Lecture 4 LR B-splines and linear independence

+ examples

Tor Dokken

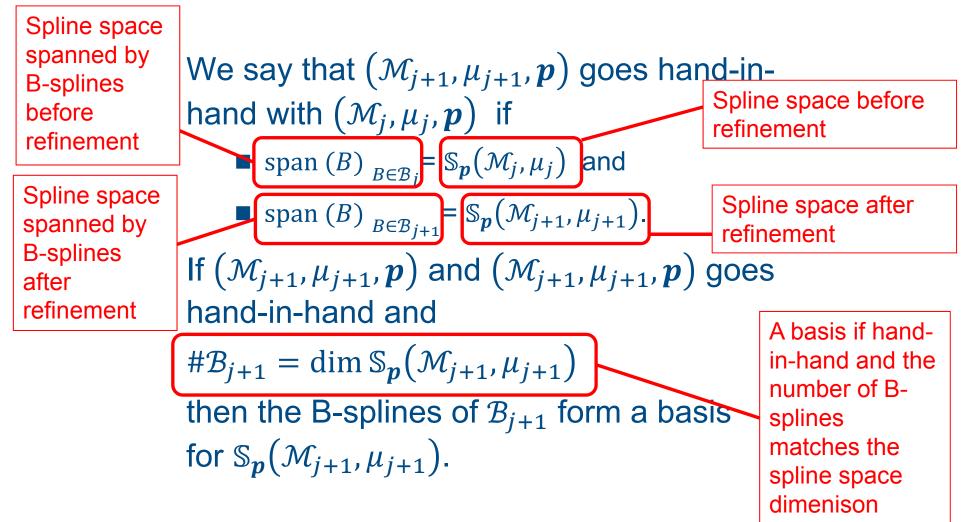
. . .

CIME-EMS Summer School June 18 - June 22, 2012 – Cetraro, Italy

Spline space and μ -extended LR-mesh

- We introduced in Lecture 3:
 - The μ -extended box-mesh
 - The dimension formula
 - The μ -extended LR-mesh
 - The LR B-splines
- In Lecture 2 we focused on the importance of:
 - Spanning the spline space over the μ -extended box-mesh
 - Finding a basis for the spline space
- In this Lecture we focus approaches for ensuring that the LR B-splines is a basis for the spline space defined by μ-extended LR-mesh by:
 - Defining a hand in-hand-property between the LR B-splines and the spline space over the μ-extended LR-mesh
 - When the LR B-splines is a basis for the spline space over the μextended LR-mesh

Ensuring linear independence



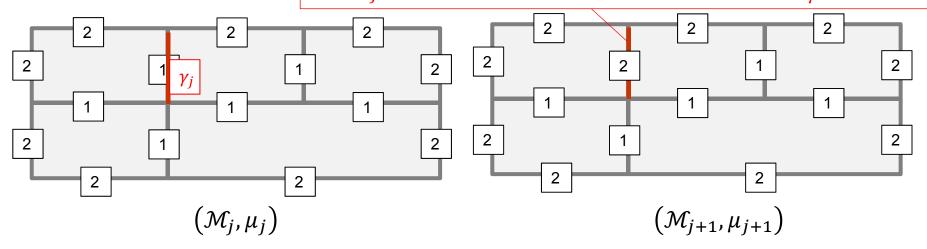
To ensure linear independence we have to

- 1. Determine dim $\mathbb{S}_p(\mathcal{M}_{j+1}, \mu_{j+1})$
- 2. Determine if \mathcal{B}_{j+1} spans $\mathbb{S}_p(\mathcal{M}_{j+1}, \mu_{j+1})$
- 3. Check that $\#\mathcal{B}_{j+1} = \dim \mathbb{S}_p(\mathcal{M}_{j+1}, \mu_{j+1})$

Difference in spanning properties between \mathcal{B}_j and \mathcal{B}_{j+1}

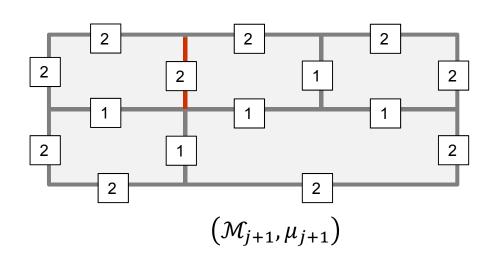
- The only B-splines in \mathcal{B}_{j+1} that model the discontinuity introduced by inserting the mesh-rectangle γ_j are those that have γ_j with multiplicity $\mu(\gamma_j)$ as part of the knot structure.
- By restricting these B-splines to γ_j we get a set of B-splines \mathcal{B}_{γ} restricted to γ_j with dimension one lower than the dimension of the B-splines of \mathcal{B}_{j+1} . Pick out the B-splines with multiplicity 2 over γ_j . Intersect

with γ_i to select trimmed univariate B-splines \mathcal{B}_{γ} .



The use of \mathcal{B}_{γ}

A theorem for general dimensions and degrees states dim span $(B_{\gamma})_{B \in \mathcal{B}_{\gamma}} \leq \dim \mathbb{S}_{p}(\mathcal{M}_{j+1}, \mu_{j+1}) - \dim \mathbb{S}_{p}(\mathcal{M}_{j}, \mu_{j})$ Further it is stated that \mathcal{B}_{j+1} spans $\mathbb{S}_{p}(\mathcal{M}_{j+1}, \mu_{j+1})$ if dim span $(B_{\gamma})_{B \in \mathcal{B}_{\gamma}} = \dim \mathbb{S}_{p}(\mathcal{M}_{j+1}, \mu_{j+1}) - \dim \mathbb{S}_{p}(\mathcal{M}_{j}, \mu_{j})$

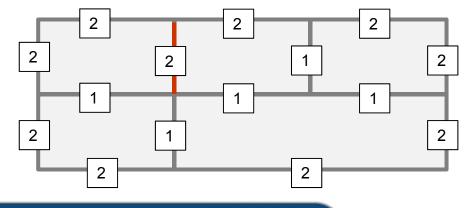


We can find $\mathbb{S}_p(\mathcal{M}_j, \mu_j)$ and $\mathbb{S}_p(\mathcal{M}_{j+1}, \mu_{j+1})$ using the dimension formula provided the homology terms are zero.

