
GeoPDEs tutorial

1. Understanding h-, p- and k-refinement.

(a) Use the NURBS toolbox to define a NURBS parameterization of one quarter of a ring, with
internal radius Ri = 1 and external radius Ro = 2. Use degree elevation to set the degree to 2
in both directions. Plot the geometry and the control points with nrbctrlplot. (Hint: you can
use either nrbline and nrbrevolve, or nrbcirc and nrbruled. For degree elevation use nrbdegelev).

(b) Check the knot vector of your geometry. Insert new knots to get a 10×10 mesh. Plot the mesh
with nrbkntplot. (Hint: use kntrefine to compute the new knots, and nrbkntins for knot insertion).

(c) Perform h-refinement: starting from the geometry of point (a), modify the example ex article 15lines
to solve in a sequence of meshes with 1, 2, 4, 8, 16, 32 and 64 elements in each parametric di-
rection. Check the convergence rate plotting the error vs. the degrees of freedom. Do the same
with C0 continuity, inserting the knots twice, and compare the two curves of convergence.

(d) Perform p-refinement: starting from the geometry of point (b), modify the example ex article 15lines
to solve with degree from 2 to 8. In this case, the continuity will be C1 in all the cases. Plot
the error vs. the degrees of freedom. (Hint: use nrbdegelev for degree elevation).

(e) Perform k-refinement: starting from the geometry of point (a), first raise the degree (from 2
to 8), and then insert new knots to get a 10× 10 mesh. Solve the same problem as before. In
this case, for degree p, the continuity will be Cp−1. Compare the curve of the error with the
one in (d).

(f) Optional: Using a coarse mesh, you can compare the knot vectors, the basis functions and
the msh and space structures for C0 and Cp−1 continuity. (Hint: use msh precompute and
sp precompute).

Note: In most of the examples of GeoPDEs the refinement is done automatically, giving the degree,
the continuity, and the number of subdivisions as data. You can see how the data is given in
ex laplace iso ring , for instance, and how the refinement is performed in solve laplace 2d iso .
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Figure 1: Thick cylinder subjected to internal pressure.

2. Solid circular cylinder subjected to internal pressure.

This is an example from the first paper on IGA [2]. The geometry is a hollow cylinder, subjected
to a constant pressure on its internal side. The setting of the problem is given in Fig. 1. The
same example is already solved with a plane strain formulation in the files ex plane strain ring and
solve plane strain 2d . We are going to solve the example in 3D in one eighth of the cylinder, using
symmetry conditions.

(a) Extrude the geometry from exercise 1 (a), with the function nrbextrude. Set the length of the
cylinder equal to 5. Save the geometry in a .txt file, with the nrbexport command.

(b) With the help of ex plane strain ring and ex lin elast horseshoe , write an example to solve the linear
elasticity problem in the cylinder. Set the degree to 3 and C2 continuity in the three directions,
and refine to have a 5×5×5 mesh. Apply a constant pressure on the inner boundary, symmetry
conditions on the three symmetry boundaries, and homogeneous Neumann conditions on the
other boundaries. (Hint: check the numbering of the boundaries, as they may be different from
the 2D case).

(c) Using ParaView, compare the horizontal displacements and stress for the 2D and the 3D prob-
lems. For the 3D problem, check also that the displacement in the z-direction is null.

(d) Solve the same problem removing the symmetry condition on the bottom boundary, and setting
a zero z-displacement condition on the top and bottom boundaries. The code as it is only allows
to impose Dirichlet conditions for all the components at the same time, but you can impose the
condition by modifying the function solve linear elasticity . Use the fields in space.boundary to
impose the condition on the right dofs.

(e) Optional: Write a new function, similar to sp l2 error and sp h1 error, to compute the error in
L2-norm for the stress. The exact solution for ν = 0 in cylindrical coordinates is
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3. Vibrations of a clamped thin circular plate.

This is an example taken from [1]. We study the vibrations of a clamped, thin circular plate, modeled
as a three-dimensional solid. The difference with the example in the article is that we will use the
parameterization of the circle as the one in Fig. 2.

Figure 2: Top view of the parameterization of the thin circular plate.

The problem, in variational formulation, consists of finding the eigenpairs (ωn,un) ∈ R× (H1
0 (Ω))3,

such that ∫
Ω

(2µε(un) : ε(v) + λdivun divv) = ω2
n

∫
Ω

ρun · v, ∀v ∈ (H1
0 (Ω))3, (3)

where ε(u) is the symmetric part of ∇u, ρ is the mass density, and λ, µ are the Lamé parameters.
The problem can also be written in the form

Kun = ω2
nMun, (4)

where K and M are the stiffness and mass matrices, respectively.

(a) Define the 2D geometry with the control points and weights given in Table 1, and use a linear
transformation to make it of radius 2 m. Extrude the geometry to create the 3D plate, with
a thickness of 0.02 m. (Hint: use nrbmak and nrbtform to define the geometry. Notice that the
NURBS toolbox works with weighted control points, defined as Bw

i,j = Bi,jwi,j).

(b) Create a function, similar to solve linear elasticity 3d , to solve problem (3), computing the first
six eigenvalues and their corresponding eigenvectors. The function should also return the
geometry, msh, space structures (objects). (Hint: use the command eigs to solve the gener-
alized eigenvalue problem for sparse matrices.)

(c) Solve the problem in a 6 × 6 × 1 mesh, with degree 2. Set E = 30 · 106 KN/m2, ν = 0.2
and ρ = 2.320 KNs/m4. Compare the eigenvalues with the results in [1]. (Hint: plot the
eigenvectors to be sure that you are comparing the right eigenvalues).

(d) Raise the degree (up to 5) in the first two directions, and compare your results with the ones
in [1]. Do the same using a coarser mesh.

(e) Optional: solve the same problem with the parameterization of [1], which you can easily
construct by revolution. Notice that in this case there are repeated control points, and it is
necessary to identify the dofs associated to these control points as one single dof.
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i Bw
i,1 Bw

i,2 Bw
i,3 wi,1 wi,2 wi,3

1 (1, 0) (1/
√

2, 1/
√

2) (0, 1) 1 1/
√

2 1

2 (1/
√

2, −1/
√

2) (0, 0) (−1/
√

2, 1/
√

2) 1/
√

2
√

2− 1 1/
√

2

3 (0, −1) (−1/
√

2, −1/
√

2) (−1, 0) 1 1/
√

2 1

Table 1: Control points and weights for the circle of radius 1.
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