GeoPDEs

An Octave/Matlab software for research on IGA

R. Vázquez

IMATI 'Enrico Magenes', Pavia Consiglio Nazionale della Ricerca

Joint work with C. de Falco and A. Reali

Supported by the ERC Starting Grant: GeoPDEs n. 205004

R. Vázquez (IMATI-CNR Italy)

GeoPDEs: a research tool for IGA

3 The implementation of GeoPDEs

- The parameterization: geometry structure
- The quadrature rule: mesh structure
- The discrete space: space structure
- Boundary conditions: the boundary substructures

Some simple examples

- Poisson equation
- Linear elasticity
- Maxwell equations

Motivation

We wanted to share our codes with people interested on IGA.

Starting point: different codes, different problems, different developers.

Primary goal: uniform implementation of our different codes.

Motivation

We wanted to share our codes with people interested on IGA.

Starting point: different codes, different problems, different developers.

Primary goal: uniform implementation of our different codes.

The result is GeoPDEs: open and free software for IGA.

The software is implemented in **Octave**, fully compatible with **Matlab**.

- Very clear for teaching purposes.
- Easy to modify and to use for fast prototyping.
- Follows an abstract setting to cover many problems and methods.

Motivation

We wanted to share our codes with people interested on IGA.

Starting point: different codes, different problems, different developers.

Primary goal: uniform implementation of our different codes.

The result is GeoPDEs: open and free software for IGA.

The software is implemented in **Octave**, fully compatible with **Matlab**.

- Very clear for teaching purposes.
- Easy to modify and to use for **fast prototyping**.
- Follows an abstract setting to cover many problems and methods.

Secondary goal: faster and more efficient implementation.

• Important advances in GeoPDEs 2.0 (last part of the talk).

General description of the software

GeoPDEs consists of a set of interrelated packages for different problems:

- base: the main package, with examples for Laplace problem.
- elasticity: a simple package for linear elasticity problems.
- fluid: Stokes' equations, with different choices for the discrete spaces.
- maxwell: Maxwell equations, generalization of edge finite elements.
- multipatch: extension to multi-patch defined geometries.

General description of the software

GeoPDEs consists of a set of interrelated packages for different problems:

- base: the main package, with examples for Laplace problem.
- elasticity: a simple package for linear elasticity problems.
- fluid: Stokes' equations, with different choices for the discrete spaces.
- maxwell: Maxwell equations, generalization of edge finite elements.
- multipatch: extension to multi-patch defined geometries.

The **main structures** and functions are defined in the **base** package. The other packages are based on the structures defined in **base**. The nomenclature is mostly the same in every package.

General description of the software

GeoPDEs consists of a set of interrelated packages for different problems:

- base: the main package, with examples for Laplace problem.
- elasticity: a simple package for linear elasticity problems.
- fluid: Stokes' equations, with different choices for the discrete spaces.
- maxwell: Maxwell equations, generalization of edge finite elements.
- multipatch: extension to multi-patch defined geometries.

The **main structures** and functions are defined in the **base** package. The other packages are based on the structures defined in **base**. The nomenclature is mostly the same in every package.

We define IGA in an **abstract way**, to cover as many cases as possible.

• Problem to solve at the continuous level.

Abstract framework

$$a(u,v) = (f,v), \quad \forall v \in V.$$

$$\int_\Omega \operatorname{{f grad}} u \cdot \operatorname{{f grad}} v = \int_\Omega f \, v, \quad orall v \in H^1_0(\Omega).$$

- Problem to solve at the continuous level.
- Parametric domain and parameterization of the physical domain.

Abstract framework

$$\mathbf{F}: \widehat{\Omega} \longrightarrow \Omega \subset \mathbb{R}^d$$
, and \mathbf{F} is known and computable.

$$\widehat{\Omega} = (0,1)^d$$
, and **F** is a NURBS.

- Problem to solve at the continuous level.
- Parametric domain and parameterization of the physical domain.
- **Discrete** problem and **spaces** in the parametric and physical domain.

Abstract framework

$$a(u_h, v_h) = (f, v_h), \quad \forall v_h \in V_h.$$

$$\int_{\Omega} \mathbf{grad} \ u_h \cdot \mathbf{grad} \ v_h = \int_{\Omega} f \ v_h, \quad orall v_h \in V_h.$$

- Problem to solve at the continuous level.
- Parametric domain and parameterization of the physical domain.
- Discrete problem and spaces in the parametric and physical domain.

Abstract framework

 $V_h = \{v_h : \iota(v_h) = \widehat{v}_h \in \widehat{V}_h\}, \text{ where } \iota \text{ is a pull-back depending on } \mathbf{F},$ and $\widehat{V}_h = \operatorname{span}\{\widehat{v}_j\}_{j=1}^{N_h}$ is a finite-dimensional and computable space.

$$V_h = \{v_h : v_h \circ \mathbf{F} = \widehat{v}_h \in \widehat{V}_h\},$$

with $\widehat{V}_h = \operatorname{span}\{R_i\}_{i=1}^{N_h}$ a space of NURBS.

