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Contents of this seminar

@ Some words about JKU

@ Hierarchical B-spline bases
o local refinement, suitability for IGA.

@ Singular parameterizations
e Treat singular cases, restore approximation order.

© Turbine modeling
o Compact turbine CAD model and Volume parametrization.

© Turbine simulation
e Simulation & comparison to FEA in industrial problems.



Johannes Kepler University Linz (JKU)

@ Leading university of Upper
Austria, which is one of the
most dynamic and successful
regions in Austria.

@ Around 17,000 students with 1
in 11 being from abroad.




Johannes Kepler University Linz (JKU)

@ Named after the famous
astronomer Johannes Kepler
who lived in Linz.

@ Faculty of Engineering and
Natural Sciences: strong links
to the local economy.




Johannes Kepler University Linz (JKU)

@ Institute of Applied Geometry:
1 of the 10 math institutes of JKU.
Established in 2000, in conjunction
with the appointment of Bert Jlittler as
prof. of Scientific Computing.

@ Current staff: 1 professor, 3
postdocs, 7 PhD students

@ Collocated with the RICAM
research institute of the Austrian
Academy of Sciences.



Johannes Kepler University Linz (JKU)

@ The research activities focus on
applications of geometry

o CAGD - Computer Aided
Geometric Design

e Applications of (Classical)
Algebraic Geometry

@ Kinematics and Robotics

o Isogeometric Analysis




@ Hierarchical B-spline bases
o local refinement, suitability for IGA.

@ Singular parameterizations
o Treat singular cases, smooth subspaces.

© Turbine modeling
e Compact turbine CAD model and Volume parametrization.

© Turbine simulation
e Simulation & comparison to FEA in industrial problems.



Hierarchical B-Spline Spaces



Question studied

Find suitable B-Spline spaces that ...

> enable local refinement

initial grid marked domain locally refined mesh

> exhibit “nice” properties
e linear independence, high regularity
e span the spline space, partition of unity, stability



Hierarchical splines: background

Approach: hierarchical B—spline model
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Hierarchical splines: basis functions

domain of level 1 some B—splines of level 1

domains of level 1&2 some B—splines of level 2



Hierarchical splines: results

Properties of hierarchical B—splines:
[v'] local refinement

[v'] linear independence

[v'] nested spaces

[v'] maximum regularity

[v'] weak stability

Questions:
@ suitable for IGA?
@ characterization of the spline space?
@ partition of unity?
@ Stability?



Hierarchical splines: applications

Hierarchical refinement in IGA
@ Is it advantageous in the context of IGA?

@ Yes, greatly reduces DoFs.
Example: heat equation over L-Shape:
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refined grid hierarchical B—splines convergence plot

[Vuong, Giannelli, Juttler, Simeon (CMAME, 2011)]



Hierarchical splines: spaces

Characterization of the underlying spline space
@ Contain piecewise polynomials of degree d and smoothness C?~'?

@ yes, under reasonable assumptions on the domain configuration.

admissible domain configuration for degree 2

non—admissible domain configuration for degree 2

[Giannelli, Juttler (DK-JKU report, 2011)]



Hierarchical splines: normalization

Truncated hierarchical B—splines
@ Partition of unity?
@ yes, by truncated splines (also, reduce support overlap).

hierarchical truncated

[Giannelli, Juttler, Speleers (CAGD, 2012)]



Hierarchical splines: stability

Weak/strong stability of multi—level basis
@ Is it stable?
@ yes, in fact truncated HB-splines are strongly stable.

[fuv)=Ycr  C={c} kllCllw <If(u,V)llss < kilICllI |

¢ = # of levels

@ hierarchical B—splines:
o ky and k¢ depend polynomially on ¢ = weakly stable basis

[Kraft (PhD thesis, 1998)]

@ truncated hierarchical B—splines:
@ kp and kqy do not depend on ¢ = strongly stable basis

[Giannelli, Juttler, Speleers (preprint, 2012)]



Singular Parameterizations



Singular parametrizations: Questions

In case of singularities in the parameterization ...
> determine smooth-enough test functions for numerical simulation

o classify different cases
o determine regularity properties of the test functions
> keep approximation power (as far as possible)
e modify (basis of) test function space to obtain the desired regularity
e analyze approximation power of the modified discretization space
> avoid trimming/splitting

e Treat singularities in single-patch parametrizations



Singular parametrizations: Motivation

Singular parametrizations arise in ...

@ Single-patch parametrization of
domains with smooth boundary

— using polar coordinates

— using Coon’s patch method

@ sharp features (0° angles)

@ cones

@ etc.

Y



Singular parametrizations: Regularity considerations

@ Regularity properties of test functions f; in the presence of
singularities?
@ There is a smooth subspace of H* test functions.

Regularity condition:
Bi=boG e H(Q)

where Vj, = span{f;}.

Does not always hold if the parametrization is singular, eg.:




Space correction

@ Is there a better space for the discretization?
@ yes, V, N HY(Q).
Vy = span{g;} and Q is the physical domain.

Compute a basis for the restricted test function space

VhNHYQ) fore=1,2.

@ idea: Modify 3;’s to get a basis for V, N H-.
@ New basis functions are linear combinations of the old ones.

@ New basis exhibits nice properties:
non-negativity, partition of unity, relatively simple construction

@ Approximation order ?

[Takacs, Juttler (CMAME, 2011)]



Space correction: H' example (triangular domain)

o 4

Vp (dim=9) 3 test functions ¢ H'  test functions € H'

<

new function € H' Vy N H' (dim=7)




Space correction: H= example (triangular domain)

i 4

Vp (dim=9) 6 test functions ¢ H?  test functions € H?

