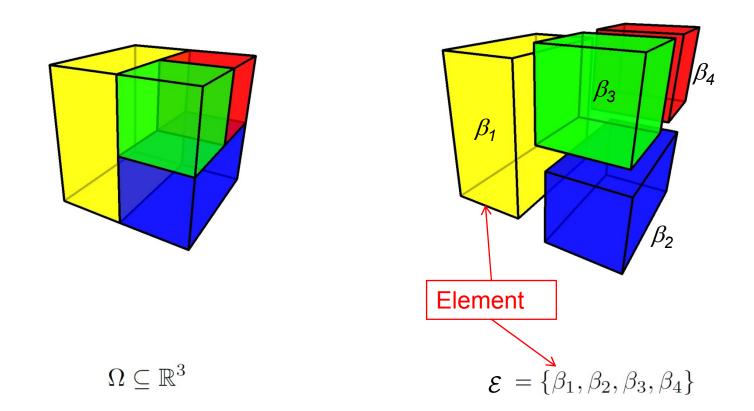
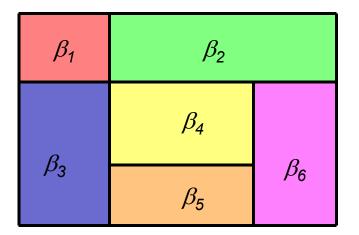


Illustration by: Kjell Fredrik Pettersen, SINTEF

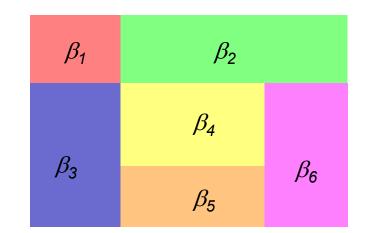
Lower-dimensional boxes in the mesh

- $\mathcal{F}_l(\mathcal{E})$ is the set of *l* -boxes describing the mesh topology, $0 \le l \le d$
- $\mathbf{F}_d(\mathcal{E})$ is the same as \mathcal{E}
- For l < d: $\mathcal{F}_l(\mathcal{E})$ is the set of *l*-boxes where higherdimensional boxes in \mathcal{E} intersect, or at boundary of Ω



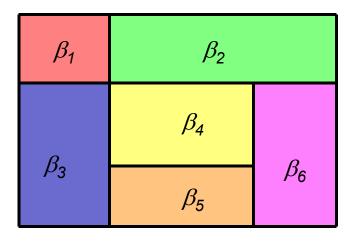
$${oldsymbol {\cal E}} \ = \{eta_1,eta_2,eta_3,eta_4,eta_5,eta_6\}$$

dim = 2 (Elements)



$$\mathcal{F}_2(\mathcal{E}) = \{\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6\} = \mathcal{E}$$

Illustration by: Kjell Fredrik Pettersen, SINTEF



 $\mathcal{E} = \{\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6\}$

dim = 1 (Mesh-rectangles)

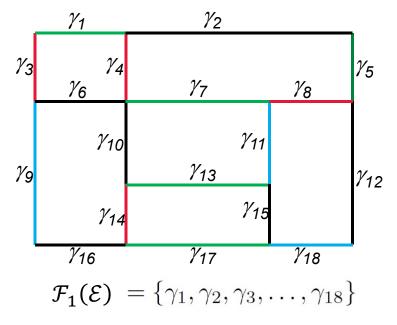
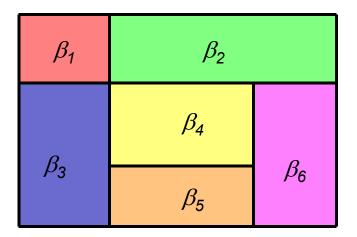


Illustration by: Kjell Fredrik Pettersen, SINTEF



 $\mathcal{E} = \{\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6\}$

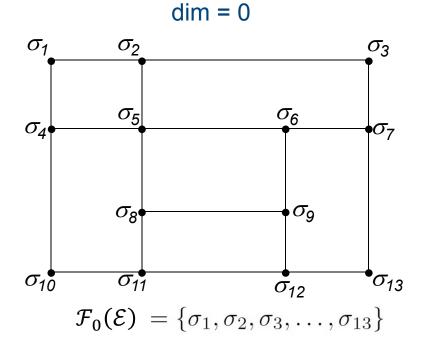
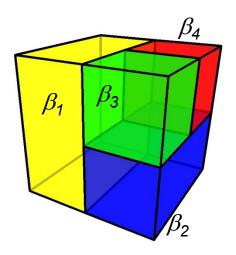


