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Motivation

We wanted to share our codes with people interested on IGA.

Starting point: different codes, different problems, different developers.

Primary goal: uniform implementation of our different codes.

The result is GeoPDEs: open and free software for IGA.

The software is implemented in Octave, fully compatible with Matlab.

Very clear for teaching purposes.

Easy to modify and to use for fast prototyping.

Follows an abstract setting to cover many problems and methods.

Secondary goal: faster and more efficient implementation.

Important advances in GeoPDEs 2.0 (last part of the talk).
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General description of the software

GeoPDEs consists of a set of interrelated packages for different problems:

base: the main package, with examples for Laplace problem.

elasticity: a simple package for linear elasticity problems.

fluid: Stokes’ equations, with different choices for the discrete spaces.

maxwell: Maxwell equations, generalization of edge finite elements.

multipatch: extension to multi-patch defined geometries.

The main structures and functions are defined in the base package.

The other packages are based on the structures defined in base.

The nomenclature is mostly the same in every package.

We define IGA in an abstract way, to cover as many cases as possible.

R. Vázquez (IMATI-CNR Italy) GeoPDEs: a research tool for IGA IGA school, Cetraro, 2012 4 / 22



General description of the software

GeoPDEs consists of a set of interrelated packages for different problems:

base: the main package, with examples for Laplace problem.

elasticity: a simple package for linear elasticity problems.

fluid: Stokes’ equations, with different choices for the discrete spaces.

maxwell: Maxwell equations, generalization of edge finite elements.

multipatch: extension to multi-patch defined geometries.

The main structures and functions are defined in the base package.

The other packages are based on the structures defined in base.

The nomenclature is mostly the same in every package.

We define IGA in an abstract way, to cover as many cases as possible.

R. Vázquez (IMATI-CNR Italy) GeoPDEs: a research tool for IGA IGA school, Cetraro, 2012 4 / 22



General description of the software

GeoPDEs consists of a set of interrelated packages for different problems:

base: the main package, with examples for Laplace problem.

elasticity: a simple package for linear elasticity problems.

fluid: Stokes’ equations, with different choices for the discrete spaces.

maxwell: Maxwell equations, generalization of edge finite elements.

multipatch: extension to multi-patch defined geometries.

The main structures and functions are defined in the base package.

The other packages are based on the structures defined in base.

The nomenclature is mostly the same in every package.

We define IGA in an abstract way, to cover as many cases as possible.

R. Vázquez (IMATI-CNR Italy) GeoPDEs: a research tool for IGA IGA school, Cetraro, 2012 4 / 22



IGA in an abstract framework

Problem to solve at the continuous level.

Parametric domain and parameterization of the physical domain.

Discrete problem and spaces in the parametric and physical domain.

Construct and solve a linear system to find the discrete solution.

Abstract framework

a(u, v) = (f , v), ∀v ∈ V .

Simple example: Poisson equation∫
Ω

grad u · grad v =

∫
Ω

f v , ∀v ∈ H1
0 (Ω).
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IGA in an abstract framework

Problem to solve at the continuous level.

Parametric domain and parameterization of the physical domain.

Discrete problem and spaces in the parametric and physical domain.

Construct and solve a linear system to find the discrete solution.

Abstract framework

F : Ω̂ −→ Ω ⊂ Rd , and F is known and computable.

Simple example: Poisson equation

Ω̂ = (0, 1)d , and F is a NURBS.
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IGA in an abstract framework

Problem to solve at the continuous level.

Parametric domain and parameterization of the physical domain.

Discrete problem and spaces in the parametric and physical domain.

Construct and solve a linear system to find the discrete solution.

Abstract framework

Vh = {vh : ι(vh) = v̂h ∈ V̂h}, where ι is a pull-back depending on F,

and V̂h = span{v̂j}Nh
j=1 is a finite-dimensional and computable space.