- Problem to solve at the continuous level.
- Parametric domain and parameterization of the physical domain.
- **Discrete** problem and **spaces** in the parametric and physical domain.
- Construct and solve a linear system to find the discrete solution.

Abstract framework

Trial function $u_h = \sum_{i=1}^{N_h} \alpha_i v_i$, and test again every v_j , to get $\sum_{i=1}^{N_h} \alpha_i a(v_i, v_j) = (f, v_j), j = 1, \dots, N_h$, or $\sum_{i=1}^{N_h} A_{ji} \alpha_i = b_j$.

Trial function
$$u_h = \sum_{i=1}^{N_h} \alpha_i R_i$$
, and test functions R_j :

$$\sum_{i=1}^{N_h} \alpha_i \int_{\Omega} \operatorname{grad} R_i \cdot \operatorname{grad} R_j = \int_{\Omega} f R_j, \quad j = 1, \dots, N_h.$$

To numerically compute the integrals, we define a **partition** $\widehat{\Omega} = \bigcup_{k=1}^{N_e} \widehat{K}_k$, and on each "element" \widehat{K}_k a **quadrature rule**: $\{(\widehat{\mathbf{x}}_{\ell,k}, w_{\ell,k})\}_{\ell=1}^{n_k}$. $\int_{\Omega} \phi(\mathbf{x}) = \sum_{k=1}^{N_e} \int_{\widehat{K}_k} \phi(\mathbf{F}(\widehat{\mathbf{x}})) |\det(D\mathbf{F}(\widehat{\mathbf{x}}))|$

To numerically compute the integrals, we define a partition $\widehat{\Omega} = \bigcup_{k=1}^{N_e} \widehat{K}_k$, and on each "element" \widehat{K}_k a quadrature rule: $\{(\widehat{\mathbf{x}}_{\ell,k}, w_{\ell,k})\}_{\ell=1}^{n_k}$. $\int_{\Omega} \phi(\mathbf{x}) \simeq \sum_{k=1}^{N_e} \sum_{\ell=1}^{n_k} w_{\ell,k} \phi(\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k})) | \det(D\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k}))|$

To numerically compute the integrals, we define a partition $\widehat{\Omega} = \bigcup_{k=1}^{N_e} \widehat{K}_k$, and on each "element" \widehat{K}_k a quadrature rule: $\{(\widehat{\mathbf{x}}_{\ell,k}, w_{\ell,k})\}_{\ell=1}^{n_k}$. $\int_{\Omega} \phi(\mathbf{x}) \simeq \sum_{k=1}^{N_e} \sum_{\ell=1}^{n_k} w_{\ell,k} \phi(\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k})) | \det(D\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k}))|$ Using the quadrature rule, the stiffness matrix is computed as $A_{ij} \simeq \sum_{k=1}^{N_e} \sum_{\ell=1}^{n_k} w_{\ell,k} \operatorname{grad} v_j(\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k})) \cdot \operatorname{grad} v_i(\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k})) | \det(D\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k}))|$

And recall that grad $v_i(\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k})) = D\mathbf{F}^{-T}\widehat{\mathbf{grad}} \, \widehat{v}_i(\widehat{\mathbf{x}}_{\ell,k}).$

To numerically compute the integrals, we define a partition $\widehat{\Omega} = \bigcup_{k=1}^{N_e} \widehat{K}_k$, and on each "element" \widehat{K}_k a quadrature rule: $\{(\widehat{\mathbf{x}}_{\ell,k}, w_{\ell,k})\}_{\ell=1}^{n_k}$. $\int_{\Omega} \phi(\mathbf{x}) \simeq \sum_{k=1}^{N_e} \sum_{\ell=1}^{n_k} w_{\ell,k} \phi(\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k})) | \det(D\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k}))|$ Using the quadrature rule, the stiffness matrix is computed as $A_{ij} \simeq \sum_{k=1}^{N_e} \sum_{\ell=1}^{n_k} w_{\ell,k} \operatorname{grad} v_j(\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k})) \cdot \operatorname{grad} v_i(\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k})) | \det(D\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k}))|$

And recall that grad $v_i(\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k})) = D\mathbf{F}^{-T}\widehat{\mathbf{grad}} \, \widehat{v}_i(\widehat{\mathbf{x}}_{\ell,k}).$

Summarizing, what we need is

- A partition of $\widehat{\Omega}$ and a **quadrature rule** (nodes and weights).
- The evaluation of **F** and the Jacobian **DF** at the quadrature points.
- Value of the **shape functions** at the "mapped" quadrature points.
- A routine to put everything together and compute the matrices.

GeoPDEs has been implemented following the abstract framework. The code is based on **three** main **structures**:

- Geometry: the parameterization F and its derivatives.
- Mesh: the partition of the domain and the quadrature rule.
- **Space**: the **shape functions** of the discrete space V_h .