A A4

new functions € H? Vi N H? (dim= 6)




Approximation power of V, N H

What are the approximation properties of V, N H‘?
@ In regular B-Spline parametrizations the error is O(h9—¢+1).
@ We need to bound

inf - < ?
w,,evhmef”SO ehllHe) <

for any ¢ € H* (ie. solution of a boundary value problem).
@ Near-optimal approximation order:

e

approx. order approx. order
L2 d+1 d+1
H d d—1/2
H? d—1 d—-5/2

[Takacs, Juttler (Graph. Models, 2012)]



Turbine modeling



Questions studied

@ Compact CAD-model for a turbine blade?
@ Volume parameterization of the water passage?

Motivation: EXCITING project (partner HYDRO: hydroelectric turbines)
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Description of a turbine blade

@ Input :
e medial surface

e design parameters: profile function (shape of cross sections) and
scaling function (thickness of blade)

d

@ Output: B-spline model of the blade



Description of a turbine blade

@ Pressure and suction side of the blade are obtained by adding or
subtracting the scaled profile to the medial surface:

b=m+ dny
m..... medial surface
n..... normals of the medial surface
Yoo, profile function
d..... scaling function

@ Schematic computation




Constructing a B-spline representation

Getting the boundary B-Spline surfaces of pressure and suction sides.

@ Method:
@ B-spline representation of medial surface

@ Reparameterization of the medial surface
© Computation of the normals
© Generating the blade surface

[Rossgatterer, Jittler, Kapl, Della Vecchia (Graph. Models, 2012)]



Medial surface, normals, reparameterization

@ Approximate medial surface m(u, v) by B-spline surface
— least-squares fitting

@ Approximate normals of medial surface n(u, v) by B-splines
— least-squares fitting

@ Reparameterize according to profile:
Horizontal speed of profile = parametric speed of medial surface

@ Look for a function u(t) s.t.
9 /
I5mu(®), V) = A(v)x ()

@ \(v) : arc length of u-streamline of m(u, v) at v.
e x : first coordinate of the profile curve.

@ Minimization problem = Gauss-Newton-type method.




Generating the blade surface

@ The two sides of the blade (pressure and suction side) are obtained
by
b™(t, v) = m(u(t), v) £ d(v)n(u(t), v)y(t)

@ Can compute b® by using formulas for the composition and
multiplication of B-spline functions.

@ We arrive to a parametric model of the turbine blade.

@ b™ and b fit together at t = 0 with C'-continuity.

@ High number of control points and high order
— degree reduction and knot removal
— coarse surface representation



Example - Turbine blade




Volume parameterization of water passage

Getting NURBS-volume parameterization of domain where water flows.

Kaplan turbine with 4 blades, mostly used in river power stations
w §

/
/
/ :

@ Water passage is to be meshed for simulation & optimization



Input data

@ Problem is symmetric around the turbine
— restrict to passage between two consecutive blades

Bounded by suction & pressure side, inlet and outlet

domain of interest cylindric projection

@ Divide domain of interest into volume patches
© Parameterize each volume patch individually
© Fit volumes together with C°-continuity



Segmentation

@ There exist many ways to subdivide the domain.
— avoid singularities and too large or small angles

@ Segmentation into 8 patches, each of them being topologically
equivalent to the cube.



Example - Volume

> Final volume parameterization of (a sixth of) the water passage

8 patches 3 patches

@ Generated B-spline parameterizations of blades and volumes that
are suitable for Isogeometric Analysis.



Turbine Simulation



Simulation of turbine engines

Apply IGA in a real industrial environment, compare with FEA

MTU Aero Engines



Parameterization of a blade volume

B-Spline model of a turbine blade, closer look




numerical simulation

Deformation of turbine blades, linear elasticity assumption

@ Structural simulation subject to pressure and temperature field

@ Based on single-patch isogeometric solver produced by TU Munich
(EXCITING project)

@ Input (pressure field, temperature field) generated by other
departments of MTU

@ Comparison with results generated by the standard FEM solver
CalculiX

[Grossmann, Jittler, Schlusnus, Barner, Vuong (CAGD, 2012)]



mathematical model

linear elasticity with temperature-dependent material properties:

stress strain
To
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@ Blades take intended shape under the influence of high
temperature, pressure, and centrifugal forces



comparison IGA / standard FEM (CalculiX)

Blade deformation under centrifugal force.

Color field according to displacement component u,,.



comparison IGA / standard FEM

Stress analysis (sliced blade)

isogeomelric analysis finite elemente analysis
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comparison IGA / standard FEM

Convergence behavior
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comparison IGA / standard FEM

Pressure on the suction Deformed shape
side of the airfoil (color: disp. component u,,)
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comparison IGA / standard FEM

Displacement on top corner caused by surface pressure
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comparison IGA / standard FEM

Temperature distribution Resulting displacement
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comparison IGA / standard FEM

Displacement at the top corner caused by temperature distribution
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comparison IGA / standard FEM

Time required to solve the linear system.
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comparison IGA / standard FEM

Time required for stiffness matrix assembly.

( code used for IGA was not optimized )
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@ Specialized bases for use in IGA
e Hierarchical B-Splines
(local refinement, suitable for IGA)

e Singularity analysis and smooth subspaces
(treat singular points, near-optimal approximation order)

@ Applying IGA to blade modeling and simulation
e Constructing the CAD model & volume
(compact parametrizations, respect design specifications)

e Simulation and comparison to FEA
(show the advantage of IGA in an industrial setting)
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