Illustration by: Kjell Fredrik Pettersen, SINTEF



 $\mathcal{E} = \{\beta_1, \beta_2, \beta_3, \beta_4\}$

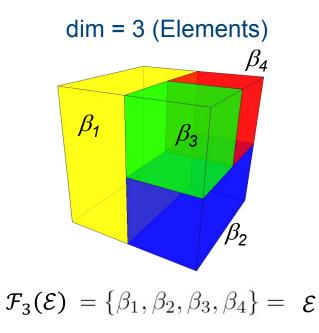
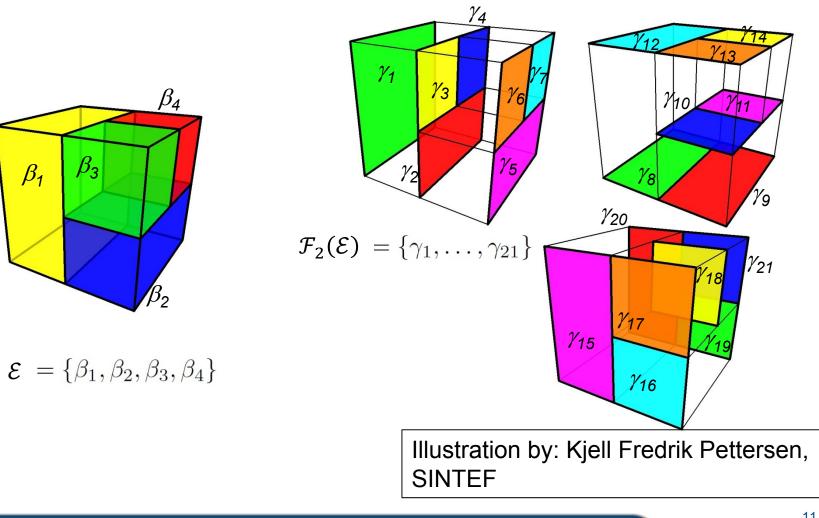
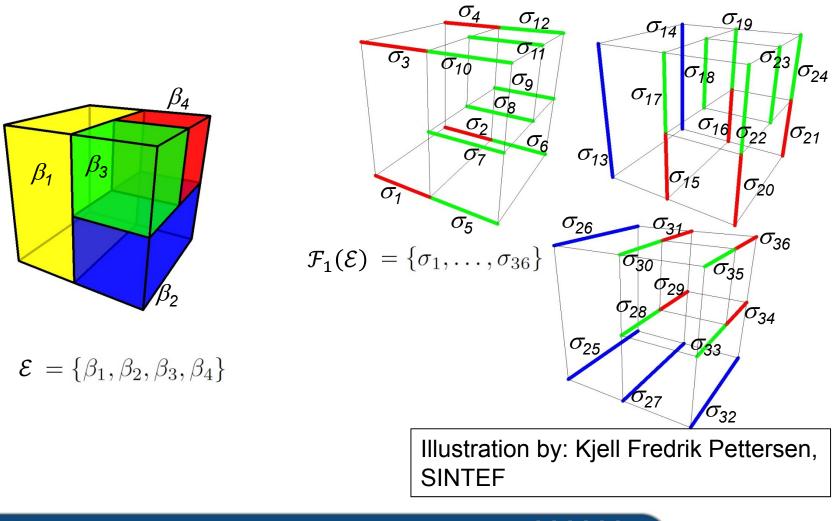


Illustration by: Kjell Fredrik Pettersen, SINTEF

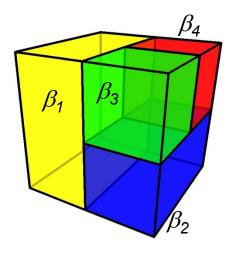
dim = 2 (Mesh-rectangles)



