Isogeometric Analysis for Shell Structures

Josef Kiendl

Isogeometric Analysis for Shell Structures

Outline

- Introduction to shells
- Kirchhoff-Love shell theory
- Isogeometric shell analysis
- Integration into CAD
- Application to FSI simulations of wind turbine blades
- Isogeometric shape optimization

Introduction – What is a Shell?

A shell is a curved three-dimensional, thin-walled structure. It can be represented by a curved surface with a certain thickness.

Due to the curvature, shells can carry the load mostly by membrane forces, reducing bending moments. This implies a very efficient use of the material and allows to be very thin and light.

Shells in nature

seashell

nutshell

human skull

Shells in Civil Engineering and Architecture

Cupolas and vaults

Pantheon, Rom, 27 b.c. D = 44m, R/t = 18

TajMahal, India

St. Paul's, London, 1506 R/t = 18

Shells in Civil Engineering and Architecture

modern cooling tower R/t >> 500

concrete, R/t = 520 Kresge Hall, MIT

concrete roof, Heinz Isler

Shells in automotive engineering

pictures: DaimlerChrysler BMW Jaguar

Shells in naval and aerospace engineering

Shell Theories

Shell models can be classified into:

- Kirchhoff–Love, classical shell theory
- Reissner–Mindlin, shear deformable theory
- Higher order formulations: thickness-deformable, multilayer, multidirector

Kirchhoff-Love

Kinematic assumptions:

- Thickness remains unchanged $\varepsilon_{zz}=0$
- Cross sections remain straight
- Cross sections remain normal

Reissner-Mindlin

Kirchhoff-Love

Kinematic assumptions:

- Thickness remains unchanged $\varepsilon_{zz}=0$
- Cross sections remain straight
- Cross sections remain normal

-> transverse shear strain $\gamma_{xz} = 0$

Strains

Kirchhoff assumptions \rightarrow no strains in thickness direction $\varepsilon_{i3} = \varepsilon_{3i} = 0$

-> in-plane strains linear through thickness

Separating in-plane strains into constant and symmetrically linear part

- Constant part = membrane strain $\varepsilon_{\alpha\beta}$
- Symmetric linear part = bending strain
 - -> $\kappa_{\alpha\beta}$ change in curvature

$$E_{\alpha\beta} = \varepsilon_{\alpha\beta} + \theta^3 \kappa_{\alpha\beta}$$

$$\varepsilon_{\alpha\beta} = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} \\ \varepsilon_{21} & \varepsilon_{22} \end{bmatrix} \qquad \kappa_{\alpha\beta} = \begin{bmatrix} \kappa_{11} & \kappa_{12} \\ \kappa_{21} & \kappa_{22} \end{bmatrix}$$

Geometric non-linearity

• Geometrically linear:

- linear relation between strain and deformation
- strain obtained as derivatives of displacements

$$\varepsilon_x = \frac{\partial u_x}{\partial x} \qquad \kappa_x = -\frac{\partial^2 w}{\partial x^2}$$

-> valid only for small deformations

• Geometrically non-linear:

- non-linear relation between strain and deformation
- various non-linear strain measures
- study of geometry in deformed and undeformed configuration

-> valid for small and large deformations

Geometric non-linearity

Study of geometry in deformed/actual and undeformed/reference configuration

Deformation gradient

Deformation gradient tensor:

$$\mathbf{F} = \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\mathbf{X}}$$
$$\mathrm{d}\mathbf{x} = \mathbf{F} \cdot \mathrm{d}\mathbf{X}$$

 $d{\bf x}$ - infinitesimal vector actual configuration $d{\bf X}$ - infinitesimal vector reference configuration

$$\mathbf{F} = \mathbf{g}_i \otimes \mathbf{G}^i$$

-> The deformation gradient tensor contains all information relative to local strain.