Simple example: Poisson equation

Vh = {vh : vh ◦ F = v̂h ∈ V̂h},

with V̂h = span{Rj}Nh
i=1 a space of NURBS.
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IGA in an abstract framework

Problem to solve at the continuous level.

Parametric domain and parameterization of the physical domain.

Discrete problem and spaces in the parametric and physical domain.

Construct and solve a linear system to find the discrete solution.

Abstract framework

Trial function uh =
∑Nh

i=1 αivi , and test again every vj , to get∑Nh
i=1 αia(vi , vj) = (f , vj), j = 1, . . . ,Nh, or

∑Nh
i=1 Ajiαi = bj .

Simple example: Poisson equation

Trial function uh =
∑Nh

i=1 αiRi , and test functions Rj :
Nh∑
i=1

αi

∫
Ω

grad Ri · grad Rj =

∫
Ω

f Rj , j = 1, . . . ,Nh.
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IGA in an abstract framework

To numerically compute the integrals, we define a partition Ω̂ = ∪Ne
k=1K̂k ,

and on each “element” K̂k a quadrature rule: {(x̂`,k ,w`,k)}nk
`=1.∫

Ω φ(x) =
∑Ne

k=1

∫bKk
φ(F(x̂))| det(DF(x̂))|

Using the quadrature rule, the stiffness matrix is computed as

Aij '
Ne∑

k=1

nk∑
`=1

w`,k grad vj(F(x̂`,k)) · grad vi (F(x̂`,k)) | det(DF(x̂`,k))|

And recall that grad vi (F(x̂`,k)) = DF−T ĝrad v̂i (x̂`,k).

Summarizing, what we need is

A partition of Ω̂ and a quadrature rule (nodes and weights).

The evaluation of F and the Jacobian DF at the quadrature points.

Value of the shape functions at the “mapped” quadrature points.

A routine to put everything together and compute the matrices.
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The main structures of GeoPDEs

GeoPDEs has been implemented following the abstract framework.

The code is based on three main structures:

Geometry: the parameterization F and its derivatives.

Mesh: the partition of the domain and the quadrature rule.

Space: the shape functions of the discrete space Vh.

Everything is precomputed (v.1). Easy to understand and to debug.

As a consequence, the computation of the matrices is very clear.

The structures can be used in different applications with minor changes.
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The parameterization: geometry structure

Computation of the parameterization F and its derivatives.

map: function handle to compute F at given points in Ω̂.

map der: function handle to compute DF, the derivatives of F.

The fields contain the handles to evaluate F, not the values of F.

For NURBS and B-splines, we make use of the NURBS toolbox.

Based on standard NURBS algorithms (see, e.g., the NURBS book).

Useful for simple geometry manipulation (revolution, extrusion,...)

It is also used in GeoPDEs for function evaluation.

The computation of the geometry is separated from the shape functions.

Necessary for non-isoparametric discretizations.

Geometry evaluations can be made in the coarsest given geometry.
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The quadrature rule: mesh structure

Contains information on the partition of the domain, Ω̂ = ∪Ne
k=1K̂k ,

and the quadrature rule {(x̂`,k ,w`,k)}nk
`=1.

Remember the expression for the entries of the stiffness matrix

Aij '
∑Ne

k=1

∑nk
`=1 w`,k grad vj(F(x̂`,k)) · grad vi (F(x̂`,k)) | det(DF(x̂`,k))|

nel: Ne , number of elements of the partition.

nqn: nk , number of quadrature nodes per element.

quad nodes: x̂`,k , quadrature nodes in Ω̂.

quad weights: w`,k , quadrature weights.

geo map: x`,k = F(x̂`,k), quadrature nodes in Ω.

geo map jac: DF(x̂`,k), Jacobian matrix evaluated at quad nodes.

jacdet: | det(DF(x̂`,k))|, absolute value of the Jacobian.
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The discrete space: space structure

Information on the basis functions of the discrete space

Vh = span{vi}Nh
i=1,

and their values at the quadrature points.

ndof: Nh, total number of degrees of freedom.

nsh: number of non-vanishing functions in each “element”.

connectivity (IEN): global indices of non-vanishing basis functions.

shape functions: vi (x`,k), shape functions evaluated at the
quadrature points.

shape function gradients: grad vi (x`,k), gradients of the shape
functions evaluated at the quadrature points.