Checking the dimension of the space spanned by \mathcal{B}_{γ} is a constructive tool to check if \mathcal{B}_{j+1} spans the spline space required.

Observations

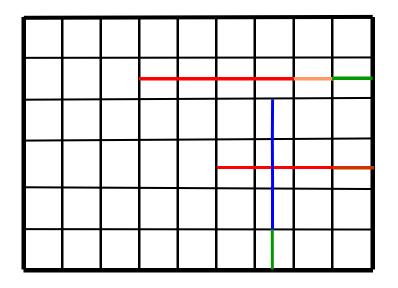
- To find the dimension of a spline space with many Bsplines is more complex than finding the dimension of a spline space with few B-splines
- When assessing the B-splines \mathcal{B}_{γ} over γ_j we see if the refinement can be broken into a sequence of LR B-spline refinements with as low dimension increase as possible.
 - As a legal LR-spline refinement always introduces at least one B-spline linearly independent from the pre-existing, a dimension increase by just one will ensure that we go hand-in-hand.
 - If the dimension increase is greater than 1 we have to resort to assessing the B-splines B_γ over γ_j.



Example: C² **bi-cubic refinement configurations**

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1



Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1. Trivial

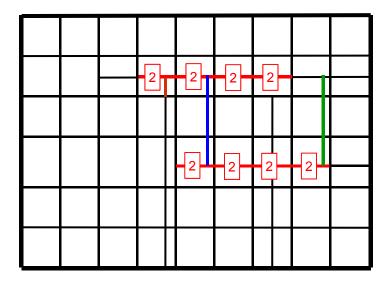
Mesh-rectangle length 1 extending existing meshrectangle, T-joint at other end. Dimension increase 1. Trivial.

Interior mesh-rectangle length 4, T-joints at both ends. Dimension increase 1. Trivial.

Mesh-rectangle length 1 gap filling. Dimension increase 4, B_{γ} spans a polynomial space, Trivial to check

Mesh-rectangle length 1 extension of existing mesh-rectangle to the boundary. Dimension increase 4, \mathcal{B}_{γ} spans a polynomial space, Trivial to check.

Increasing interior multiplicity in the bi-cubic case



Interior mesh-rectangle length 4, increase multiplicity to 2, lower multiplicity at both ends, dimension increase 1. Trivial.

Interior mesh-rectangle length 3, ending in T-joints with orthogonal mesh rectangles, one with multiplicity 1, and one with multiplicity 2, dimension increase 1. Trivial.

Extend existing mesh by length 1, ending in T-joint with orthogonal mesh rectangles with multiplicity 2, dimension increase 2, \mathcal{B}_{γ} spans a polynomial space. Trivial to check.

Interior mesh-rectangle length 3, ending in T-joints with orthogonal mesh rectangles of multiplicity 2, dimension increase 2, two new B-splines. To decide if \mathcal{B}_{j+1} is a basis check if dim span $(B_{\gamma})_{B \in \mathcal{B}_{\gamma}} = 2$.

C² bi-cubic refinement configurations Cases: Dimension increase 1

The start point is a bi-cubic tensor product B-spline basis spanning the spline space over a tensor-mesh. Assume that before the refinement that the B-splines in \mathcal{B}_i

are linear independent and span $\mathbb{S}_{(3,3)}(\mathcal{M}_j, \mu_j)$

- Assume that a B-spline in \mathcal{B}_{j+1} has a knotline containing the new mesh rectangle γ_j . This B-spline will be linearly independent from the B-splines in \mathcal{B}_j . Consequently the whole spline space defined over $S_{(3,3)}(\mathcal{M}_{j+1}, \mu_{j+1})$ is spanned by \mathcal{B}_{j+1} .
- If the number of B-splines in \mathcal{B}_{j+1} corresponds to the dimension of the bi-cubic spline space over \mathcal{M}_{j+1} then the B-splines in \mathcal{B}_{j+1} are linearly independent.

C² bi-cubic refinement configurations Cases: Dimension increase 4

Questions:

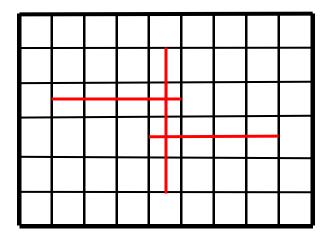
- **1.** Do the B-splines in \mathcal{B}_{j+1} span $\mathbb{S}_{(3,3)}(\mathcal{M}_j, \mu_j)$?
- 2. Is \mathcal{B}_{j+1} a basis for $\mathbb{S}_{(3,3)}(\mathcal{M}_j, \mu_j)$?

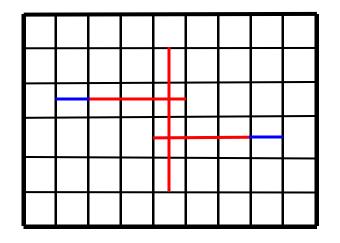
If we can answer yes to question 1, and the number of B-splines in \mathcal{B}_{j+1} corresponds to the dimension of $\mathbb{S}_{(3,3)}(\mathcal{M}_j,\mu_j)$ then \mathcal{B}_{j+1} is a basis for $\mathbb{S}_{(3,3)}(\mathcal{M}_j,\mu_j)$.

*C*² bi-cubic refinement Cases: Dimension increase 4

- We have to determine if dim span $\mathcal{B}_{\gamma} = 4$ or less than 4.
 - If the B-spline have a structure known for univariate B-splines, trivial to check.
 - If a more complex b-spline configuration, perform knot insertion such that the knot multiplicity at both ends of γ is 4, e.g., convert to a Bernstein basis. Check if the rank of the knot insertion matrix is 4.