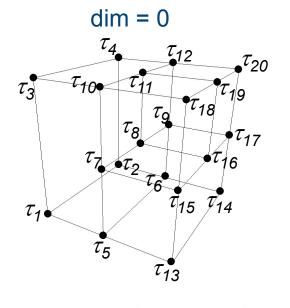
 $\dim = 1$



() SINTEF



 $\mathcal{E} = \{\beta_1, \beta_2, \beta_3, \beta_4\}$



 $\mathcal{F}_{\mathbf{0}}(\mathcal{E}) = \{\tau_1, \ldots, \tau_{20}\}$

Illustration by: Kjell Fredrik Pettersen, SINTEF

Mesh-rectangles

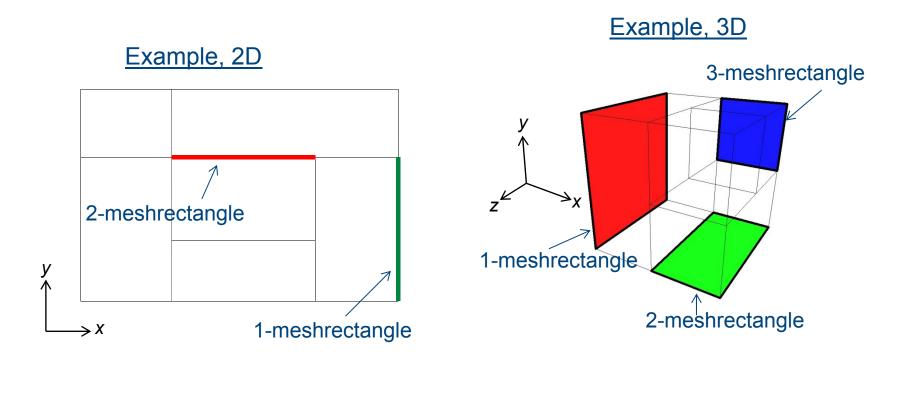
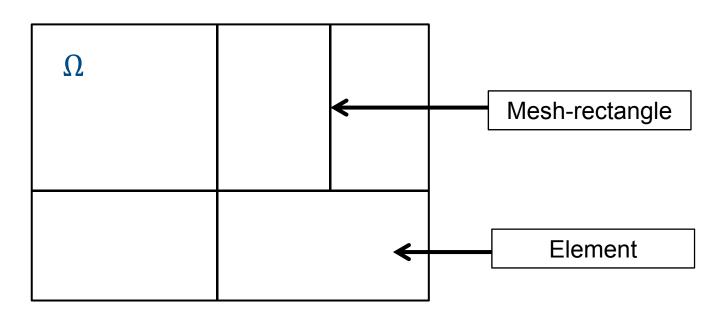


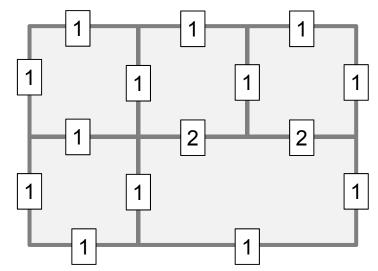
Illustration by: Kjell Fredrik Pettersen, SINTEF

Box-partition

- $\square \Omega \subseteq \mathbb{R}^d \text{ a } d\text{-box in } \mathbb{R}^d.$
- A finite collection \mathcal{E} of *d*-boxes in \mathbb{R}^d is said to be a **box partition** of Ω if
 - *1.* $\beta_1^o \cap \beta_2^o = \emptyset$ for any $\beta_1^o, \beta_2^o \in \mathcal{E}$, where $\beta_1^o \neq \beta_2^o$.
 - 2. $\bigcup_{\beta \in \mathcal{E}} \beta = \Omega$.



μ-extended box-mesh (adding multiplicities)



- A multiplicity μ is assigned to each mesh-rectangle
- Supports variable knot multiplicity for Locally Refined Bsplines, and local lower order continuity across meshrectangles.

Comment

- When our work started out we used the index grid for knots.
 - However, this posed challenges with respect to mesh-rectangles of multiplicity higher than one and the uniqueness of refinement.
 - The generalized dimension formula uses multiplicity, thus to ensure
 - Not straight forward to understand what happens with spline space dimensionality when two knotline segments converge and optain the same knot value.
- To make a consistent theory we discarded the index grid.