GeoPDEs has been implemented following the abstract framework. The code is based on **three** main **structures**:

- Geometry: the parameterization F and its derivatives.
- Mesh: the partition of the domain and the quadrature rule.
- **Space**: the **shape functions** of the discrete space V_h .

Everything is **precomputed** (v.1). Easy to understand and to debug. As a consequence, the computation of the matrices is very **clear**. The structures can be used in **different applications** with minor changes.

The parameterization: geometry structure

Computation of the parameterization F and its derivatives.

- map: function handle to compute **F** at given points in $\widehat{\Omega}$.
- map_der: function handle to compute DF, the derivatives of F.

The fields contain the handles to evaluate \mathbf{F} , not the values of \mathbf{F} .

The parameterization: geometry structure

Computation of the parameterization **F** and its derivatives.

- map: function handle to compute **F** at given points in $\widehat{\Omega}$.
- map_der: function handle to compute DF, the derivatives of F.

The fields contain the handles to evaluate \mathbf{F} , not the values of \mathbf{F} .

For NURBS and B-splines, we make use of the NURBS toolbox.

- Based on standard NURBS algorithms (see, e.g., the NURBS book).
- Useful for simple geometry manipulation (revolution, extrusion,...)
- It is also used in GeoPDEs for **function evaluation**.

The parameterization: geometry structure

Computation of the **parameterization F** and its derivatives.

- map: function handle to compute **F** at given points in $\widehat{\Omega}$.
- map_der: function handle to compute DF, the derivatives of F.

The fields contain the handles to evaluate \mathbf{F} , not the values of \mathbf{F} .

For NURBS and B-splines, we make use of the NURBS toolbox.

- Based on standard NURBS algorithms (see, e.g., the NURBS book).
- Useful for simple geometry manipulation (revolution, extrusion,...)
- It is also used in GeoPDEs for function evaluation.

The computation of the geometry is separated from the shape functions.

- Necessary for **non-isoparametric** discretizations.
- Geometry evaluations can be made in the coarsest given geometry.

The quadrature rule: mesh structure

Contains information on the partition of the domain, $\widehat{\Omega} = \bigcup_{k=1}^{N_e} \widehat{\mathcal{K}}_k$, and the quadrature rule $\{(\widehat{\mathbf{x}}_{\ell,k}, w_{\ell,k})\}_{\ell=1}^{n_k}$.

The quadrature rule: mesh structure

Contains information on the **partition** of the domain, $\widehat{\Omega} = \bigcup_{k=1}^{N_e} \widehat{K}_k$, and the **quadrature rule** $\{(\widehat{\mathbf{x}}_{\ell,k}, w_{\ell,k})\}_{\ell=1}^{n_k}$.

Remember the expression for the entries of the stiffness matrix

 $A_{ij} \simeq \sum_{k=1}^{N_e} \sum_{\ell=1}^{n_k} w_{\ell,k} \operatorname{grad} v_j(\mathsf{F}(\widehat{\mathsf{x}}_{\ell,k})) \cdot \operatorname{grad} v_i(\mathsf{F}(\widehat{\mathsf{x}}_{\ell,k})) |\det(D\mathsf{F}(\widehat{\mathsf{x}}_{\ell,k}))|$

- nel: N_e, number of elements of the partition.
- **nqn**: n_k , number of quadrature nodes per element.
- quad_nodes: $\widehat{\mathbf{x}}_{\ell,k}$, quadrature nodes in $\widehat{\Omega}$.
- quad_weights: $w_{\ell,k}$, quadrature weights.

The quadrature rule: mesh structure

Contains information on the **partition** of the domain, $\widehat{\Omega} = \bigcup_{k=1}^{N_e} \widehat{\mathcal{K}}_k$, and the **quadrature rule** $\{(\widehat{\mathbf{x}}_{\ell,k}, w_{\ell,k})\}_{\ell=1}^{n_k}$.

Remember the expression for the entries of the stiffness matrix

 $A_{ij} \simeq \sum_{k=1}^{N_e} \sum_{\ell=1}^{n_k} w_{\ell,k} \operatorname{grad} v_j(\mathsf{F}(\widehat{\mathsf{x}}_{\ell,k})) \cdot \operatorname{grad} v_i(\mathsf{F}(\widehat{\mathsf{x}}_{\ell,k})) |\det(D\mathsf{F}(\widehat{\mathsf{x}}_{\ell,k}))|$

- nel: N_e, number of elements of the partition.
- **nqn**: n_k , number of quadrature nodes per element.
- quad_nodes: $\widehat{\mathbf{x}}_{\ell,k}$, quadrature nodes in $\widehat{\Omega}$.
- quad_weights: $w_{\ell,k}$, quadrature weights.
- **geo_map**: $\mathbf{x}_{\ell,k} = \mathbf{F}(\widehat{\mathbf{x}}_{\ell,k})$, quadrature nodes in Ω .
- geo_map_jac: $DF(\hat{\mathbf{x}}_{\ell,k})$, Jacobian matrix evaluated at quad_nodes.
- **jacdet**: $|\det(DF(\widehat{\mathbf{x}}_{\ell,k}))|$, absolute value of the Jacobian.