Possible to increase dimension without refining B-splines





Dimension increase 1, one new B-splines (+5, -4) Dimension increase 1, one new B-splines (+5, -4) Dimension increase 1, no new B-splines

Dimension increase 3, three new B-splines (+ 9, -6) • To decide if \mathcal{B}_{j+1} is a basis check if

dim span $(B_{\gamma})_{B\in\mathcal{B}_{\gamma}} = 3.$

Alternative refinement sequence

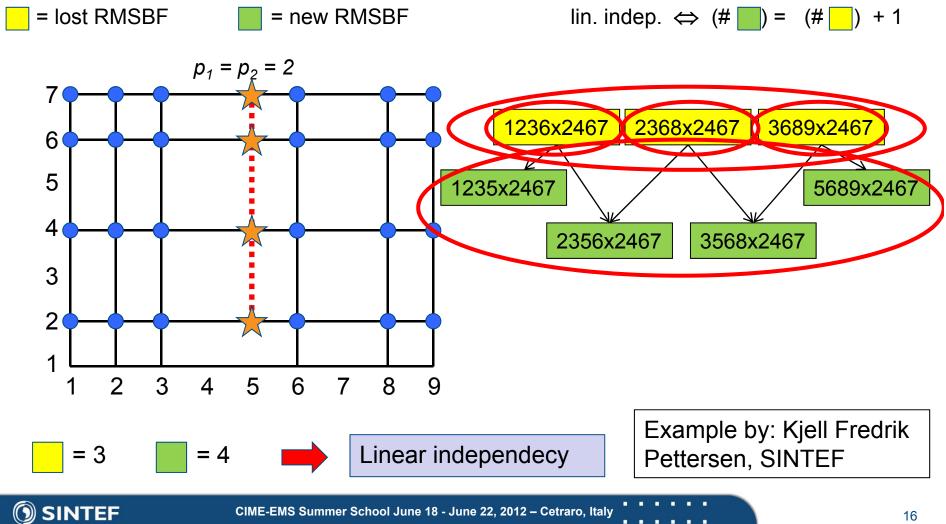
Dimension increase 1, one new B-spline (+5, -4) Dimension increase 1, one new B-spline (+2, -1) Dimension increase 1, one new B-spline (+2, -1) Dimension increase 1, one new B-spline (+5, -4) Dimension increase 1, one new B-spline (+5, -4)

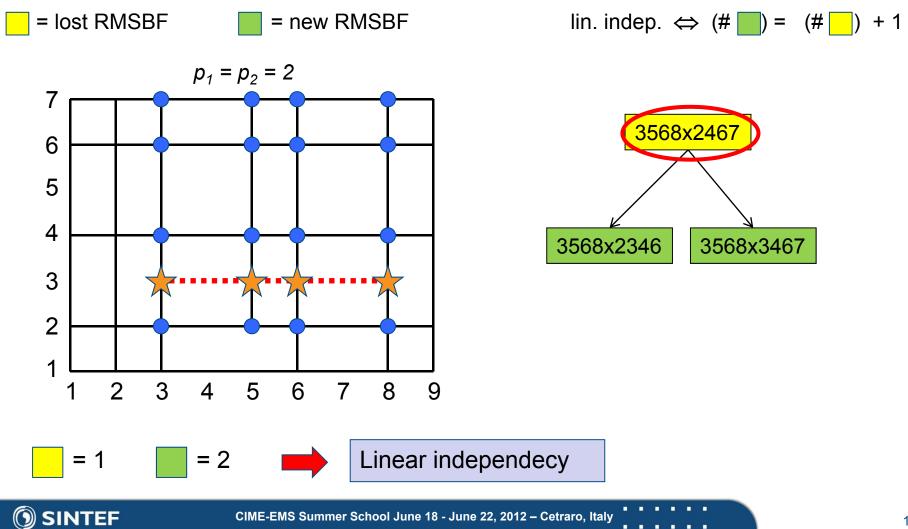
How to guarantee that \mathcal{B}_{j+1} is a basis for $(\mathcal{M}_{j+1}, \mu_{j+1})$ in the general case?

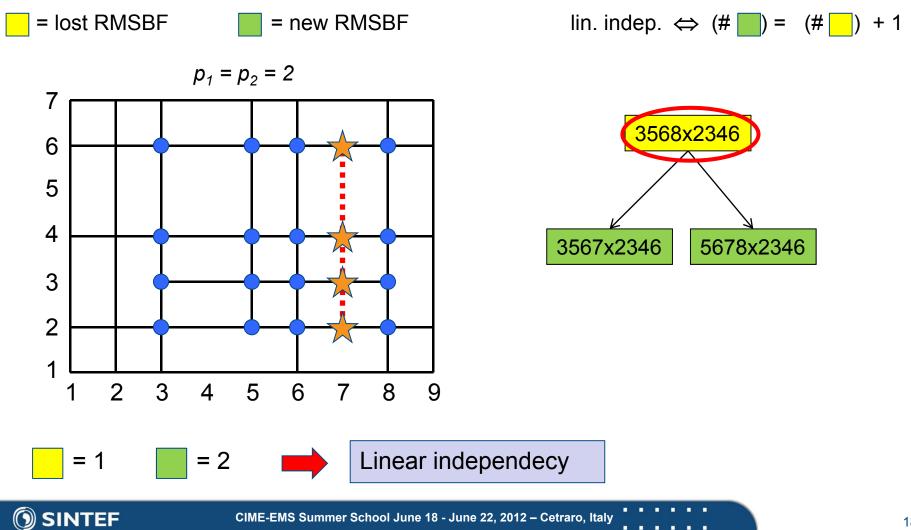
- Assume that \mathcal{B}_j is a basis for $\mathbb{S}_p(\mathcal{M}_j, \mu_j)$, .
- Make $(\mathcal{M}_{j+1}, \mu_{j+1}) = (\mathcal{M}_j + \gamma_j, \mu_{j,\gamma_j})$
- $\blacksquare \mathcal{B}_{j+1} \text{ is a basis for } \mathbb{S}_p(\mathcal{M}_{j+1}, \mu_{j+1}) \text{ if }$
 - The B-splines of \mathcal{B}_{j+1} spans $\mathbb{S}_p(\mathcal{M}_j, \mu_j)$ (Goes hand in hand)
 - $\blacksquare \#\mathcal{B}_{j+1} = dim \ \mathbb{S}_p(\mathcal{M}_{j+1}, \mu_{j+1})$
 - The number of B-splines corresponds to the dimension of $\mathbb{S}_{p}(\mathcal{M}_{j+1}, \mu_{j+1})$

