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Elliptic PDE's
One dimensional model problem (2 =|a, b|)

{ —u(x) = f(z) inQ
u(a) = u(b) =0

Boundary value problem (other boundary conditions possible)

Generalization to Q) € RY with boundary 052

—Au=f inQ
u=20 on 0f)

Theorem: well-posedness (existence, uniqueness, stability)
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Finite differences

Summary: easy to design (approximate derivatives with difference

quotients), easy to implement, very hard extension to general domains
and boundary conditions

Here N =5 2o=a, 2, =a+ >  h;,i=1,...,N
=1

J

Denoting u; = u(x;), u; = u'(x;), first finite difference is

Uj+1 — Uj—1 . :
u o — - second order accurate in h (consistent)
hi + hiy1
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Finite differences (cont’ed)

Approximation of second derivative

U’ — U1~ Ug  Ug— U]
u// N i—|—1/2 i—1/2 N hi—|—1 h;
e hit+hit1 - hithit1
2 2

If h; = h (constant mesh size), simpler expression

u// N U;j—1 — 2’11,2 + Uj;4+-1
A h2

Our approximate equation at x; reads

second order consistent

—Ui—1 + 2U; — Uiy

h2

i i=1,.... N—1
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Finite differences (cont’ed)

Putting things together we are led to the linear system

,
UOZO

—Ui—1 + 2U; — Uiy

X e — i

AU =F A = [tridiag(—1,2, —1)]/h*
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Weak formulations

Need for more general formulations.

Let's consider space V = H(a,b) consisting of continuous functions
on |a,b|, piecewise differentiable with bounded derivative, and

vanishing at endpoints.

Generalization to 2D requires Lebesgue integral and Hilbert spaces
HY(Q) = {v e L*Q) s.t. gradv € L*(Q)}
where

v2<oo}

L3 (Q) = {v : () — R integrable s.t. /
Q
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Weak formulations (cont’ed)

Take our model equation, multiply by a generic v € V' (test function),
and integrate over (a,b)

[ anterio= [ g

Integrating by parts gives

/ab v (z)v'(x) do = /abf(a:')v(a:) dx

a:VxV =R, FeV*

b

b
a(u,v) :/ ' () (2)de, F)= | f(x)v(x)dr

a
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Weak formulations (cont’ed)

Lax—Milgram Lemma

Find w € V such that a(u,v) = F(v) YveV

This problem is well posed (exist., uniq., and stab.) provided
1. V Hilbert space

2. a bilinear, continuous, F' linear, continuous

3. a coercive, that is there exists a > 0 s.t.

a(v,v) > allv||i,, YveV

|ully < —||F|y* Stability estimate
Q
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Weak formulations (cont’ed)

In our case hypotheses of LM Lemma OK (Poincaré inequality)

Theorem If f is smooth enough, the unique solution to weak
formulation solves the original equation as well (strong solution)

More general situation

—div(egradu) + 3-gradu+ou=f inQ
u =0 on O}

a(u,v)z/sgradu-gr_édvdf—l—/vﬁ-grﬁdudf%—/auvdf
Q Q Q
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Weak formulations (cont’ed)

In general problem in weak form, when a is symmetric, is equivalent
to the following variational problem:

Find v € V such that

J(u) = min J(v), J(v) = %a(v, v) — F(v)

veV

In the one dimensional model problem, we have

b b
Tw) = / (' (2))? da — / F(@)o(x) de
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Finite elements (Galerkin method)

Consider a finite dimensional subspace V;, C V' (h refers to a mesh
parameter).

Find up, € V}, such that a(up,vy) = F(vy) Yop € Vy

Problem is solvable by Lax—Milgram

N
Suppose that V;, = span{y1,...,on(h)}, so up = D u;p;
i=1

Problem can be written: find {u;} s.t. for any j

a (Z Us Ps soj) = F(p;)

D. Boffi — Complexity 10



Galerkin method (cont’ed)

Bilinearity of a gives

N
1=1

Let's denote by A the stiffness matrix A;; = a(y;, ¢;) and by b the

load vector b; = F'(¢;). Then we have the matrix form of discrete
problem

Au=05

a symmetric and coercive implies A symmetric positive definite
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Galerkin method (cont’ed)

Existence and uniqueness (Lax—Milgram)

Convergence = Consistency + Stability

Stability:
1
lunllv < =[]l
Q

Strong consistency

a(u —up,vp) =0 Yo, € Vj
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Galerkin method (cont’ed)

Error estimate (Céa’'s Lemma)

al|lu — upl|d < alu —up,u — up) = alu — up, u — vp)

< Mlju = unllvw = wvnllv

7
_ < — int ey —
Ju—unlly < = inf lu—vsllv

Error bounded by best approximation
Need for good choice of V3!
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Galerkin method (cont’ed)

Moreover, when a is symmetric, we have the variational property

J(uh) — min J(?}h)

’UhEVh

Since V}, C V, in particular, we have

J(u) < J(un)
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Finite elements

One dimensional p/w linear
approximation.

Shape (or basis) functions:
hat functions.

A finite element is defined by:

1) a domain (interval, triangle, tetrahedron,. . . ),
2) a finite dimensional (polynomial) space,

3) a set of degrees of freedom.
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Finite elements (cont’ed)

One dimensional finite elements

1) domain: interval
2) space: P,
3) d.o.f.'s: depend on polynomial order

linear element: endpoints (2)
quadratic element: endpoints + midpoint (3)

Set {aj}évzl of degrees of freedom is unisolvent, that is, given N
numbers «q, ..., ay, there exists a unique polynomial ¢ in P, s. t.

pla;) =a5, j=1,...,N
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Finite elements (cont’ed)

Approximation properties of one dimensional finite elements

inf [ju— vpllge < CARPT T Flul e B =0,1
vRLEVY,

Remark on hp FEM

Refine in h where solution is singular

Refine in p where solution is regular

D. Boffi — Complexity

17