Polynomials of component degree

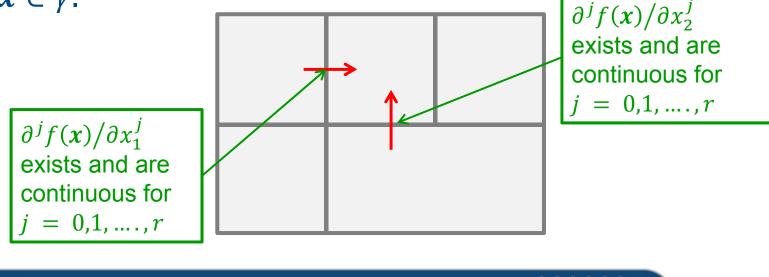
On each element the spline is a polynomial. We define polynomials of component degree at most $p_k, k = 1, ..., d$ by: $\Pi_p^d = \left\{ f \colon \mathbb{R}^d \to \mathbb{R} \colon f(\mathbf{x}) = \sum_{\mathbf{0} \le \mathbf{i} \le p} c_i \mathbf{x}^{\mathbf{i}}, c_i \text{ in } \mathbb{R} \text{ for all } \mathbf{i} \right\}.$ $\boldsymbol{p} = (p_1, \dots, p_d)$ $\boldsymbol{i} = (i_1, \dots, i_d)$ Polynomial pieces

SINTEF

Continuity across mesh-rectangles

Given a function $f: [a, b] \to \mathbb{R}$, and let $\gamma \in \mathcal{F}_{d-1,k}(\mathcal{E})$ be any *k*-mesh-rectangle in [a, b] for some $1 \le k \le d$.

We say that $f \in C^r(\gamma)$ if the partial derivatives $\frac{\partial^j f(x)}{\partial x_k^j}$ exists and are continuous for j = 0, 1, ..., r and all $x \in \gamma$.



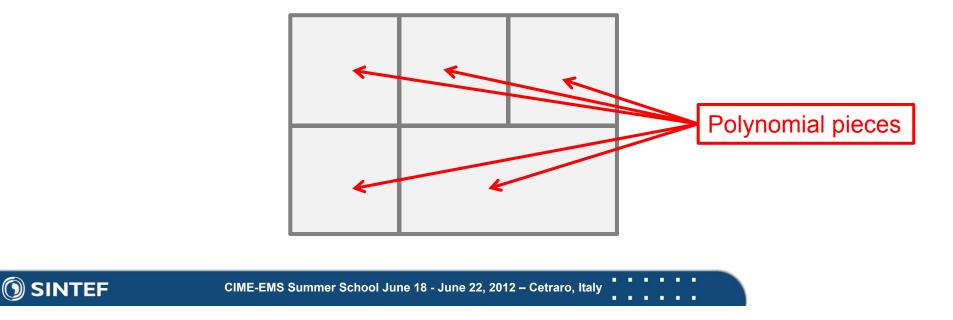
CIME-EMS Summer School June 18 - June 22, 2012 – Cetraro, Italy

