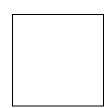
Cognome	Nome		Firma		
Corso di Laurea		N. Matricola			
Calcolo Numerico					
Scritto d'esame					
29 settembre 2004					
1. Se la soluzione esatta di un modello matematico è 10 e la soluzione ottenuta mediante un procedimento numerico è 12, allora l'errore assoluto è dato da e l'errore relativo è dato da					
2. Si consideri la funzione $f(x) = x$ nell'intervallo $[-1,2]$. Dire a quale intervallo si arriva dopo aver implementato 2 passi del metodo di bisezione					
3. Si consideri la funzione $g(x)=x^3$. Dire a quale soluzione si perviene applicando un passo del metodo di Newton alla funzione g con dato inziale $x_0=1$					


4. Scrivere i tre elementi del $x_2 = 2$.	lla base di Lagrange as	sociati ai tre noc	$di x_0 = 0, x_1 = 1 e$		
5. I tre nodi di Chebyshev (n	a=2) relativi all'interva	allo $[0,3]$ sono:	-		
6. L'integrale	$\int_{-\pi/2}^{\pi/2} \sin(x) dx$				
approssimato con la formula del punto medio (semplice) vale					
7. Si calcoli lo stesso integrale dell'esercizio precedente con la formula dei trapezi (semplice)					

8. Si calcoli la decomposizione LU della matrice

$$A = \begin{pmatrix} 4 & 1 & 2 \\ 0 & 2 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$

$$U =$$

9. Si consideri il vettore iniziale $x_0 = (0, 1, 0)^T$ e il termine noto $b = (1, 0, 0)^T$ e si applichi un'iterazione del metodo di Jacobi relativamente alla matrice A dell'esercizio precedente. Allora il vettore x_1 vale

10. Si applichi il metodo di Eulero esplicito per calcolare la soluzione dell'equazione differenziale

$$y'(t) = (1+2t)y(t), y(0) = 2$$

nel punto t=1/2 con h=1/2

