IGA main concepts

The computational domain Ω is parametrized by spline/NURBS: $\mathbf{F}: \widehat{\Omega} \to \Omega$, where $\mathbf{F}(\xi, \eta) = \sum_{i} \mathbf{C}_{i} \mathcal{B}_{i}(\xi, \eta)$, and \mathbf{C}_{i} are the control points

NURBS

IGA main concepts

The computational domain Ω is parametrized by spline/NURBS: $\mathbf{F}: \widehat{\Omega} \to \Omega$, where $\mathbf{F}(\xi, \eta) = \sum_{i} \mathbf{C}_{i} B_{i}(\xi, \eta)$, and \mathbf{C}_{i} are the control points

IGA main concepts

The computational domain Ω is parametrized by spline/NURBS: $\mathbf{F}: \widehat{\Omega} \to \Omega$, where $\mathbf{F}(\xi, \eta) = \sum_{i} \mathbf{C}_{i} B_{i}(\xi, \eta)$, and \mathbf{C}_{i} are the control points

IGA has been proposed by structural engineers:

- Isoparametric paradigm: push-forward of splines/NURBS basis functions on the computational domain Ω to approximate the solution of the PDE.
- Finite Element kind method (splines etc. replace piecewise polynomials)

G. Sangalli (UNIPV)

・ロト・日本・日本・日本・日本・日本

Isoparametric construction

The unknown written w.r.t. the parametric variables $(\widehat{\mathbf{u}} : \widehat{\Omega} \to \Omega_{deformed})$ is represented by the same fuctions that are used for the geometry parametrization $\mathbf{F} : \widehat{\Omega} \to \Omega_{initial}$

イロン イ理 とくほと イヨト

3

< ロ > < 同 > < 回 > < 回 >

a constant c belongs to the isoparametric space if the same constant c = c · F is represented in the basis over Ω...

・ 同 ト ・ ヨ ト ・ ヨ ト ・

a constant c belongs to the isoparametric space if the same constant c = c · F is represented in the basis over Ω... ok for splines and NURBS (partition of the unity)

- a constant c belongs to the isoparametric space if the same constant c
 ^c = c · F is represented in the basis over Ω
 ^Ω... ok for splines and NURBS (partition of the unity)
- $\mathbf{u}(x, y) = \mathbf{A} \begin{bmatrix} x \\ y \end{bmatrix}$ is in any isoparametric space since $\widehat{\mathbf{u}}(\xi, \eta) = \mathbf{A} \mathbf{F} \begin{bmatrix} \xi \\ \eta \end{bmatrix} = \mathbf{A} \begin{bmatrix} F_1(\xi, \eta) \\ F_2(\xi, \eta) \end{bmatrix}$ is a vector field whose components are linear combination of the parametrization components $F_1(\xi, \eta)$ and $F_2(\xi, \eta)$, and then is represented in the same basis $\mathbb{E} = \mathbb{E}$

The isoparametric space contains any rigid body motion

$$\mathbf{u}(x,y) = \mathbf{c} + \mathbf{R} \begin{bmatrix} x \\ y \end{bmatrix}$$

that form the kernel of the internal elastic energy

IGA main side-effect

The computational domain Ω is parametrized by spline/NURBS: $\mathbf{F}: \widehat{\Omega} \to \Omega$, where $\mathbf{F}(\xi, \eta) = \sum_{i} \mathbf{C}_{i} B_{i}(\xi, \eta)$, and \mathbf{C}_{i} are the control points

Isogeometric spaces are smooth

通り イヨト イヨト