For NURBS and splines, they are computed with the NURBS toolbox.

Other fields may be necessary (curl, divergence, Laplacian...)
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A simple example on how to use GeoPDEs

geometry = geo l o ad ( ’ r i n g r e f i n e d . mat ’ ) ;

knot s = geometry . nurbs . kno t s ;

Create the geometry structure, from a NURBS toolbox file.

Create the mesh structure in the parametric domain.

Map the mesh structure to the physical domain, using geometry.

Construct the space structure (the knots are stored in geometry).

Build the matrix and right-hand side.
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Matrices and vector construction
Remember the expression for the entries of the stiffness matrix
Aij '

∑Ne
k=1

∑nk
`=1 w`,k grad vj(F(x`,k)) · grad vi (F(x̂`,k)) | det(DF(x̂`,k))|

Everything is precomputed (v.1) in the previous structures.

To construct the matrices, it is enough to correctly gather the
information.

The computation of the matrices is simple, and identical to FEM.

Let me show an example.

f u n c t i o n mat = op g radu g radv ( space , msh)

f o r i e l = 1 :msh . n e l

mat loc = zeros ( space . nsh ( i e l ) , space . nsh ( i e l ) ) ;

f o r i d o f = 1 : space . nsh ( i e l )

i s h p = space . s h a p e f u n c t i o n g r a d i e n t s ( : , : , i d o f , i e l ) ;

f o r j d o f = 1 : space . nsh ( i e l )

j s h p = space . s h a p e f u n c t i o n g r a d i e n t s ( : , : , j d o f , i e l ) ;

f o r i node = 1 :msh . nqn

mat loc ( i d o f , j d o f ) += i s h p ( : , i node ) .∗ j s h p ( : , i node ) ∗
msh . j a c d e t ( inode , i e l ) ∗ msh . quad weights ( inode , i e l ) ;

endfor %inode

endfor %j d o f

endfor %i d o f

mat ( space . connect ( : , i e l ) , space . connect ( : , i e l ) ) += mat loc ;

endfor %i e l
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endfor %i e l
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Boundary conditions: the boundary substructures

The structures mesh and space are completed with the field boundary.

These are mesh and space substructures of dimension N − 1.

The boundary structures have some particularities:

jacdet contains the area element of the boundary parameterization.

The space structure uses a local numbering for each boundary.

A new field, dofs, is added to recover the global numbering.

F−→
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Boundary conditions: the boundary substructures

For Neumann conditions, ∂u
∂n = g on ΓN , we must compute

∫
ΓN

gvj .

The integral is computed in the same manner as for bulk forces.

It is assembled into the global r.h.s. using the field dofs.

x = msh . boundary . geo map ( 1 , : , : ) ;

y = msh . boundary . geo map ( 2 , : , : ) ;

r h s bnd = op f v ( space . boundary , msh . boundary , g ( x , y ) ) ;

r h s ( space . boundary . dofs ) += rhs bnd ;

For Dirichlet conditions, u = h on ΓD , we must assign the d.o.f. in
boundary.dofs.

The needed information should already be in the boundary structures.