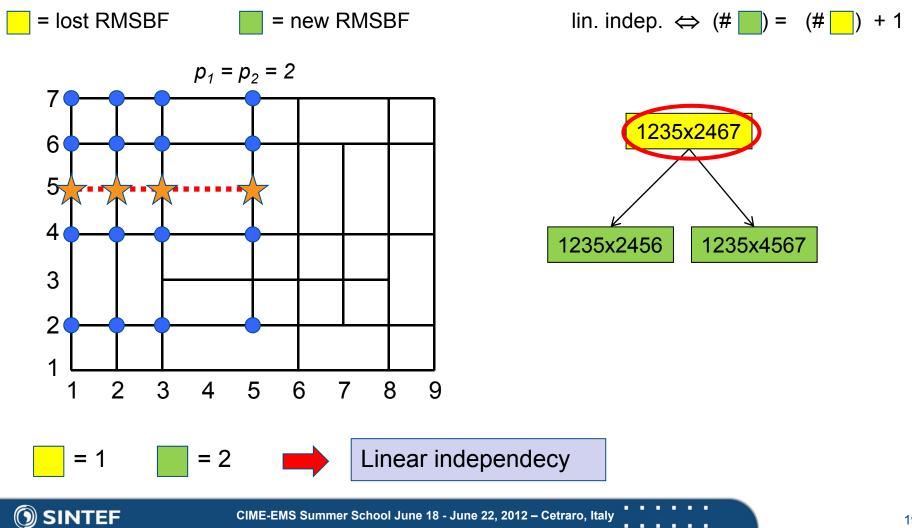
How to determine if the collection of Bsplines goes hand in hand with the spline space?

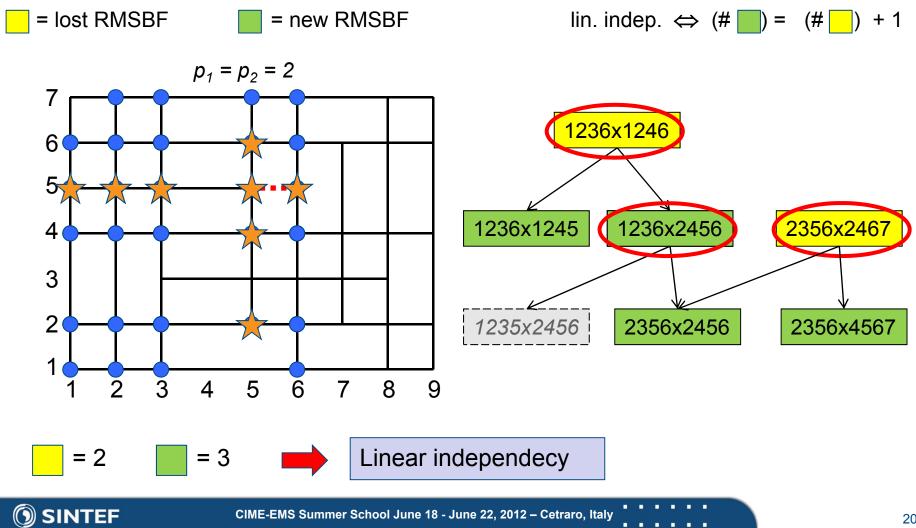
- The study of when two μ-extended meshes go hand-inhand is simplified by considering the restriction B_γ of a B-spline B to a mesh-rectangle γ.
 - In the 2-variate case we can look at the B-splines of \mathcal{B}_{j+1} that have γ with multiplicity $\mu(\gamma)$ as a knotline, and determine the dimension of the univarate spline space spanned by \mathcal{B}_{γ} dim span $(\mathcal{B}_{\gamma})_{\mathcal{B}\in\mathcal{B}_{\gamma}}$
 - If dim span $(B_{\gamma})_{B \in \mathcal{B}_{\gamma}}$ = dim $\mathbb{S}_{p}(\mathcal{M}_{j+1}, \mu_{j+1})$ dim $\mathbb{S}_{p}(\mathcal{M}_{j}, \mu_{j})$ then the spline space go hand in hand