-> However, contains rigid body motions -> no objective strain measure

Strain and stress tensors

Strain and stress tensors

From continuum to shell kinematics

Shell model = surface model => relate all quantities of the shell continuum to its middle surface

Strains

Separating in-plane strains into constant and symmetrically linear part

$$E_{\alpha\beta} = \varepsilon_{\alpha\beta} + \theta^3 \kappa_{\alpha\beta}$$

- - -> $\kappa_{\alpha\beta}$ change in curvature

$$E_{\alpha\beta} = \frac{1}{2}(a_{\alpha\beta} - A_{\alpha\beta}) + \theta^3(B_{\alpha\beta} - b_{\alpha\beta})$$

 $\varepsilon_{lphaeta} = rac{1}{2}(a_{lphaeta} - A_{lphaeta})$ -> Membrane strain from metric tensors $\kappa_{lphaeta}=B_{lphaeta}-b_{lphaeta}$ -> Bending strain from curvature tensors

Variational Formulation

Principle of virtual work

Variation δu_r

$$\delta W = \frac{\partial W}{\partial u_r} \delta u_r = 0$$

Linearization

 ${\boldsymbol{\mathsf{R}}}$ - residual force vector

K - stiffness matrix

 $\Delta \boldsymbol{u}$ - displacement vector

Variational Formulation

Internal virtual work
$$\delta W_{int} = -\int_{\Omega} (\mathbf{S} : \delta \mathbf{E}) d\Omega$$

- S Piola-Kirchhoff 2 stress tensor
- **E** Green-Lagrange strain tensor
- => Separating strain into membrane and bending action

$$\mathbf{n} - \text{normal forces} \qquad \mathbf{n} = t \ \mathbf{C} : \boldsymbol{\varepsilon}$$

$$\boldsymbol{\kappa} - \text{change of curvature}$$

$$\mathbf{m} - \text{bending moments} \qquad \mathbf{m} = \frac{t^3}{12} \ \mathbf{C} : \boldsymbol{\kappa}$$

$$\delta W_{int} = -\int_A \left(\mathbf{n} : \delta \boldsymbol{\varepsilon} + \mathbf{m} : \delta \boldsymbol{\kappa} \right) dA$$

$$F_r^{int} = -\int_A \left(\mathbf{n} : \frac{\partial \boldsymbol{\varepsilon}}{\partial u_r} + \mathbf{m} : \frac{\partial \boldsymbol{\kappa}}{\partial u_r} \right) dA$$

$$K_{rs}^{int} = \int_A \left(\frac{\partial \mathbf{n}}{\partial u_s} : \frac{\partial \boldsymbol{\varepsilon}}{\partial u_r} + \mathbf{n} : \frac{\partial^2 \boldsymbol{\varepsilon}}{\partial u_r \partial u_s} + \frac{\partial \mathbf{m}}{\partial u_s} : \frac{\partial \boldsymbol{\kappa}}{\partial u_r} + \mathbf{m} : \frac{\partial^2 \boldsymbol{\kappa}}{\partial u_r \partial u_s} \right) dA$$

$$E_{\alpha\beta}(\theta^3) = \varepsilon_{\alpha\beta} + \theta^3 \kappa_{\alpha\beta}$$

=> Problem for FE: curvature -> 2nd derivatives -> C¹ continuity between elements

Isogeometric Analysis for KL Shell formulation

NURBS-based IGA: -> Exact geometry in analysis model

- \Rightarrow C¹ and higher continuity between elements provided by NURBS
- \Rightarrow exact evaluation of geometric properties including curvatures
- \Rightarrow straightforward implementation of kinematic formulation; no further assumptions
- \Rightarrow no rotational degrees of freedom
- \Rightarrow no shear locking !

Rotational boundary conditions

Rotational boundary conditions

Needed for: clamped support, symmetry conditions

-> Tangent at the boundary is determined by 1st and 2nd row of control points

Example: cantilever plate

Benchmarking

Shell obstacle course

Benchmarking

Shell obstacle course

Shell obstacle course – convergence charts

Benchmarking

Shell obstacle course

Large deformations and rotations

Benchmark: Straight plate bent to a circle

Moment $M = \frac{2\pi EI}{L}$ modeled by a pair of forces perpendicular to the geometry

Large Deformations / Large Rotations

Example 2: Cantilever beam subject to constant twisting moment.

