Lecture 4
 LR B-splines and linear independence

\author{

+ examples
}

Tor Dokken

Spline space and μ-extended LR-mesh

- We introduced in Lecture 3:

■ The μ-extended box-mesh

- The dimension formula
- The μ-extended LR-mesh

■ The LR B-splines

- In Lecture 2 we focused on the importance of:

■ Spanning the spline space over the μ-extended box-mesh
■ Finding a basis for the spline space

- In this Lecture we focus approaches for ensuring that the LR B-splines is a basis for the spline space defined by μ-extended LR-mesh by:
■ Defining a hand in-hand-property between the LR B-splines and the spline space over the μ-extended LR-mesh
- When the LR B-splines is a basis for the spline space over the μ extended LR-mesh

Ensuring linear independence

Spline space spanned by B-splines before refinement	We say that $\left(\mathcal{M}_{j+1}, \mu_{j+1}, \boldsymbol{p}\right)$ goes hand-inhand with $\left(\mathcal{M}_{j}, \mu_{j}, \boldsymbol{p}\right)$ if Spline space before refinement $\operatorname{span}(B)_{B \in \mathcal{B}}=\mathbb{S}_{p}\left(\mathcal{M}_{j}, \mu_{j}\right)$ and
Spline space spanned by B-splines after refinement	If $\left(\mathcal{M}_{j+1}, \mu_{j+1}, \boldsymbol{p}\right)$ and $\left(\mathcal{M}_{j+1}, \mu_{j+1}, \boldsymbol{p}\right)$ goes hand-in-hand and
	$\# \mathcal{B}_{j+1}=\operatorname{dim} \mathbb{S}_{\boldsymbol{p}}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$ then the B-splines of \mathcal{B}_{j+1} form a basis A basis if hand- in-hand and the number of B- splines matches the spline space dimenison for $\mathbb{S}_{\boldsymbol{p}}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$.

To ensure linear independence we have to

1. Determine $\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$
2. Determine if \mathcal{B}_{j+1} spans $\mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$
3. Check that $\# \mathcal{B}_{j+1}=\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$

Difference in spanning properties between \mathcal{B}_{j} and \mathcal{B}_{j+1}

- The only B-splines in \mathcal{B}_{j+1} that model the discontinuity introduced by inserting the mesh-rectangle γ_{j} are those that have γ_{j} with multiplicity $\mu\left(\gamma_{j}\right)$ as part of the knot structure.
- By restricting these B -splines to γ_{j} we get a set of B -splines \mathcal{B}_{γ} restricted to γ_{j} with dimension one lower than the dimension of the B-splines of \mathcal{B}_{j+1}. $\begin{aligned} & \text { Pick out the B-splines with multiplicity } 2 \text { over } \gamma_{j} \text {. Intersect } \\ & \text { with } \gamma_{j} \text { to }\end{aligned}$

The use of \mathcal{B}_{γ}

- A theorem for general dimensions and degrees states $\operatorname{dim} \operatorname{span}\left(B_{\gamma}\right)_{B \in \mathcal{B}_{\gamma}} \leq \operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)-\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j}, \mu_{j}\right)$
- Further it is stated that \mathcal{B}_{j+1} spans $\mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$ if $\operatorname{dim} \operatorname{span}\left(B_{\gamma}\right)_{B \in \mathcal{B}_{\gamma}}=\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)-\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j}, \mu_{j}\right)$

We can find $\mathbb{S}_{p}\left(\mathcal{M}_{j}, \mu_{j}\right)$ and $\mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$ using the dimension formula provided the homology terms are zero.

Checking the dimension of the space spanned by \mathcal{B}_{γ} is a constructive tool to check if \mathcal{B}_{j+1} spans the spline space required.