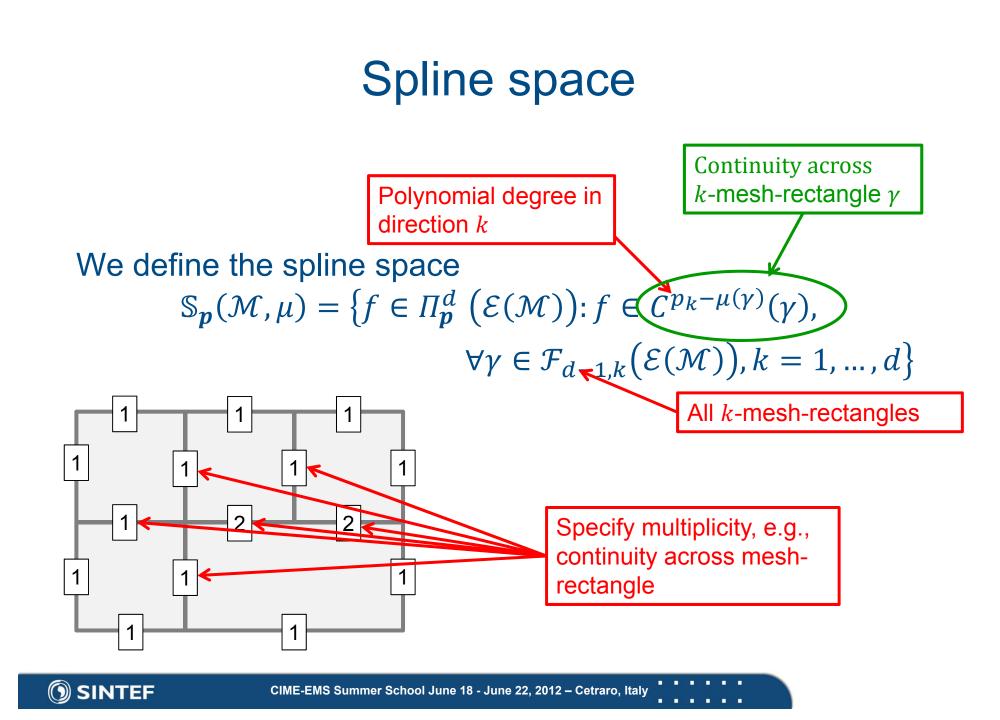
SINTEF

Piecewise polynomial space

We define the piecewise polynomial space $\mathbb{P}_{p}(\mathcal{E}) = \{f : [a, b] \to \mathbb{R} : f|_{\beta} \in \Pi_{p}^{d}, \beta \in \tilde{\mathcal{E}}\},\$

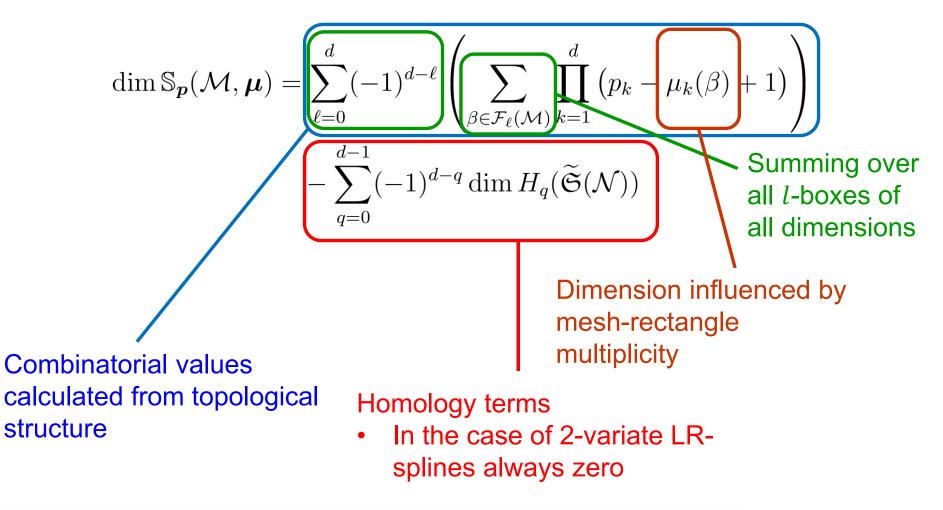
where \mathcal{E} is obtained from \mathcal{E} using half-open intervals as for univate B-splines.





How to measure dimensional of spline space of degree p over a μ -extended box partition (\mathcal{M}, μ) .

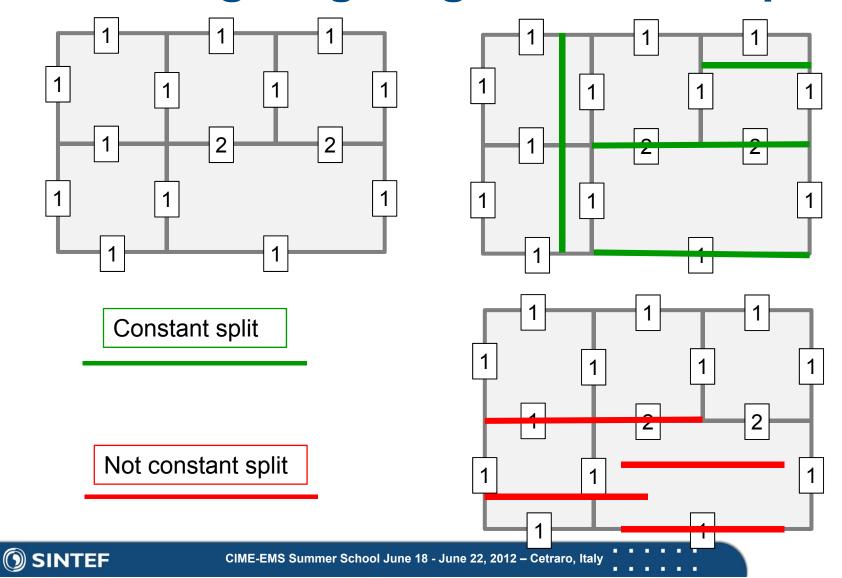
Dimension formula developed (Mourrain, Pettersen)



LR B-splines over *µ*-extended boxmesh

. .