As an example we have included the least squares best fit, i.e.∫
ΓD

uv =

∫
ΓD

hv ∀v .
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A simple example on how to use GeoPDEs

We have computed all the structures and the linear system.

geometry = geo l o ad ( ’ r i n g r e f i n e d . mat ’ ) ;

knot s = geometry . nurbs . kno t s ;

[ qn , qw ] = msh se t quad nodes ( knots , msh gauss nodes ( ngauss ) ) ;

msh = msh 2d ( knots , qn , qw , geometry ) ;

space = sp nu rb s 2d ( geometry . nurbs , msh) ;

[ x , y ] = dea l (msh . geo map ( 1 , : , : ) , msh . geo map ( 2 , : , : ) ) ;

mat = op g radu g radv ( space , msh) ;

r h s = op f v ( space , msh , r h s f u n ( x , y ) ) ;

R. Vázquez (IMATI-CNR Italy) GeoPDEs: a research tool for IGA IGA school, Cetraro, 2012 15 / 22



A simple example on how to use GeoPDEs

Apply boundary conditions and solve the linear system.

geometry = geo l o ad ( ’ r i n g r e f i n e d . mat ’ ) ;

knot s = geometry . nurbs . kno t s ;

[ qn , qw ] = msh se t quad nodes ( knots , msh gauss nodes ( ngauss ) ) ;
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[ x , y ] = dea l (msh . geo map ( 1 , : , : ) , msh . geo map ( 2 , : , : ) ) ;

mat = op g radu g radv ( space , msh) ;

r h s = op f v ( space , msh , r h s f u n ( x , y ) ) ;

d r c h l t d o f s = un ique ( [ space . boundary ( : ) . dofs ] ) ;

i n t d o f s = s e t d i f f ( 1 : space . ndof , d r c h l t d o f s ) ;

u ( d r c h l t d o f s ) = 0 ;

u ( i n t d o f s ) = mat ( i n t d o f s , i n t d o f s ) \ r h s ( i n t d o f s ) ;
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A simple example on how to use GeoPDEs

We end up with some postprocessing.

geometry = geo l o ad ( ’ r i n g r e f i n e d . mat ’ ) ;

knot s = geometry . nurbs . kno t s ;

[ qn , qw ] = msh se t quad nodes ( knots , msh gauss nodes ( ngauss ) ) ;

msh = msh 2d ( knots , qn , qw , geometry ) ;

space = sp nu rb s 2d ( geometry . nurbs , msh) ;
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mat = op g radu g radv ( space , msh) ;
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d r c h l t d o f s = un ique ( [ space . boundary ( : ) . dofs ] ) ;

i n t d o f s = s e t d i f f ( 1 : space . ndof , d r c h l t d o f s ) ;

u ( d r c h l t d o f s ) = 0 ;

u ( i n t d o f s ) = mat ( i n t d o f s , i n t d o f s ) \ r h s ( i n t d o f s ) ;

s p t o v t k (u , space , geometry , [ 20 20 ] , f i l e name , ’ u ’ ) ;

e r r = s p l 2 e r r o r ( space , msh , u , e x a c t s o l u t i o n ( x , y ) ) ;
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A simple example on how to use GeoPDEs

And the final result is something like this.

The package contains several simple examples:

h-,p-,k-refinement, 2D and 3D, B-splines and NURBS...

The structures can be easily extended to solve more complex problems.
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Linear elasticity problems: the elasticity package

Let us see how to solve the following linear elasticity problem:

Find u ∈ V = (H1
0,ΓD

(Ω))3 such that

∫
Ω

(2µ ε(u) : ε(v) + λdiv(u) div(v)) =

∫
Ω

f · v +

∫
ΓN

g · v ∀v ∈ V ,

The geometry and mesh are described as in the previous example.

The basis functions in the space structure are now vector-valued.

A specific operator for this problem must be defined.

Imposing the boundary conditions is similar to the previous problem.
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Definition of the vectorial space

We first define one space structure for each component.

From these we define the vector-valued space structure for our problem.

spx = spy = spz = sp nu rb s 3d ( geometry , msh) ;

space = sp v e c t o r 3 d ( spx , spy , spz , msh) ;

This command computes the new vector-valued space and the numbering.

The horseshoe is a courtesy of T.J.R. Hughes’ and his group
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Electromagnetism: the Maxwell package

An example in electromagnetism:

Metallic WR-2300 waveguide with a mechanical deformation.