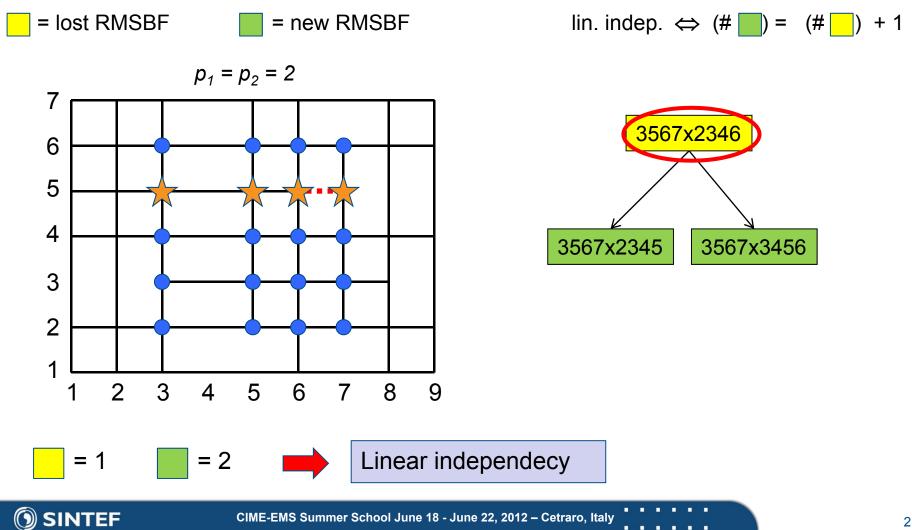


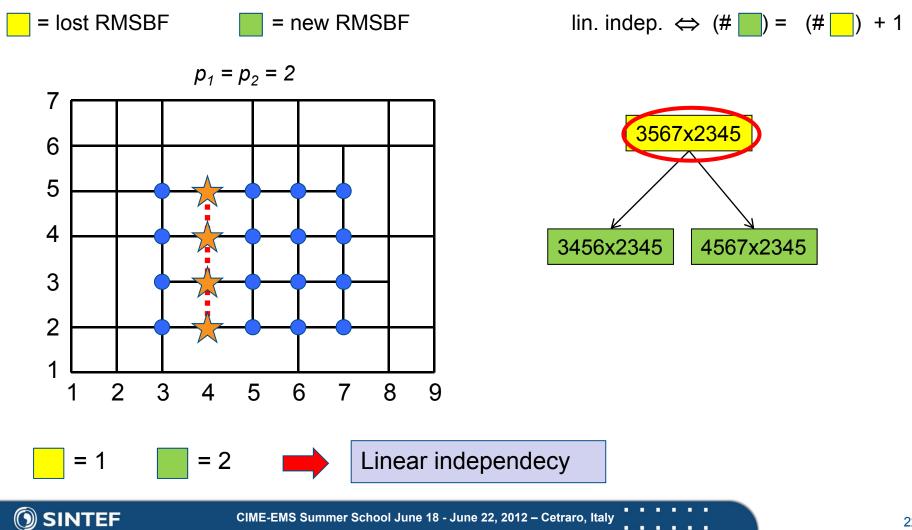


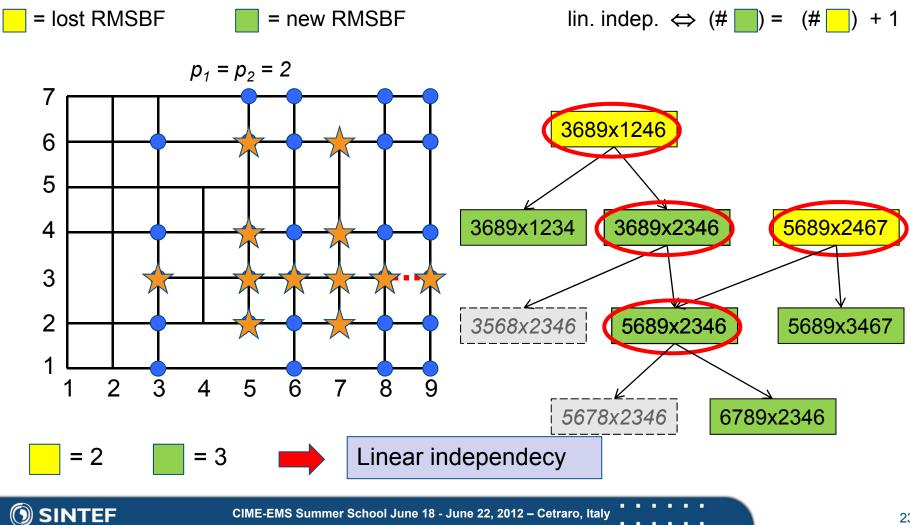


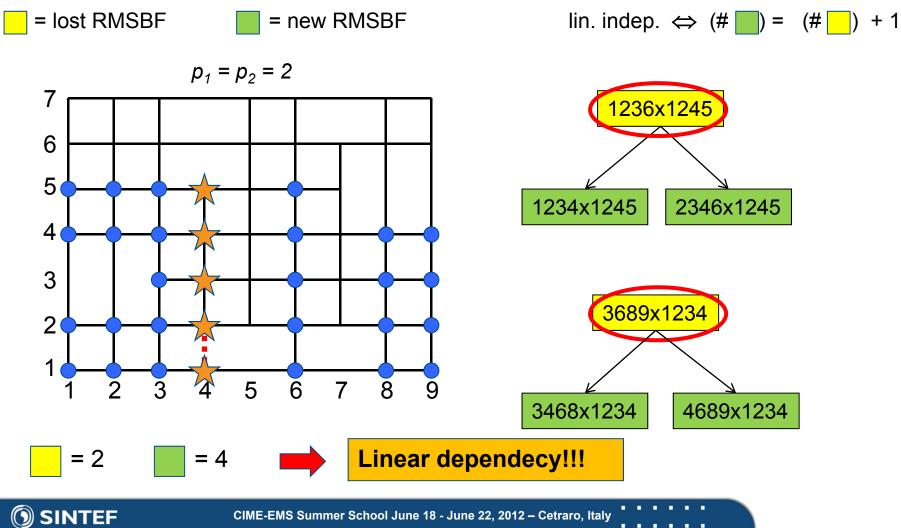


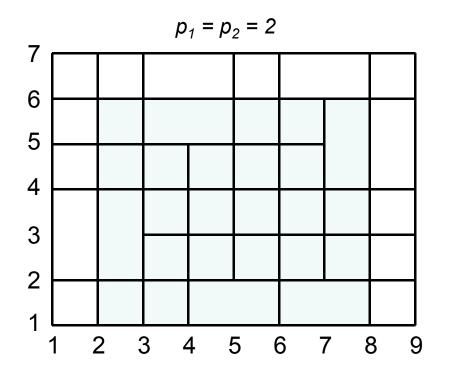


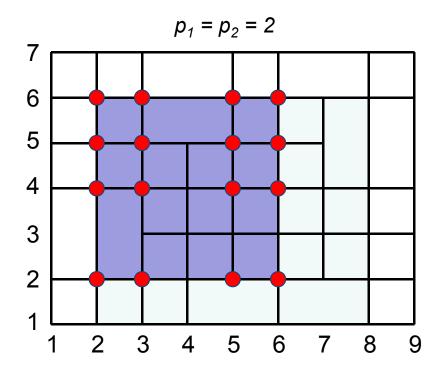


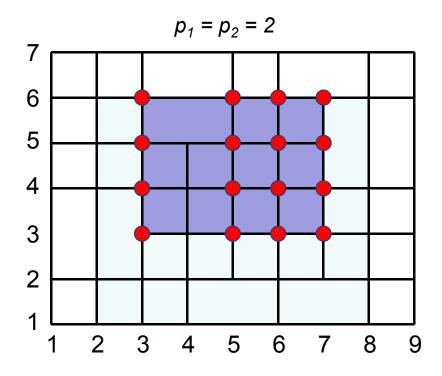






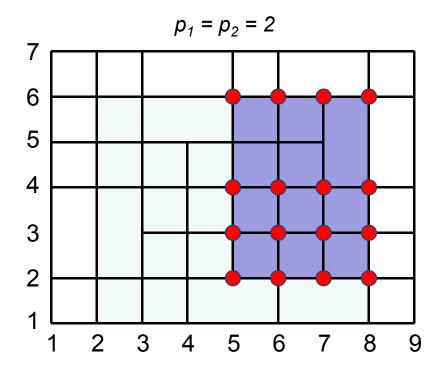


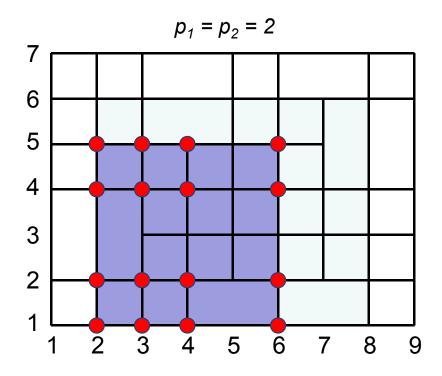




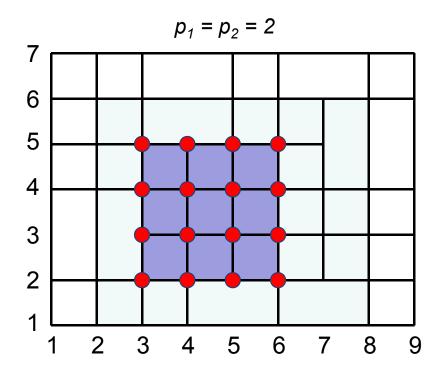
Level 1 Level 2 Level 3 Linear independency

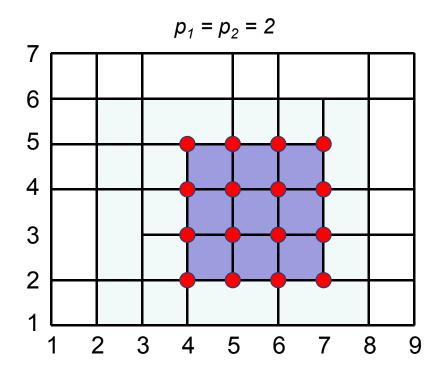
Linear dependency example

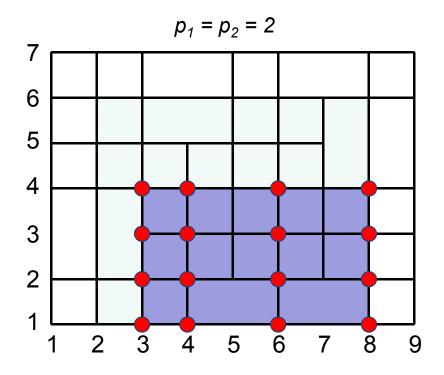




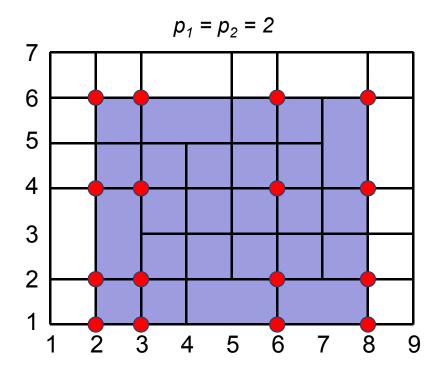
2346x1245

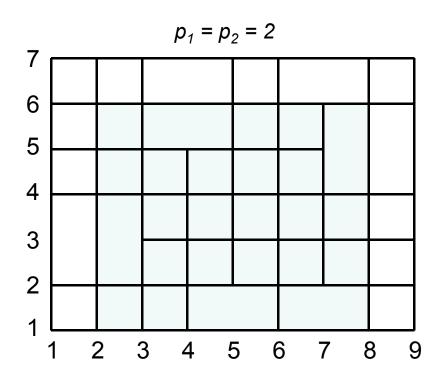






3468x1234





Linear relation

(knot value = knot position)

- 108 · (5678)x(2346)
- + 135 · (2356)x(2456)
- + 108 · (3567)x(3456)
- + 268 · (3456)x(2345)

- + 360 · (2346)x(1245)
- + 384 · (3468)x(1234)

 $= 720 \cdot (2368) \times (1246)$

What to do to handle the situation when we produce too many Bsplines to have a basis?

We can eliminate one of the B-splines

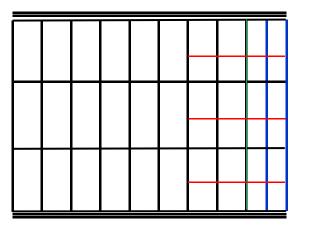
- We may end up with a collection of scaled B-splines that are only a partition of unity, but not a not a positive partition of unit.
- Discard elimination strategy if the result is not a positive partiton of unity.
- Discard the problematic refinement and perform an alternative refinement close by.
- We perform additional refinements to solve the problem.