The discrete space: space structure

Information on the basis functions of the discrete space

$$V_h = \operatorname{span}\{v_i\}_{i=1}^{N_h},$$

and their values at the quadrature points.

The discrete space: space structure

Information on the basis functions of the discrete space

$$V_h = \operatorname{span}\{v_i\}_{i=1}^{N_h},$$

and their values at the quadrature points.

- **ndof**: N_h , total number of degrees of freedom.
- nsh: number of non-vanishing functions in each "element".
- connectivity (IEN): global indices of non-vanishing basis functions.

The discrete space: space structure

Information on the basis functions of the discrete space

$$V_h = \operatorname{span}\{v_i\}_{i=1}^{N_h},$$

and their values at the quadrature points.

- **ndof**: N_h , total number of degrees of freedom.
- nsh: number of non-vanishing functions in each "element".
- connectivity (IEN): global indices of non-vanishing basis functions.
- shape_functions: v_i(x_{ℓ,k}), shape functions evaluated at the quadrature points.
- shape_function_gradients: grad v_i(x_{l,k}), gradients of the shape functions evaluated at the quadrature points.

For NURBS and splines, they are computed with the NURBS toolbox.

Other fields may be necessary (curl, divergence, Laplacian...)

geometry = geo_load ('ring_refined .mat');

```
knots = geometry.nurbs.knots;
```

• Create the **geometry** structure, from a NURBS toolbox file.

```
geometry = geo_load('ring_refined.mat');
knots = geometry.nurbs.knots;
[qn, qw] = msh_set_quad_nodes(knots,msh_gauss_nodes(ngauss));
msh = msh_2d (knots, qn, qw, geometry);
```

- Create the geometry structure, from a NURBS toolbox file.
- Create the **mesh** structure in the parametric domain.
- Map the mesh structure to the physical domain, using geometry.

```
geometry = geo_load('ring_refined.mat');
knots = geometry.nurbs.knots;
[qn, qw] = msh_set_quad_nodes(knots,msh_gauss_nodes(ngauss));
msh = msh_2d (knots, qn, qw, geometry);
space = sp_nurbs_2d (geometry.nurbs, msh);
```

- Create the geometry structure, from a NURBS toolbox file.
- Create the **mesh** structure in the parametric domain.
- Map the mesh structure to the physical domain, using geometry.
- Construct the space structure (the knots are stored in geometry).

```
geometry = geo_load('ring_refined.mat');
knots = geometry.nurbs.knots;
[qn, qw] = msh_set_quad_nodes(knots,msh_gauss_nodes(ngauss));
msh = msh_2d (knots, qn, qw, geometry);
space = sp_nurbs_2d (geometry.nurbs, msh);
[x, y] = deal (msh.geo_map(1,:,:), msh.geo_map(2,:,:));
mat = op_gradu_gradv (space, msh);
rhs = op_f_v (space, msh, rhs_fun(x, y));
```

- Create the geometry structure, from a NURBS toolbox file.
- Create the mesh structure in the parametric domain.
- Map the mesh structure to the physical domain, using geometry.
- Construct the space structure (the knots are stored in geometry).
- Build the matrix and right-hand side.

Remember the expression for the entries of the stiffness matrix $A_{ij} \simeq \sum_{k=1}^{N_e} \sum_{\ell=1}^{n_k} w_{\ell,k} \operatorname{grad} v_j(\mathbf{F}(\mathbf{x}_{\ell,k})) \cdot \operatorname{grad} v_i(\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k})) |\det(D\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k}))|$

- Everything is precomputed (v.1) in the previous structures.
- To construct the matrices, it is enough to correctly gather the information.
- The computation of the matrices is simple, and identical to FEM.

Remember the expression for the entries of the stiffness matrix $A_{ij} \simeq \sum_{k=1}^{N_e} \sum_{\ell=1}^{n_k} w_{\ell,k} \operatorname{grad} v_j(\mathbf{F}(\mathbf{x}_{\ell,k})) \cdot \operatorname{grad} v_i(\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k})) |\det(D\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k}))|$

- Everything is precomputed (v.1) in the previous structures.
- To construct the matrices, it is enough to correctly gather the information.
- The computation of the matrices is simple, and identical to FEM.