Refinement by inserting meshrectangles giving a constant split



Interactively specifying meshrectangles – 2-variate case

- A mesh-rectangle is defined by the two the extreme corners
 - (a, b) = (a, a + v)

SINTEF

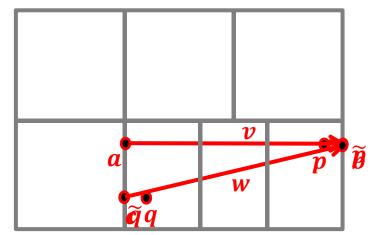
- Where $\boldsymbol{v} = (v_1, v_2)$, with just one of v_1, v_2 zero
- Given two points p and q as input. Snap p to the nearest mesh-rectangle to create \tilde{p} , remember the class of k-mesh-rectangles snapped to, $k \in \{1,2\}$. Snap q to the nearest parallel k-meshrectangle to create \tilde{q} .
 - Make *c* where $c_j = \min(\widetilde{p}_j, \widetilde{q}_j)$
 - Make *w* where $w_j = \left| \widetilde{p}_j \widetilde{q}_j \right|$

Define
$$a = (a_1, a_2), a_j = \begin{cases} p_k, j \neq k \\ c_j, j = k \end{cases}$$

- Define $\boldsymbol{v} = (v_1, v_2), v_j = \begin{cases} 0, j \neq k \\ w_j, j = k \end{cases}$
- Provided $v_j > 0$, for j = k, we have a well

When creating mesh-rectangles automatic checks can be run with respect to the increase of dimensionality, and if the resulting B-splines form a basis.

CIME-EMS Summer School June 18 - June 22, 2012 - Cetraro, Italy



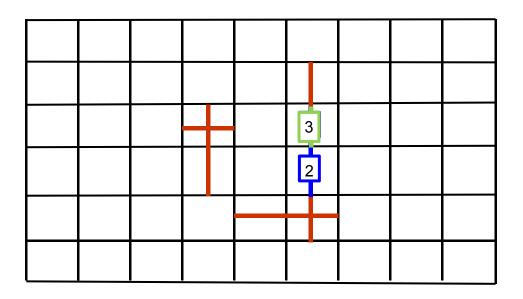
together with Peter Nørtoft Nielsen and Odd Andersen, SINTEF

Idea developed

μ-extended LR-mesh

A μ -extended LR-mesh is a $\mu\text{-extended box-mesh}\ (\mathcal{M},\mu)$ where either

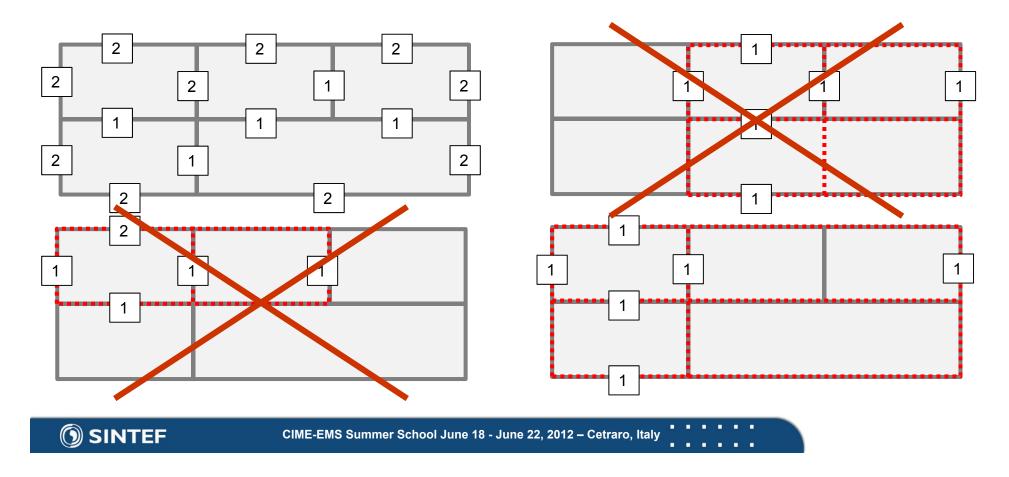
- 1. (\mathcal{M}, μ) is a tensor-mesh with knot multiplicities or
- 2. $(\mathcal{M}, \mu) = (\widetilde{\mathcal{M}} + \gamma, \widetilde{\mu}_{\gamma})$ where $(\widetilde{\mathcal{M}}, \widetilde{\mu})$ is a μ -extended LR-mesh and γ is a constant split of $(\widetilde{\mathcal{M}}, \widetilde{\mu})$.