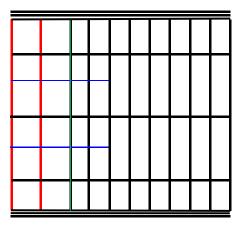
Some examples of use of LR Bsplines

- Stitching of B-spline patches
- Approximation of large data sets

. . .

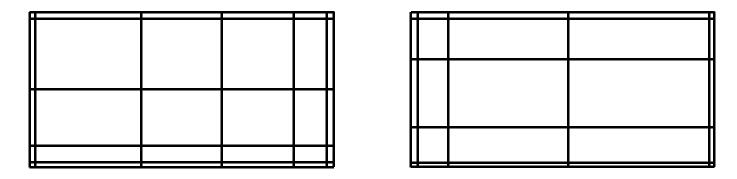
C¹ Stiching of 2-variate B-splines Bi-quadratic case using LR B-splines



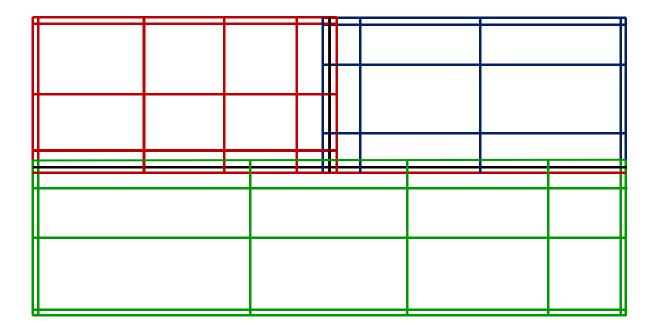


- 1. Adapt the edge knotlines of A to B
- 2. Adapt the edge knotlines of B to A
- 3. Insert horisontal knotline segement from B in A
- 4. Insert horisontal knotline segement from A in B
- 5. Merge the parameter domains

Multi-block T-joints (1) match parametrizaton



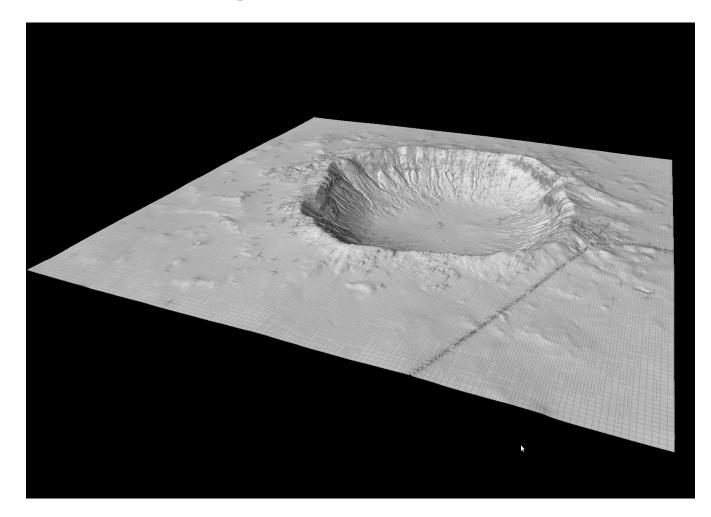
Multi-block T-joints(2) adjust boundary knotlines



Multi-block T-joints(3) identify + split transition B-splines

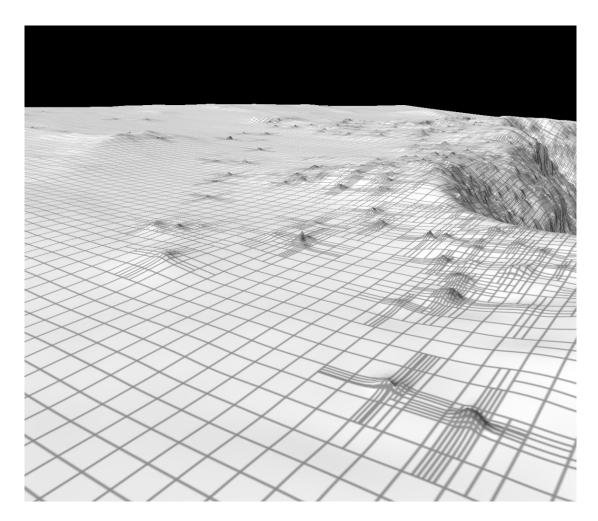
					_				

Approximation of large data set Barringer crater Arizona

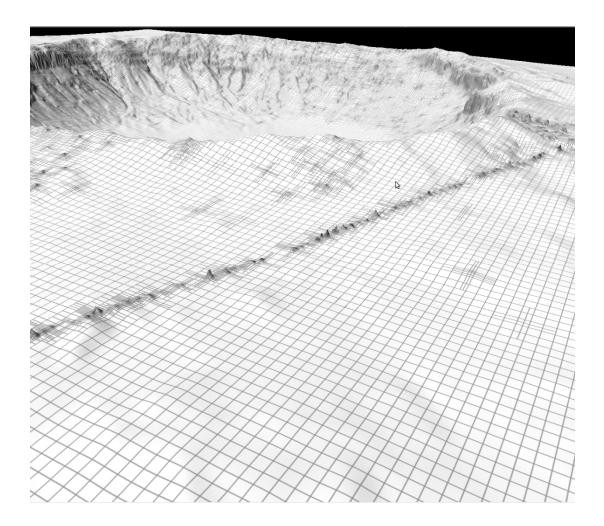


CIME-EMS Summer School June 18 - June 22, 2012 – Cetraro, Italy

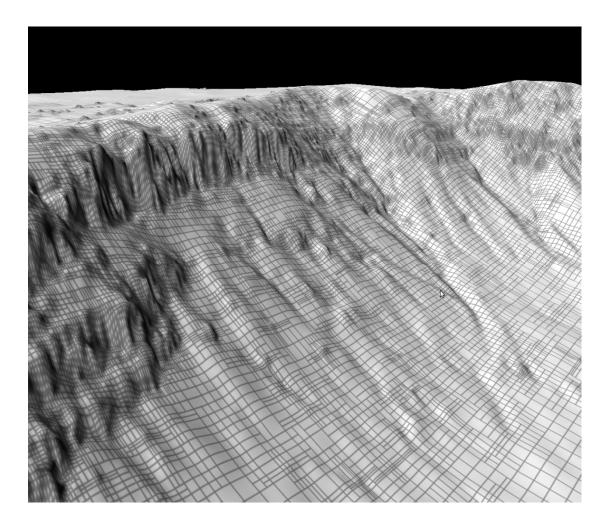
Local refinement to adapt to fine details