Let me show an example.

```
Remember the expression for the entries of the stiffness matrix
A_{ii} \simeq \sum_{k=1}^{N_e} \sum_{\ell=1}^{n_k} w_{\ell,k} \operatorname{grad} v_i(\mathsf{F}(\mathsf{x}_{\ell,k})) \cdot \operatorname{grad} v_i(\mathsf{F}(\widehat{\mathsf{x}}_{\ell,k})) |\det(D\mathsf{F}(\widehat{\mathsf{x}}_{\ell,k}))|
function mat = op_gradu_gradv (space, msh)
for iel = 1:msh.nel
   mat_loc = zeros (space.nsh(iel), space.nsh(iel));
   for idof = 1:space.nsh(iel)
     ishp = space.shape_function_gradients(:,:,idof,iel);
     for jdof = 1:space.nsh(iel)
        jshp = space.shape_function_gradients(:,:,jdof,iel);
        for inode = 1:msh.ngn
           mat_loc(idof,jdof) += ishp(:,inode).*jshp(:,inode) *
            msh.jacdet(inode,iel) * msh.quad_weights(inode,iel);
        endfor %inode
     endfor %idof
   endfor %idof
  mat(space.connect(:,iel), space.connect(:,iel)) += mat_loc;
endfor %iel
```

Remember the expression for the entries of the stiffness matrix $A_{ij} \simeq \sum_{k=1}^{N_e} \sum_{\ell=1}^{n_k} w_{\ell,k} \operatorname{grad} v_j(\mathbf{F}(\mathbf{x}_{\ell,k})) \cdot \operatorname{grad} v_i(\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k})) |\det(D\mathbf{F}(\widehat{\mathbf{x}}_{\ell,k}))|$

- Everything is precomputed (v.1) in the previous structures.
- To construct the matrices, it is enough to correctly gather the information.
- The computation of the matrices is **simple**, and identical to FEM.

Actually, the efficient Matlab implementation is quite different.

For NURBS, we can also take advantage of the tensor product structure.

The structures **mesh** and **space** are completed with the field **boundary**. These are mesh and space **substructures** of dimension N - 1.

The structures **mesh** and **space** are completed with the field **boundary**. These are mesh and space **substructures** of dimension N - 1. The boundary structures have some particularities:

- **jacdet** contains the area element of the boundary parameterization.
- The space structure uses a local numbering for each boundary.
- A new field, dofs, is added to recover the global numbering.

For **Neumann** conditions, $\frac{\partial u}{\partial n} = g$ on Γ_N , we must compute $\int_{\Gamma_N} gv_j$.

- The integral is computed in the same manner as for bulk forces.
- It is assembled into the global r.h.s. using the field **dofs**.

```
 \begin{array}{l} x = msh. \, boundary. \, geo\_map \left(1 , : , : \right); \\ y = msh. \, boundary. \, geo\_map \left(2 , : , : \right); \\ rhs\_bnd = op\_f\_v \left( \, space. \, boundary\, , msh. \, boundary\, , g \left(x , y \right) \right); \\ rhs \left( \, space. \, boundary\, . \, dofs \right) \; += \; rhs\_bnd; \\ \end{array}
```

For **Neumann** conditions, $\frac{\partial u}{\partial n} = g$ on Γ_N , we must compute $\int_{\Gamma_N} gv_j$.

- The integral is computed in the same manner as for bulk forces.
- It is assembled into the global r.h.s. using the field **dofs**.

```
 \begin{array}{l} x = msh.boundary.geo_map(1,:,:); \\ y = msh.boundary.geo_map(2,:,:); \\ rhs_bnd = op_f_v(space.boundary,msh.boundary,g(x,y)); \\ rhs(space.boundary.dofs) += rhs_bnd; \end{array}
```

For **Dirichlet** conditions, u = h on Γ_D , we must assign the d.o.f. in **boundary.dofs**.

- The needed information should already be in the **boundary** structures.
- As an example we have included the least squares best fit, i.e.

$$\int_{\Gamma_D} uv = \int_{\Gamma_D} hv \quad \forall v.$$

We have computed all the **structures** and the **linear system**.

```
geometry = geo_load('ring_refined.mat');
knots = geometry.nurbs.knots;
[qn, qw] = msh_set_quad_nodes(knots,msh_gauss_nodes(ngauss));
msh = msh_2d (knots, qn, qw, geometry);
space = sp_nurbs_2d (geometry.nurbs, msh);
[x, y] = deal (msh.geo_map(1,:,:), msh.geo_map(2,:,:));
mat = op_gradu_gradv (space, msh);
rhs = op_f_v (space, msh, rhs_fun(x, y));
```

Apply **boundary conditions** and **solve** the linear system.

```
geometry = geo_load('ring_refined.mat');
knots = geometry.nurbs.knots;
[qn, qw] = msh_set_quad_nodes(knots, msh_gauss_nodes(ngauss));
msh = msh_2d (knots, qn, qw, geometry);
space = sp_nurbs_2d (geometry.nurbs, msh);
[x, y] = deal (msh.geo_map(1,:,:), msh.geo_map(2,:,:));
mat = op_gradu_gradv (space, msh);
rhs = op_f_v (space, msh, rhs_fun(x, y));
drchlt_dofs = unique ([space.boundary(:).dofs]);
int_dofs = setdiff (1: space. ndof, drchlt_dofs);
u(drchlt_dofs) = 0;
u(int_dofs) = mat(int_dofs, int_dofs) \ rhs(int_dofs);
```