Observations

- To find the dimension of a spline space with many Bsplines is more complex than finding the dimension of a spline space with few B-splines
- When assessing the B -splines \mathcal{B}_{γ} over γ_{j} we see if the refinement can be broken into a sequence of LR B-spline refinements with as low dimension increase as possible.
■ As a legal LR-spline refinement always introduces at least one B-spline linearly independent from the pre-existing, a dimension increase by just one will ensure that we go hand-in-hand.
- If the dimension increase is greater than 1 we have to resort to assessing the B-splines \mathcal{B}_{γ} over γ_{j}.

Example: C^{2} bi-cubic refinement configurations

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1. Trivial

Mesh-rectangle length 1 extending existing meshrectangle, T -joint at other end. Dimension increase 1. Trivial.
Interior mesh-rectangle length 4, T-joints at both ends. Dimension increase 1. Trivial.

Mesh-rectangle length 1 gap filling. Dimension increase 4,
\mathcal{B}_{γ} spans a polynomial space, Trivial to check
Mesh-rectangle length 1 extension of existing meshrectangle to the boundary. Dimension increase $4, \mathcal{B}_{\gamma}$ spans a polynomial space, Trivial to check.

Increasing interior multiplicity in the bi-cubic case

Interior mesh-rectangle length 4, increase multiplicity to 2 , lower multiplicity at both ends, dimension increase 1. Trivial.

Interior mesh-rectangle length 3, ending in T-joints with orthogonal mesh rectangles, one with multiplicity 1 ,and one with multiplicity 2 , dimension increase 1. Trivial.

Extend existing mesh by length 1 , ending in T-joint with orthogonal mesh rectangles with multiplicity 2 , dimension increase $2, \mathcal{B}_{\gamma}$ spans a polynomial space. Trivial to check.

Interior mesh-rectangle length 3 , ending in T -joints with orthogonal mesh rectangles of multiplicity 2 , dimension increase 2 , two new B -splines. To decide if \mathcal{B}_{j+1} is a basis check if dim span $\left(B_{\gamma}\right)_{B \in \mathcal{B}_{\gamma}}=2$.

C^{2} bi-cubic refinement configurations Cases: Dimension increase 1

The start point is a bi-cubic tensor product B-spline basis spanning the spline space over a tensor-mesh.
Assume that before the refinement that the B-splines in \mathcal{B}_{j} are linear independent and span $\mathbb{S}_{(3,3)}\left(\mathcal{M}_{j}, \mu_{j}\right)$
■ Assume that a B-spline in \mathcal{B}_{j+1} has a knotline containing the new mesh rectangle γ_{j}. This B-spline will be linearly independent from the B -splines in \mathcal{B}_{j}. Consequently the whole spline space defined over $\mathbb{S}_{(3,3)}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$ is spanned by \mathcal{B}_{j+1}.

- If the number of B -splines in \mathcal{B}_{j+1} corresponds to the dimension of the bi-cubic spline space over \mathcal{M}_{j+1} then the B -splines in \mathcal{B}_{j+1} are linearly independent.

C^{2} bi-cubic refinement configurations Cases: Dimension increase 4

Questions:

1. Do the B-splines in \mathcal{B}_{j+1} span $\mathbb{S}_{(3,3)}\left(\mathcal{M}_{j}, \mu_{j}\right)$?
2. Is \mathcal{B}_{j+1} a basis for $\mathbb{S}_{(3,3)}\left(\mathcal{M}_{j}, \mu_{j}\right)$?

If we can answer yes to question 1 , and the number of B splines in \mathcal{B}_{j+1} corresponds to the dimension of $\mathbb{S}_{(3,3)}\left(\mathcal{M}_{j}, \mu_{j}\right)$ then \mathcal{B}_{j+1} is a basis for $\mathbb{S}_{(3,3)}\left(\mathcal{M}_{j}, \mu_{j}\right)$.

C^{2} bi-cubic refinement Cases: Dimension increase 4

- We have to determine if $\operatorname{dim} \operatorname{span} \mathcal{B}_{\gamma}=4$ or less than 4.