All multiplicities not shown are 1.

LR B-spline

Let (M,μ) be an μ -extended LR-mesh in \mathbb{R}^d . A function $B: \mathbb{R}^d \to \mathbb{R}$ is called an LR B-spline of degree p on (\mathcal{M},μ) if Bis a tensor-product B-spline with minimal support in (\mathcal{M},μ) .



Splines on a μ -extended LR-mesh

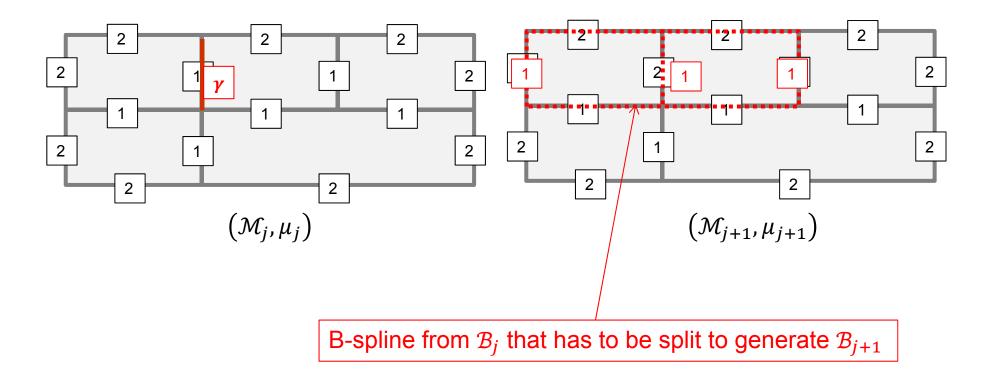
We define as sequence of μ -extended LR-meshes $(\mathcal{M}_1, \mu_1), \dots, (\mathcal{M}_q, \mu_q)$ with corresponding collections of minimal support B-splines $\mathcal{B}_1, \dots, \mathcal{B}_q$.

For j = 1, ..., q - 1 creating $(\mathcal{M}_{j+1}, \mu_{j+1}) = (\mathcal{M}_j + \gamma_j, \mu_{j,\gamma_j})$ from (\mathcal{M}_j, μ_j) involves inserting a mesh-rectangles γ_j that increases the number of B-splines. More specifically:

- γ_j splits (\mathcal{M}_j, μ_j) in a constant split.
- at least on B-spline in \mathcal{B}_j does not have minimal support in $(\mathcal{M}_{j+1}, \mu_{j+1})$.

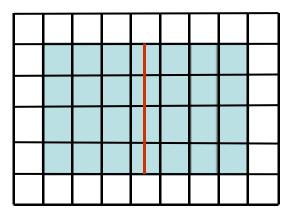
After inserting γ_j we start a process to generate a collection of minimal support B-splines \mathcal{B}_{j+1} over $(\mathcal{M}_{j+1}, \mu_{j+1})$ from \mathcal{B}_j .