We end up with some **postprocessing**.

```
geometry = geo_load('ring_refined.mat');
knots = geometry.nurbs.knots;
[qn, qw] = msh_set_quad_nodes(knots, msh_gauss_nodes(ngauss));
msh = msh_2d (knots, qn, qw, geometry);
space = sp_nurbs_2d (geometry.nurbs, msh);
[x, y] = deal (msh.geo_map(1,:,:), msh.geo_map(2,:,:));
mat = op_gradu_gradv (space, msh);
rhs = op_f_v (space, msh, rhs_fun(x, y));
drchlt_dofs = unique ([space.boundary(:).dofs]);
int_dofs = setdiff (1: space.ndof, drchlt_dofs);
u(drchlt_dofs) = 0;
u(int_dofs) = mat(int_dofs, int_dofs) \ rhs(int_dofs);
sp_to_vtk (u, space, geometry, [20 20], filename, 'u');
err = sp_12_error (space, msh, u, exact_solution(x, y));
```

And the final result is something like this.

And the final result is something like this.

The package contains **several** simple **examples**:

h-,p-,k-refinement, 2D and 3D, B-splines and NURBS...

The structures can be easily extended to solve more complex problems.

Linear elasticity problems: the elasticity package

Let us see how to solve the following linear elasticity problem:

Find $\mathbf{u} \in V = (H^1_{0,\Gamma_D}(\Omega))^3$ such that

$$\int_{\Omega} \left(2\mu \, \varepsilon(\mathbf{u}) : \varepsilon(\mathbf{v}) + \lambda \operatorname{div}(\mathbf{u}) \operatorname{div}(\mathbf{v}) \right) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} + \int_{\Gamma_{N}} \mathbf{g} \cdot \mathbf{v} \quad \forall \mathbf{v} \in V,$$

Let us see how to solve the following linear elasticity problem:

Find $\mathbf{u} \in V = (H^1_{0,\Gamma_D}(\Omega))^3$ such that

$$\int_{\Omega} \left(2\mu \, \varepsilon(\mathbf{u}) : \varepsilon(\mathbf{v}) + \lambda \operatorname{div}(\mathbf{u}) \operatorname{div}(\mathbf{v}) \right) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} + \int_{\Gamma_N} \mathbf{g} \cdot \mathbf{v} \quad \forall \mathbf{v} \in V,$$

- The geometry and mesh are described as in the previous example.
- The basis functions in the space structure are now vector-valued.
- A specific **operator** for this problem must be defined.
- Imposing the boundary conditions is similar to the previous problem.

•

Definition of the vectorial space

We first define one space structure for each component.

From these we define the vector-valued **space** structure for our problem.

```
spx = spy = spz = sp_nurbs_3d (geometry,msh);
space = sp_vector_3d (spx, spy, spz,msh);
```

This command computes the new vector-valued **space** and the numbering.

Definition of the vectorial space

We first define one **space** structure for **each component**.

From these we define the vector-valued **space** structure for our problem.

```
spx = spy = spz = sp_nurbs_3d (geometry,msh);
space = sp_vector_3d (spx, spy, spz,msh);
```

This command computes the new vector-valued **space** and the numbering.

The horseshoe is a courtesy of T.J.R. Hughes' and his group

An example in electromagnetism:

- Metallic WR-2300 waveguide with a mechanical deformation.
- \bullet Consider only the TE_{10} mode at \simeq 0.35 GHz.
- Compute relative amplitudes of the transmitted and reflected waves.

An example in electromagnetism:

- Metallic WR-2300 waveguide with a mechanical deformation.
- \bullet Consider only the TE_{10} mode at \simeq 0.35 GHz.
- Compute relative amplitudes of the transmitted and reflected waves.

Time-harmonic Maxwell equations in the interior of the waveguide. Forward (known) and reverse (unknown) traveling waves at Γ_i .

Forward (unknown) traveling wave at Γ_o .

Perfect electrical conductor $({f E} imes {f n} = {f 0})$ on the other boundaries.