■ If the B-spline have a structure known for univariate B-splines, trivial to check.

■ If a more complex b-spline configuration, perform knot insertion such that the knot multiplicity at both ends of γ is 4 , e.g., convert to a Bernstein basis. Check if the rank of the knot insertion matrix is 4 .

Possible to increase dimension without refining B-splines

Dimension increase 1, one new B-splines ($+5,-4$)
Dimension increase 1, one new B-splines (+5, -4)
Dimension increase 1, no new B-splines
Dimension increase 3, three new B-splines (+ 9, -6)

- To decide if \mathcal{B}_{j+1} is a basis check if $\operatorname{dim} \operatorname{span}\left(B_{\gamma}\right)_{B \in \mathcal{B}_{\gamma}}=3$.

Alternative refinement sequence

Dimension increase 1, one new B-spline ($+5,-4$)
Dimension increase 1, one new B-spline ($+2,-1$)
Dimension increase 1, one new B-spline ($+2,-1$)
Dimension increase 1, one new B-spline ($+5,-4$)
Dimension increase 1 , one new B-spline ($+5,-4$)

How to guarantee that \mathcal{B}_{j+1} is a basis for $\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$ in the general case?

- Assume that \mathcal{B}_{j} is a basis for $\mathbb{S}_{p}\left(\mathcal{M}_{j}, \mu_{j}\right)$.
\square Make $\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)=\left(\mathcal{M}_{j}+\gamma_{j}, \mu_{j, \gamma_{j}}\right)$
- \mathcal{B}_{j+1} is a basis for $\mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$ if
- The B-splines of \mathcal{B}_{j+1} spans $\mathbb{S}_{p}\left(\mathcal{A}_{j}, \mu_{j}\right)$ (Goes hand in hand)
- \#B $\mathcal{B}_{j+1}=\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$
- The number of B -splines corresponds to the dimension of $\mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$

How to determine if the collection of Bsplines goes hand in hand with the spline space?

- The study of when two μ-extended meshes go hand-inhand is simplified by considering the restriction \mathcal{B}_{γ} of a B-spline \mathcal{B} to a mesh-rectangle γ.
■ In the 2 -variate case we can look at the B-splines of \mathcal{B}_{j+1} that have γ with multiplicity $\mu(\gamma)$ as a knotline, and determine the dimension of the univarate spline space spanned by \mathcal{B}_{γ} dim span $\left(\mathcal{B}_{\gamma}\right)_{\mathcal{B} \in \mathcal{B}_{\gamma}}$
■ If $\operatorname{dim} \operatorname{span}\left(B_{\gamma}\right)_{B \in \mathcal{B}_{\gamma}}=\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)-\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j}, \mu_{j}\right)$ then the spline space go hand in hand

Linear dependency example

Linear dependency example

$\square=$ lost RMSBF $\quad \square$ = new RMSBF
lin. indep. $\Leftrightarrow(\#$ \square) $\quad(\#$ \square $+1$

$\square=2$
$\square=4$
Linear dependecy!!!

Linear dependency example

Linear dependency example

2356×2456

Linear dependency example

3567×3456

Linear dependency example

5678×2346

Linear dependency example

2346×1245

Linear dependency example

3456×2345

Linear dependency example

4567×2345

Linear dependency example

3468×1234

Linear dependency example

2368×1246

Linear dependency example

Linear relation

$$
\begin{aligned}
& \text { (knot value }=\text { knot position) } \\
& 108 \cdot(5678) \times(2346) \\
& +135 \cdot(2356) \times(2456) \\
& +108 \cdot(3567) \times(3456) \\
& +268 \cdot(3456) \times(2345) \\
& +324 \cdot(4567) \times(2345) \\
& +360 \cdot(2346) \times(1245) \\
& +384 \cdot(3468) \times(1234) \\
& =720 \cdot(2368) \times(1246)
\end{aligned}
$$

What to do to handle the situation when we produce too many Bsplines to have a basis?