Going from $(\mathcal{M}_{j}, \mu_{j})$ to $(\mathcal{M}_{j+1}, \mu_{j+1})$

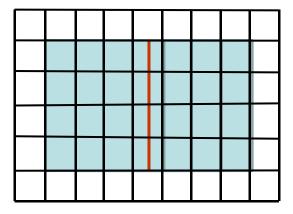


LR B-Spline Refinement step **Cubic example: One line**

Insert knot line segments that at least span the width of one basis function



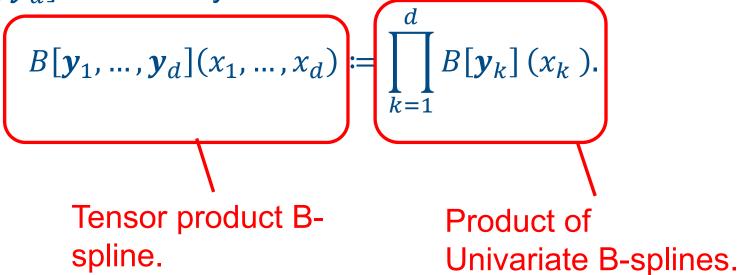
Four B-splines functions that do not have minimal Support in the refined mesh • Dimension increase 1



- 4 B-splines to be removed
- 5 B-splines to be added

Refinement of LR B-splines is focused on the tensor product Bsplines

Let *d* be a positive integer, suppose $p = (p_1, ..., p_d)$ has nonnegative components (the degrees), and let y_k ; = $(y_{k,1}, ..., y_{k,p_k+2})$ be a nondecreasing (knot) sequence k = 1, ..., d. We define a tensor product B-spline $B[y_1, ..., y_d]$: $\mathbb{R}^d \to \mathbb{R}$ by



Refinement of a tensor product B-spline

- The support of *B* is given by the cartesian product $supp(B) \coloneqq [y_{1,1}, \dots, y_{1,p_k+2}] \times \dots \times [y_{d,1}, \dots, y_{d,p_k+2}].$
- Suppose we insert a knot z in $(y_{k,1}, ..., y_{k,p_k+2})$ for some $1 \le k \le d$. Then

 $B[\mathbf{Y}] = \alpha_1 B[\mathbf{Y}_1] + \alpha_2 B[\mathbf{Y}_2]$

Where Y₁ and Y₂ are the knot vectors of the resulting tensor product B-splines, and

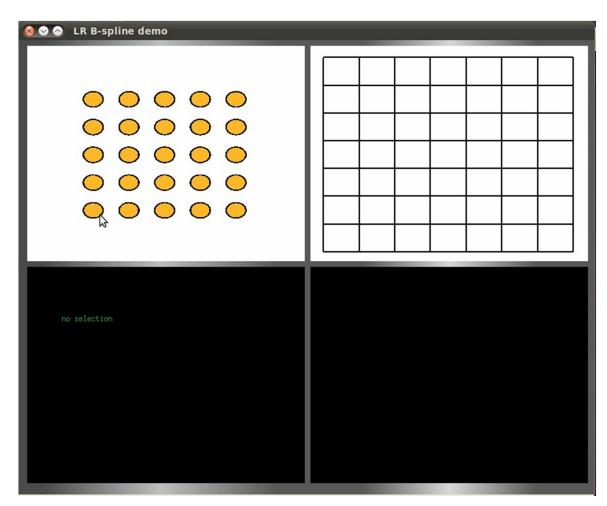
$$\alpha_{1} \coloneqq \begin{cases} 1 & y_{k,p_{k}+1} \leq z < y_{k,p_{k}+2} \\ \frac{z - y_{k,1}}{y_{k,p_{k}+1} - y_{k,1}} & y_{k,1} < z < y_{k,p_{k}+1} \\ \alpha_{2} \coloneqq \begin{cases} 1 & y_{k,1} \leq z \leq y_{k,2} \\ \frac{y_{k,p_{k}+2} - z}{y_{k,p_{k}+2} - y_{k,2}} & y_{k,2} < z < y_{k,p_{k}+2} \end{cases}$$

 α_1 and α_2 calculated by Oslo Algorithm/Boehms algorithm

LR B-splines and partition of unity

- The LR B-spline refinement starts from a partition of unity tensor product B-spline basis.
- By accumulating the weights α_1 and α_2 as scaling factors for the LR B-splines, partition of unity is maintained throughout the refinement for the scaled collection of tensor product B-splines
- The partition of unity properties gives the coefficients of LR B-splines the same geometric interpretation as Bsplines and T-splines.
 - However, the spatial interrelation of the coefficients is more intricate than for T-splines as the refinement strategies are more generic than for T-splines.
 - This is, however, no problem as in general algorithms calculate the coefficients both in FEA and CAD.

Example LR B-spline refinement



Video by PhD fellow Kjetil A. Johannessen, NTNU, Trondheim, Norway.

