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Finite elements (cont’ed)

Generalization to more space dimensions

Example of unisolvent degrees of freedom
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Finite elements (cont’ed)

How to construct stiffness matrix and load vector
In general one considers reference elements and mappings to actual

elements
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Notation: K reference element: K actual element
01,...pN reference shape functions; ¢q,...pxNn actual shape
functions




Finite elements (cont’ed)

How to map the shape functions

Fx:K— K, 7=F)
p(T) = P(F~ (7))




Finite elements (cont’ed)
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F'(z)

In general, F = a + (% is affine so that F' = (3 is constant (and
equal to h)

Pi () @5 (T) L[y s
[ P e [ @) (@) do
Kk F'(T¥) hJk

In more space dimensions, F’' is affine for more popular elements.

/ grad o;(Z) - grad @i (%) dE =7
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Finite elements (cont’ed)

General strategy for assembling the stiffness matrix and the load

vector
» Loop over elements ie = 1,...,ne
» Compute local stiffness matrix A;‘gc = a(pi, i), 1,5 =1,...,ndof

and local load vector F/°¢ = F(y;), i = 1,...,ndof

» Loop fori,5 =1,...,ndof and assembly of global matrix

loc
Aiglob,jglob — Aiglob,jglob + Aij

» Account for boundary conditions




Finite elements (cont’ed)

Some remarks on the discrete linear system

» matrix is sparse (sparsity pattern, so called skyline, can be
determined a priori

» matrix is SPD (CG can be succesfully applied)

» conditioning of matrix grows as h goes to zero (need for
preconditioning)




Convection diffusion equation

As usual. . . a one dimensional example

—eu'(z)+bu'(z) =0 O<zx<l
u(0) =0, u(l) =1

Non-homogeneous boundary conditions (!)
Péclet number P = |b|L/(2¢) (L =1 in our case)

Closed form solution can be explicitly computed

- exp(br/e) -1
) = e (b/e) — 1




Convection diffusion equation (cont’ed)

u(z) = exp(bx/e) — 1

exp(b/e) — 1
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If b/e < 1 then u(x) ~ x
If b/e > 1 then u(xz) ~ exp(—b(1 — x)/¢e)

In the second case, boundary layer of size O(e/b)




Convection diffusion equation (cont’ed)

Approximation by finite elements

a(u,v) = /0 (eu'(z)v"(x) + bu/(x)v(x)) dx

After some computations. . . stiffness matrix is (uniform mesh):

b ¢ 2¢ b ¢
g n)UH TR T T Ty )

Local Péclet number is P(h) = |b|h/(2¢), so that our system has the
structure

(P(h) — 1)ui+1 + 2u; — (P(h) + 1)u7;_1 =0




Convection diffusion equation (cont’ed)

(P(h) — 1)ui+1 -+ 2’UJZ — (P(h) + 1)uz-_1 —
General solution

- (1+]P>(h)>i
—P(h)

1 _ (1—|—IP’(h)) N
1—P(h)

i=1,....N

U, —

If P(h) > 1 solution oscillates!
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Stabilization techiniques

» Upwind (finite differences)
» Artificial viscosity, streamline diffusion (loosing consistency)

» Petrov—Galerkin, SUPG (strongly consistent)
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Hyperbolic equations

Let's consider the model problem (one dimensional convection
equation)

(Ju  Ou

— — =0, t>0, zelR
{ 0t+a8x ’ 0

L u(x,0) =up(z), z€R

Solution is a traveling wave u(x,t) = ug(z — at).

We consider a finite difference approximation.




Hyperbolic equations (cont’ed)

- “7 0
t a@x
At
n+1  n n n
U, =U; — A_x( j+1/2 — j—1/2)

where h; 19 = h(u;,uj41) is a numerical flux

Indeed,

o _ Ljt+1/2
U, = = (@) g172) — (@) with U= [ da

j—1/2
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Hyperbolic equations (cont’ed)

Courant—Friedrichs—Lewy (CFL) condition

At

— 1 <1
aA:U

Very clear geometrical interpretation (see also multidimensional
extension and generalization to systems)

Remark: implicit schemes (in time) don't have restrictions, but add
artificial diffusion




End of part Il
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