R. Vázquez (IMATI-CNR Italy)

GeoPDEs: a research tool for IGA

Find
$$\mathbf{E} \in \mathbf{H}_{0,\Gamma_{D}}(\operatorname{curl};\Omega)$$
, and $\alpha_{i}^{r}, \alpha_{o}^{f} \in \mathbb{C}$ such that

$$\int_{\Omega}(\frac{1}{\mu}\operatorname{curl} \mathbf{E} \cdot \operatorname{curl} \overline{\mathbf{G}} - \omega^{2}\varepsilon \mathbf{E} \cdot \overline{\mathbf{G}}) + i\omega(\alpha_{i}^{r}\int_{\Gamma_{i}}\mathbf{H}_{\tau}^{10} \cdot \overline{\mathbf{G}}_{\tau} + \alpha_{o}^{f}\int_{\Gamma_{o}}\mathbf{H}_{\tau}^{10} \cdot \overline{\mathbf{G}}_{\tau}) = i\omega\alpha_{i}^{f}\int_{\Gamma_{i}}\mathbf{H}_{\tau}^{10} \cdot \overline{\mathbf{G}}_{\tau},$$

$$i\omega(\int_{\Gamma_{i}}\mathbf{E}_{\tau} \cdot \mathbf{H}_{\tau}^{10} - \alpha_{i}^{r}\int_{\Gamma_{i}}\mathbf{E}_{\tau}^{10} \cdot \mathbf{H}_{\tau}^{10}) = i\omega\alpha_{i}^{f}\int_{\Gamma_{i}}\mathbf{E}_{\tau}^{10} \cdot \mathbf{H}_{\tau}^{10},$$

$$i\omega(\int_{\Gamma_{o}}\mathbf{E}_{\tau} \cdot \mathbf{H}_{\tau}^{10} - \alpha_{o}^{f}\int_{\Gamma_{o}}\mathbf{E}_{\tau}^{10} \cdot \mathbf{H}_{\tau}^{10}) = 0.$$

The geometry and mesh are described as in the previous examples.
We need an operator to compute the curl-curl matrix.

Find
$$\mathbf{E} \in \mathbf{H}_{0,\Gamma_{D}}(\operatorname{curl};\Omega)$$
, and $\alpha_{i}^{r}, \alpha_{o}^{f} \in \mathbb{C}$ such that

$$\int_{\Omega}(\frac{1}{\mu}\operatorname{curl}\mathbf{E} \cdot \operatorname{curl}\overline{\mathbf{G}} - \omega^{2}\varepsilon\mathbf{E} \cdot \overline{\mathbf{G}}) + i\omega(\alpha_{i}^{r}\int_{\Gamma_{i}}\mathbf{H}_{\tau}^{10} \cdot \overline{\mathbf{G}}_{\tau} + \alpha_{o}^{f}\int_{\Gamma_{o}}\mathbf{H}_{\tau}^{10} \cdot \overline{\mathbf{G}}_{\tau}) = i\omega\alpha_{i}^{f}\int_{\Gamma_{i}}\mathbf{H}_{\tau}^{10} \cdot \overline{\mathbf{G}}_{\tau},$$

$$i\omega(\int_{\Gamma_{i}}\mathbf{E}_{\tau} \cdot \mathbf{H}_{\tau}^{10} - \alpha_{i}^{r}\int_{\Gamma_{i}}\mathbf{E}_{\tau}^{10} \cdot \mathbf{H}_{\tau}^{10}) = i\omega\alpha_{i}^{f}\int_{\Gamma_{i}}\mathbf{E}_{\tau}^{10} \cdot \mathbf{H}_{\tau}^{10},$$

$$i\omega(\int_{\Gamma_{o}}\mathbf{E}_{\tau} \cdot \mathbf{H}_{\tau}^{10} - \alpha_{o}^{f}\int_{\Gamma_{o}}\mathbf{E}_{\tau}^{10} \cdot \mathbf{H}_{\tau}^{10}) = 0.$$

- The geometry and mesh are described as in the previous examples.
- We need an operator to compute the curl-curl matrix.
- Vector-valued **space** with a curl-conserving transform.

The shape functions are given by $\mathbf{E} \circ \mathbf{F} = D\mathbf{F}^{-\top} \widehat{\mathbf{E}}$.

And
$$(\operatorname{curl} \mathbf{E}) \circ \mathbf{F} = \frac{1}{\det(D\mathbf{F})} D\mathbf{F}(\widehat{\operatorname{curl}} \, \widehat{\mathbf{E}}).$$

Find
$$\mathbf{E} \in \mathbf{H}_{0,\Gamma_{D}}(\mathbf{curl};\Omega)$$
, and $\alpha_{i}^{r}, \alpha_{o}^{f} \in \mathbb{C}$ such that