Moment $M_t = \theta \frac{GI_t}{L}$ modeled by a pair of forces perpendicular to the geometry

Multiple Patches

NURBS patches are C⁰ on the boundary

Multiple Patches

NURBS patches are C⁰ on the boundary

Smooth, C¹-continuous, Patches

Coupling of control points across patch boundaries

-> continuity constraint is fulfilled exactly

Patches forming a kink

-> Maintain angle between patches. Not possible by direct coupling of control points!

 C^0 coupling: no transfer of bending moments => Connection acts as a hinge

Bending Strips

Couple control points defining the angle between patches by a stiff bending strip

- High bending stiffness transversal to the patch interface
- Zero membrane stiffness, zero bending stiffness along the interface
- Zero mass
- => no additional stiffness to the system, only constraining the angle between the patches

Bending Strips

Bending Strips for smooth patches

Scordelis-Lo roof modeled by two patches

Correct solution with bending strip

<u>Scordelis-Lo roof – stress resultant plots</u>

Bending Strips

-> Applicable to both smooth patches and patches with kink

Scordelis-Lo roof – deformation plots

two patches => kink

kink repaired by bending strip

=> simple and efficient method to treat arbitrary multipatch structures

Bending Strips for coupling of Shells and Solids

Shell with stiffener (Rank et al.)

Outline

- Introduction
- Kirchhoff-Love shell theory
- Isogeometric shell analysis
- Integration into CAD
- Application to FSI simulations of wind turbine blades
- Isogeometric shape optimization

CAD descriptions are surface-based

- No volumetric NURBS description in CAD -> creating volumetric model from surface model necessary
- For thin-walled structures: shell analysis on the surface model
- Rotation-free shell => surface model from CAD program can be used for analysis without modification

Rhinoceros

NURBS-based CAD software

for industrial, mechanical, marine, architectural design, etc.

allows for self-written plug-ins -> plug-in for isogeometric analysis

sail cutter www.viribusunitis.ca

microcupyacht www.flexicad.com

Opel Astra www.rhino3d.com

Rhinoceros

NURBS-based CAD software

for industrial, mechanical, marine, architectural design, etc.

Plug-in for isogeometric analysis

Robert Schmidt Michael Breitenberger

IGA_movie1.mp4

IGA_movie2.mp4

Outline

- Introduction
- Kirchhoff-Love shell theory
- Isogeometric shell analysis
- Integration into CAD
- Application to FSI simulations of wind turbine blades
- Isogeometric shape optimization

Application: FSI simulation of a Wind Turbine Blade

Cooperation project with Y. Bazilevs, M.-C. Hsu, University of California, San Diego

5MW offshore wind turbines:

- Blade radius: 63 m
- Blade material: fibreglass E₁=43.3GP E₂=12.7GP G₁₂=4.5GP nu₁₂=0.29
- Speed of rotation: 8-13 RPM
- Wind speed: 8~12 m/s
- Reynolds number: Several hundred million

Fluid and Mesh Motion

- Fluid:
 - incompressible Newtonian fluid in the ALE description
 - turbulence modeling: residual based variational multiscale method (RBVMS)
 - NURBS as basis functions
- Mesh Motion:
 - divided into rotation (exactly) and blade deflection (linear elasticity)
- Kinematic (strong) and traction (weak) compatibility at the fluid-solid boundary

Problem Description

Plodes (m)	AeroTwst (°)	Chord (m)	AeroCent (-)	OrigAC(.)	Airfoil
KNOUES (III)	Actorwat()				Airioi
2.0000	0.000	3.542	0.2500	0.50	Cylinder
2.8667	0.000	3.542	0.2500	0.50	Cylinder
5.6000	0.000	3.854	0.2218	0.44	Cylinder
8.3333	0.000	4.167	0.1883	0.38	Cylinder
11.7500	13.308	4.557	0.1465	0.30	DU40
15.8500	11.480	4.652	0.1250	0.25	DU35
19.9500	10.162	4.458	0.1250	0.25	DU35
24.0500	9.011	4.249	0.1250	0.25	DU30
28.1500	7.795	4.007	0.1250	0.25	DU25
32.2500	6.544	3.748	0.1250	0.25	DU25
36.3500	5.361	3.502	0.1250	0.25	DU21
40.4500	4.188	3.256	0.1250	0.25	DU21
44.5500	3.125	3.010	0.1250	0.25	NACA64
48.6500	2.319	2.764	0.1250	0.25	NACA64
52.7500	1.526	2.518	0.1250	0.25	NACA64
56.1667	0.863	2.313	0.1250	0.25	NACA64
58.9000	0.370	2.086	0.1250	0.25	NACA64
61.6333	0.106	1.419	0.1250	0.25	NACA64
63.0000	0.000	1.000	0.1250	0.25	NACA64

