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a b s t r a c t

We consider in this article a Cahn–Hilliard model in a bounded domain with non-permeable walls,
characterized by dynamic-type boundary conditions. Dynamic boundary conditions for the Cahn–Hilliard
system have recently been proposed by physicists in order to account for the interactions with the walls
in confined systems and are obtained by writing that the total bulk mass is conserved and that there is
a relaxation dynamics on the boundary. However, in the case of non-permeable walls, one should also
expect some mass on the boundary. It thus seems more realistic to assume that the total mass, in the
bulk and on the boundary, is conserved, which leads to boundary conditions of a different type. For the
resulting mathematical model, we prove the existence and uniqueness of weak solutions and study their
asymptotic behavior as time goes to infinity.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

We consider in this article the following Cahn–Hilliard system
describing the evolution of the order parameter of a binary mate-
rial associated with a particular class of dynamic boundary condi-
tions:

ρt −∆µ = 0, inΩ, (1.1)
µ = −∆ρ + f (ρ), inΩ, (1.2)
wρt − δ∆Γµ = −∂nµ, on Γ , (1.3)
wµ = −σ∆Γ ρ + g(ρ)+ ∂nρ, on Γ . (1.4)

A physical derivation of this model, based on a variational princi-
ple, is detailed in the next section. Here, Ω ⊂ R3 is a smooth and
bounded domain with boundary Γ corresponding to the binary
material under consideration. Moreover, δ and σ are nonnegative
parameters (which can vanish, not necessarily simultaneously, in
the absence of boundary diffusion),w is a bounded and nondegen-
erate weight function, ∆Γ is the Laplace–Beltrami operator, and
the nonlinear function f is the derivative of a λ-convex and possi-
bly singular ‘‘bulk’’ potential F . Finally, g is a smooth function with
controlled growth at infinity. The terminology ‘‘singular potential’’
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(cf. Remark 3.1 below) refers to the fact that F is allowed to take
identically the value +∞ outside a bounded interval I ⊂ R, while
λ-convex means convex up to a quadratic perturbation.

The Cahn–Hilliard system describes important qualitative fea-
tures of two-phase systems related to phase separation processes.
This phenomenon can be observed, e.g., when a binary alloy
is cooled down sufficiently. One then observes a partial nucle-
ation (i.e., the appearance of nucleides in the material) or a to-
tal nucleation, the so-called spinodal decomposition: the material
quickly becomes inhomogeneous, forming a fine-grained structure
in which each of the two components appears more or less alter-
natively. In a second stage, which is called coarsening and which
occurs at a slower time scale and is less understood, these mi-
crostructures coarsen. Such phenomena play an essential role in
the mechanical properties of the material, e.g., strength. We refer
the reader to, e.g., [1–3] for more details.

Dynamic boundary conditions have recently been proposed
by physicists, in the context of the Cahn–Hilliard equation, in
order to account for the interactions with the walls in confined
systems (cf. [4–6] and the references therein). In particular,
such boundary conditions have mainly been studied for polymer
mixtures (although this should also be important in other systems,
such as binary metallic alloys): from a technological point of view,
binary polymer mixtures are particularly interesting, since the
structures occurring during the phase separation process may be
frozen by a rapid quench into the glassy state; microstructures at
surfaces on very small length scales can be produced in this way.
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More precisely, the following boundary conditions have been
proposed:

∂nµ = 0, on Γ , (1.5)
ρt − σ∆Γ ρ + g(ρ)+ ∂nρ = 0, on Γ , σ > 0, (1.6)

the second boundary condition being called a dynamic boundary
condition, in the sense that the kinetics, i.e., ρt , appears explic-
itly. The Cahn–Hilliard system, endowedwith these boundary con-
ditions, has been studied in [7–13] (see also [14–20] for similar
boundary conditions for the Caginalp phase-field system).

Now, the first boundary condition, namely, ∂nµ = 0, on Γ ,
means that there is no mass flux on the boundary (the second
one being obtained by assuming a relaxation dynamics on the
boundary and yielding that the total free energy decreases) and
implies, integrating (formally) (1.1) overΩ , the conservation of the
totalmass inΩ . However, it also seems reasonable, to fully account
for the interactions of the material’s components with the walls,
to actually write that the total mass, inΩ and on Γ , is conserved;
indeed, it seems reasonable to assume that there is also somemass
on the boundary. This leads (see the next section for details) to the
boundary conditions (1.3)–(1.4).

Our first aim in the present article is to give a physical derivation
of system (1.1)–(1.4) on the basis of a variational principle.
Actually, similar boundary conditions (with δ = 0,w constant and
g linear) have been derived in [21], though in a different context,
namely, in the case of permeable walls, and studied in [21–24] for
a regular nonlinear term f .