$$\int_{\Omega}(\frac{1}{\mu}\mathbf{curl}\,\mathbf{E}\cdot\mathbf{curl}\,\overline{\mathbf{G}} - \omega^{2}\varepsilon\mathbf{E}\cdot\overline{\mathbf{G}}) + i\omega(\alpha_{i}^{r}\int_{\Gamma_{i}}\mathbf{H}_{\tau}^{10}\cdot\overline{\mathbf{G}}_{\tau} + \alpha_{o}^{f}\int_{\Gamma_{o}}\mathbf{H}_{\tau}^{10}\cdot\overline{\mathbf{G}}_{\tau}) = i\omega\alpha_{i}^{f}\int_{\Gamma_{i}}\mathbf{H}_{\tau}^{10}\cdot\overline{\mathbf{G}}_{\tau}, \\
i\omega(\int_{\Gamma_{i}}\mathbf{E}_{\tau}\cdot\mathbf{H}_{\tau}^{10} - \alpha_{i}^{r}\int_{\Gamma_{i}}\mathbf{E}_{\tau}^{10}\cdot\mathbf{H}_{\tau}^{10}) = i\omega\alpha_{i}^{f}\int_{\Gamma_{i}}\mathbf{E}_{\tau}^{10}\cdot\mathbf{H}_{\tau}^{10}, \\
i\omega(\int_{\Gamma_{o}}\mathbf{E}_{\tau}\cdot\mathbf{H}_{\tau}^{10} - \alpha_{o}^{f}\int_{\Gamma_{o}}\mathbf{E}_{\tau}^{10}\cdot\mathbf{H}_{\tau}^{10}) = 0.$$

- The **geometry** and **mesh** are described as in the previous examples.
- We need an operator to compute the curl-curl matrix.
- Vector-valued **space** with a curl-conserving transform.
- For the boundaries, we only store the tangential components.
- Operators to compute the integrals on the boundary are also needed.

IGA school, Cetraro, 2012 20 / 22

Clarity was the primary goal in the first version of GeoPDEs.

- All the fields were **precomputed** (high memory consumption).
- Clear but **slow** computation of the matrices.

Clarity was the primary goal in the first version of GeoPDEs.

- All the fields were **precomputed** (high memory consumption).
- Clear but **slow** computation of the matrices.

Efficiency became an important issue in GeoPDEs 2.0.

- Faster version of matrix computations.
 - Vectorization of some loops.
 - Better use of sparse matrices in Matlab.

Clarity was the primary goal in the first version of GeoPDEs.

- All the fields were **precomputed** (high memory consumption).
- Clear but **slow** computation of the matrices.

Efficiency became an important issue in GeoPDEs 2.0.

- Faster version of matrix computations.
- For NURBS, we take advantage of the tensor product structure.
 - Only the 1D functions and derivatives are precomputed.
 - The 2D/3D fields are computed one column at a time.

Clarity was the primary goal in the first version of GeoPDEs.

- All the fields were **precomputed** (high memory consumption).
- Clear but **slow** computation of the matrices.

Efficiency became an important issue in GeoPDEs 2.0.

- Faster version of matrix computations.
- For NURBS, we take advantage of the tensor product structure.
 - Only the 1D functions and derivatives are precomputed.
 - ▶ The 2D/3D fields are computed one column at a time.

```
for iel = 1:msh.nel_dir(1)
    msh_col = msh_evaluate_col (msh, iel);
    sp_col = sp_evaluate_col (space, msh_col);
    A = A + op_gradu_gradv (sp_col, msh_col);
end
```

The "column" structures contain the same fields we have seen before.

R. Vázquez (IMATI-CNR Italy)

GeoPDEs: a research tool for IGA

GeoPDEs is an open source and free Matlab implementation of IGA.

- Very useful for teaching purposes and for new researchers.
- It can serve as a rapid prototyping tool to test new ideas.
- Several packages already released to solve different problems.
- Many examples and a short guide with detailed explanations.

GeoPDEs is an open source and free Matlab implementation of IGA.

- Very useful for teaching purposes and for new researchers.
- It can serve as a rapid prototyping tool to test new ideas.
- Several **packages** already released to solve different problems.
- Many examples and a short guide with detailed explanations.

In the last 4 months, around 300 downloads of the base package.

GeoPDEs is an open source and free Matlab implementation of IGA.

- Very useful for teaching purposes and for new researchers.
- It can serve as a rapid prototyping tool to test new ideas.
- Several **packages** already released to solve different problems.
- Many examples and a short guide with detailed explanations.

In the last 4 months, around 300 downloads of the **base** package.

Contributions are welcome, to improve the code or to show new methods.

GeoPDEs is an open source and free Matlab implementation of IGA.

- Very useful for teaching purposes and for new researchers.
- It can serve as a rapid prototyping tool to test new ideas.
- Several **packages** already released to solve different problems.
- Many examples and a short guide with detailed explanations.

In the last 4 months, around 300 downloads of the **base** package.

Contributions are welcome, to improve the code or to show new methods.

GeoPDEs tutorial today at 17:00.

GeoPDEs is an open source and free Matlab implementation of IGA.

- Very useful for teaching purposes and for new researchers.
- It can serve as a rapid prototyping tool to test new ideas.
- Several **packages** already released to solve different problems.
- Many examples and a short guide with detailed explanations.

In the last 4 months, around 300 downloads of the base package.

Contributions are welcome, to improve the code or to show new methods.

GeoPDEs tutorial today at 17:00.

Software download and information

http://geopdes.sourceforge.net

Thanks for your attention!

GeoPDEs: a research tool for IGA