Data along powerline? reproduced



Details along inside slope



T-spline vertex grid as interface to LR B-splines

- The insertion of a vertex in a T-spline vertex grid (single vertex, T-, I-, L-joint) can be regarded as:
 - A specification of the parameter direction in which to refine
 - The parameter value to be used for the refinement
 - The location of the center of the new B-spline:
 - For odd degrees the location of the middle knotlines of the new Bspline
 - For even degrees the location of the mid-knot interval of the new B-splines
- This information is sufficient for performing refinement directly in the μ -extended box mesh
 - The hand-in-hand principle can be used for check linear independence

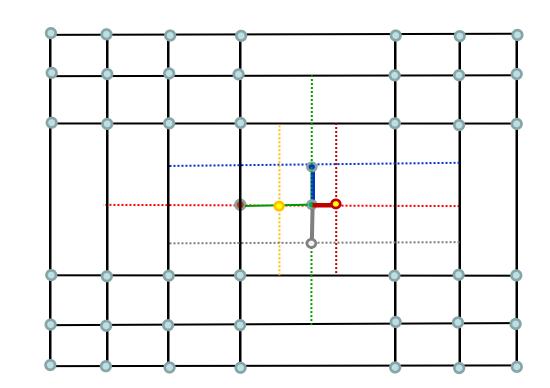
T-spline vertex grid as interface to LR B-splines - properties

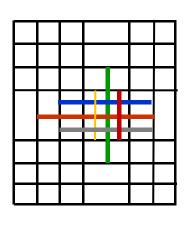
Andrea Bressan, University of Pavia, has compared T-spline and LR B-spline refinement in the case where exactly $(p + 1) \times (p + 1)$ B-splines overlap the elements of the box partition and found that in most cases the B-splines are the same.

Difference observed related to lines with multiplicities

- T-spline compatible LR B-spline can be defined
 - Restriction imposed on which refinement are allowed for LR B-splines
- The vertices and lines in the T-spline T-mesh have all a well defined location in the parameter domain.
 - Projecting the T-mesh/Dual mesh on to the LR-spline surface a T-spline type refinement can be specified directly in the parameter domain of the LR B-spline by specifying the location of the center point of a new Bspline in the mesh.

Draft of concept: T-spline type vertex mesh driving LR B-spline refinement in parameter domain





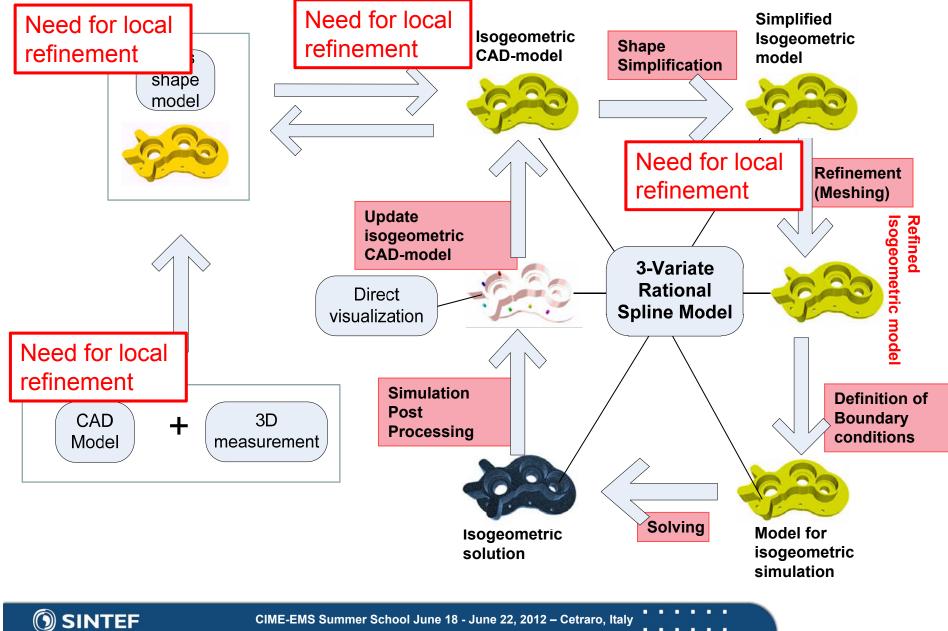
Concluding remarks

- T-splines and LR B-splines are two related approaches to Local Refinement of B-splines
- Refinement of LR B-splines can be performed by
 - Insertion of mesh-rectangles
 - T-spline like refinement approaches somewhat restricting the allowed refinements.
- The possibility of using a T-spline like interface also opens up the possibility to replace the T-spline rules for creating B-splines by the LR B-spline approach thus opening up for the use of the LR B-spline results on dimensionality and linear independence.

Current work on LR B-splines at SINTEF

- LR Splines extensions to the SINTEF GoTools C++ library is under way. EU-project: TERRIFIC.
- We work an efficient computation of stiffness matrices for LR Spline represented IGA on multi-core and many core CPUs
- We work on IGA based on LR B-splines
- We work on efficient LR B-spline visualization on GPUs
- We address representation of geographic information using LR B-splines (New EU-project starting October 1.
- We look at LR B-splines in design optimization. ITN Network SAGA.

Simulation – Future Information flow



CIME-EMS Summer School June 18 - June 22, 2012 - Cetraro, Italy

The end

Click here for video of the isogeometric dancing queen.
<u>http://www.youtube.com/watch?v=7LGpiptQ1u4</u>