Blade Design: Airfoils

Blade Design: NURBS

3D FSI Simulation

Outline

- Introduction
- Kirchhoff-Love shell theory
- Isogeometric shell analysis
- Integration into CAD
- Application to FSI simulations of wind turbine blades
- Isogeometric shape optimization

• Optimization Problem:

objective function:	$f(\mathbf{s}) \rightarrow \min$.	e.g.: $0.5 \cdot \int \sigma \varepsilon dV \rightarrow \min$.
equality constraints:	$\mathbf{h}(\mathbf{s}) = 0$	e.g. mass: $m = m_{def}$
inequality constraints:	$\mathbf{g}(\mathbf{s}) \le 0$	e.g. stress : $\sigma \leq \sigma_{\max}$
design variables:	$s_i i = 1,,n$	shape variables e.g. $l, r x_i, y_i, z_i$

- Design Parametrization:
 - CAD-based: CAD parameters
 - FE-based: FE nodes

• Optimization Problem:

objective function:	$f(\mathbf{s}) \rightarrow \min$.	e.g.: $0.5 \cdot \int \sigma \varepsilon dV \rightarrow \min$.
equality constraints:	$\mathbf{h}(\mathbf{s}) = 0$	e.g. mass: $m = m_{def}$
inequality constraints:	$\mathbf{g}(\mathbf{s}) \le 0$	e.g. stress : $\sigma \leq \sigma_{\max}$
design variables:	$s_i i = 1,,n$	shape variables e.g. $l, r x_i, y_i, z_i$

- Design Parametrization:
 - CAD-based: CAD parameters
 - FE-based: FE nodes

• Optimization Problem:

objective function:	$f(\mathbf{s}) \rightarrow \min$.	e.g.: $0.5 \cdot \int \sigma \varepsilon dV \rightarrow \min$.
equality constraints:	$\mathbf{h}(\mathbf{s}) = 0$	e.g. mass: $m = m_{def}$
inequality constraints:	$\mathbf{g}(\mathbf{s}) \le 0$	e.g. stress : $\sigma \leq \sigma_{\max}$
design variables:	$s_i i = 1,,n$	shape variables e.g. $l, r x_i, y_i, z_i$

- Design Parametrization:
 - CAD-based: CAD parameters
 - FE-based: FE nodes

• Optimization Problem:

objective function:	$f(\mathbf{s}) \rightarrow \min$.	e.g.: $0.5 \cdot \int \sigma \varepsilon dV \rightarrow \min$.
equality constraints:	$\mathbf{h}(\mathbf{s}) = 0$	e.g. mass: $m = m_{def}$
inequality constraints:	$\mathbf{g}(\mathbf{s}) \le 0$	e.g. stress : $\sigma \leq \sigma_{\max}$
design variables:	$s_i i = 1,,n$	shape variables e.g. $l, r x_i, y_i, z_i$

- Design Parametrization:
 - CAD-based: CAD parameters
 - FE-based: FE nodes
 - Isogeometric: Control Points

Isogeometric Shape Optimization

Isogeometric Shape Optimization

Example: Tube under constant internal pressure

Find optimal shape of the section in order to maximize the stiffness

Example: Tube under constant internal pressure

Design Variables

12 design variables: x, y, w of the four edge control points

Animation: Optimization steps

Example: Tube under constant internal pressure

Section shape after optimization: circular

Circular section exactly represented by NURBS

Example: Circular Tube under point loads

Example: Circular Tube under point loads

Different refinements for optimization model

coarse optimization model

fine optimization model

Example: Circular Tube under point loads

Optimized design model in CAD program

Thank you for your attention