Consider only the TE10 mode at ' 0.35 GHz.

Compute relative amplitudes of the transmitted and reflected waves.

Time-harmonic Maxwell equations in the interior of the waveguide.

Forward (known) and reverse (unknown) traveling waves at Γi .

Forward (unknown) traveling wave at Γo .

Perfect electrical conductor (E× n = 0) on the other boundaries.
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Electromagnetism: the Maxwell package

Find E ∈ H0,ΓD
(curl; Ω) , and αr

i , α
f
o ∈ C such that∫

Ω( 1
µcurl E · curl G− ω2εE · G) +

iω(αr
i

∫
Γi

H10
τ · Gτ + αf

o

∫
Γo

H10
τ · Gτ ) = iωαf

i

∫
Γi

H10
τ · Gτ ,

iω(
∫

Γi
Eτ ·H10

τ − αr
i

∫
Γi

E10
τ ·H10

τ ) = iωαf
i

∫
Γi

E10
τ ·H10

τ ,

iω(
∫

Γo
Eτ ·H10

τ − αf
o

∫
Γo

E10
τ ·H10

τ ) = 0.

The geometry and mesh are described as in the previous examples.

We need an operator to compute the curl -curl matrix.

Vector-valued space with a curl-conserving transform.

The shape functions are given by E ◦ F = DF−>Ê.

And (curl E) ◦ F = 1
det(DF)DF(ĉurl Ê).
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o
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E10
τ ·H10

τ ) = 0.

The geometry and mesh are described as in the previous examples.

We need an operator to compute the curl -curl matrix.

Vector-valued space with a curl-conserving transform.

For the boundaries, we only store the tangential components.

Operators to compute the integrals on the boundary are also needed.

R. Vázquez (IMATI-CNR Italy) GeoPDEs: a research tool for IGA IGA school, Cetraro, 2012 20 / 22



Electromagnetism: the Maxwell package
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(a) Real part (b) Imaginary part
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GeoPDEs 2.0

Clarity was the primary goal in the first version of GeoPDEs.

All the fields were precomputed (high memory consumption).

Clear but slow computation of the matrices.

Efficiency became an important issue in GeoPDEs 2.0.

Faster version of matrix computations.

For NURBS, we take advantage of the tensor product structure.
I Only the 1D functions and derivatives are precomputed.
I The 2D/3D fields are computed one column at a time.
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Clear but slow computation of the matrices.

Efficiency became an important issue in GeoPDEs 2.0.

Faster version of matrix computations.
I Vectorization of some loops.
I Better use of sparse matrices in Matlab.
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GeoPDEs 2.0

Clarity was the primary goal in the first version of GeoPDEs.

All the fields were precomputed (high memory consumption).

Clear but slow computation of the matrices.

Efficiency became an important issue in GeoPDEs 2.0.

Faster version of matrix computations.

For NURBS, we take advantage of the tensor product structure.
I Only the 1D functions and derivatives are precomputed.
I The 2D/3D fields are computed one column at a time.

f o r i e l = 1 :msh . n e l d i r ( 1 )

msh co l = msh e v a l u a t e c o l (msh , i e l ) ;

s p c o l = s p e v a l u a t e c o l ( space , msh co l ) ;

A = A + op g radu g radv ( s p c o l , msh co l ) ;

end

The “column” structures contain the same fields we have seen before.
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Conclusions

GeoPDEs is an open source and free Matlab implementation of IGA.

Very useful for teaching purposes and for new researchers.

It can serve as a rapid prototyping tool to test new ideas.

Several packages already released to solve different problems.

Many examples and a short guide with detailed explanations.

In the last 4 months, around 300 downloads of the base package.

Contributions are welcome, to improve the code or to show new methods.

GeoPDEs tutorial today at 17:00.

Software download and information

http://geopdes.sourceforge.net

Thanks for your attention!
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