- We can eliminate one of the B-splines
- We may end up with a collection of scaled B-splines that are only a partition of unity, but not a not a positive partition of unit.
- Discard elimination strategy if the result is not a positive partiton of unity.
- Discard the problematic refinement and perform an alternative refinement close by.
- We perform additional refinements to solve the problem.

Some examples of use of LR Bsplines

- Stitching of B-spline patches
- Approximation of large data sets

C^{1} Stiching of 2-variate B-splines Bi-quadratic case using LR B-splines

1. Adapt the edge knotlines of A to B
2. Adapt the edge knotlines of B to A
3. Insert horisontal knotline segement from B in A
4. Insert horisontal knotline segement from A in B
5. Merge the parameter domains

Multi-block T-joints (1) match parametrizaton

Multi-block T-joints(2) adjust boundary knotlines

Multi-block T-joints(3) identify + split transition B-splines

Approximation of large data set Barringer crater Arizona

Local refinement to adapt to fine details

(a) SINTEF

CIME-EMS Summer School June 18 - June 22, 2012 - Cetraro, Italy

Data along powerline? reproduced

(a) SINTEF CIME-EMS Summer School June 18 - June 22, 2012 - Cetraro, Italy

Details along inside slope

[^0]
T-spline vertex grid as interface to LR B-splines

- The insertion of a vertex in a T-spline vertex grid (single vertex, T-, I-, L-joint) can be regarded as:
■ A specification of the parameter direction in which to refine
- The parameter value to be used for the refinement
- The location of the center of the new B-spline:
- For odd degrees the location of the middle knotlines of the new Bspline
- For even degrees the location of the mid-knot interval of the new Bsplines
- This information is sufficient for performing refinement directly in the μ-extended box mesh
■ The hand-in-hand principle can be used for check linear independence

T-spline vertex grid as interface to LR B-splines - properties

- Andrea Bressan, University of Pavia, has compared T-spline and LR B-spline refinement in the case where exactly $(p+1) \times(p+1) \mathrm{B}$ splines overlap the elements of the box partition and found that in most cases the B-splines are the same.
- Difference observed related to lines with multiplicities
- T-spline compatible LR B-spline can be defined
- Restriction imposed on which refinement are allowed for LR B-splines
- The vertices and lines in the T-spline T-mesh have all a well defined location in the parameter domain.
- Projecting the T-mesh/Dual mesh on to the LR-spline surface a T-spline type refinement can be specified directly in the parameter domain of the LR B-spline by specifying the location of the center point of a new B spline in the mesh.

Draft of concept: T-spline type vertex mesh driving LR B-spline refinement in parameter domain

Concluding remarks

- T-splines and LR B-splines are two related approaches to Local Refinement of B-splines
- Refinement of LR B-splines can be performed by

■ Insertion of mesh-rectangles
■ T-spline like refinement approaches somewhat restricting the allowed refinements.

- The possibility of using a T-spline like interface also opens up the possibility to replace the T-spline rules for creating B-splines by the LR B-spline approach thus opening up for the use of the LR B-spline results on dimensionality and linear independence.

Current work on LR B-splines at SINTEF

■ LR Splines extensions to the SINTEF GoTools C++ library is under way. EU-project: TERRIFIC.

- We work an efficient computation of stiffness matrices for LR Spline represented IGA on multi-core and many core CPUs
- We work on IGA based on LR B-splines
- We work on efficient LR B-spline visualization on GPUs

■ We address representation of geographic information using LR B-splines (New EU-project starting October 1.

- We look at LR B-splines in design optimization. ITN Network SAGA.

Simulation - Future Information flow

The end

Click here for video of the isogeometric dancing queen.
■ http://www.youtube.com/watch?v=7LGpiptQ1u4

[^0]: (a) SINTEF

 CIME-EMS Summer School June 18 - June 22, 2012 - Cetraro, Italy