Then, we analyze, from a mathematical point of view, the well-
posedness issue for this model and try to deal with the most
general conditions on the nonlinear terms. In particular, in order
to treat singular functions f , we are forced to set the problem
in a suitable weak framework by considering duality techniques
in negative order Sobolev spaces. Indeed, it is expected here
that, when the bulk potential F is bounded (F ′

= f ), we can
have nonexistence of classical (i.e., in the sense of distributions)
solutions. This can be seen, as in [11] for the usual dynamic
boundary conditions, by considering the scalar ODE

y′′
− f (y) = 0, x ∈ (−1, 1), y′(±1) = C > 0,

for large C ’s (which corresponds to the one-dimensional stationary
problem with µ = 0 and g ≡ −C; note that, in one space
dimension, the Laplace–Beltrami operator does not make sense
and does not appear in the boundary conditions). This type of
approach, based on duality, has been proved to be effective for
other similar models (see, e.g., [20,25]; see also [11] for a different,
though related, notion of a weak solution, based on variational
inequalities).

Once the well-posedness of the system has been established
in the proper weak setting, we discuss further properties of the
solutions, such as parabolic regularization effects, dissipativity, and
long-time behavior. In particular, we show that, if the functions
f and g satisfy suitable growth conditions (which, in particular,
restrict the class of admissible functions f in the singular case),
then the solutions satisfy instantaneous regularization properties
and can be intended in a stronger sense (i.e., pointwise) for all
strictly positive times (for all times if the initial datum is also more
regular). We also prove the existence of a compact global attractor
for the dynamical process generated by the system. Finally, we
show the existence of ω-limit sets of solution trajectories and
prove that they only consist of stationary states. We also prove
that, if f and g are analytic functions and some other technical
conditions hold, then the ω-limit set of any trajectory consists of
one single point. This result is shown by appealing to the well-
known Łojasiewicz–Simon method (cf., e.g., [7]). In the case of a
singular function f , the key point in the proof consists in showing
that any solution is, at least for large times, uniformly separated
from the singular points of f (i.e., from the endpoints of I).

This article is organized as follows. In Section 2, we give a
derivation of (1.3)–(1.4). Then, in Section 3, we give our main as-
sumptions and state and prove our results.

2. Derivation of the model

First, we set H := L2(Ω) and denote by (·, ·) the scalar product
both in H and in H3 and by ‖ · ‖ the related norm. Moreover, we
set V := H1(Ω) and denote by V ′ the (topological) dual of V . The
duality between V ′ and V is indicated by ⟨·, ·⟩.

We also setHΓ := L2(Γ ) andVΓ := H1(Γ ) anddenote by (·, ·)Γ
the standard scalar product inHΓ , by‖·‖Γ the correspondingnorm,
and by ⟨·, ·⟩Γ the duality between V ′

Γ and VΓ . In general, ‖ · ‖X
indicates the norm in the generic (real) Banach space X and ⟨·, ·⟩X
stands for the duality between X ′ and X .

We can then define the Hilbert spaces

H := H × HΓ and V := {z ∈ V : z|Γ ∈ VΓ }, (2.1)

endowed with the natural scalar products and norms. Unless
otherwise specified, in what follows, we will impose the following
convention:whenwewrite h ∈ H , hwill be interpreted as a pair of
functions belonging, respectively, toH and toHΓ and both denoted
by the same letter h. Analogously, when we consider v ∈ V (or
even v ∈ V ), the symbol v will be intended, depending on the
context, either as a function defined in Ω , or as a pair formed by
a function inΩ and its trace on Γ .

We will also need some weighted spaces. We take

w ∈ L∞(Γ ), 0 < w∗ ≤ w(x) ≤ w∗ for a.e. x ∈ Γ , (2.2)

where w∗, w
∗ are given constants. Then, we introduce, on Ω =

Ω ∪ Γ , the measure dm given by∫
Ω

vdm :=

∫
Ω

vdx +

∫
Γ

vw dΣ, (2.3)

where v represents a generic function in L1(Ω) × L1(Γ ). We also
define

m(v) :=

∫
Ω

vdx +

∫
Γ

vw dΣ
 

|Ω| +

∫
Γ

w dΣ
−1

, (2.4)

i.e., the average of v with respect to the measure dm.
Thanks to (2.2), dm is equivalent to the Lebesgue measure dx⊗

dΣ . In particular, the scalar product

(h, k)m :=

∫
Ω

hkdm =

∫
Ω

hkdx +

∫
Γ

hkw dΣ (2.5)

generates on H a norm ‖ · ‖m which is equivalent to the standard
norm ‖ · ‖H .

We can now provide a mathematically accurate derivation of
system (1.1)–(1.4), starting from mechanical principles.

First, we assume the validity of Eq. (1.1) which describes the
balance of mass inΩ . Indeed, integrating it overΩ , we have

d
dt

∫
Ω

ρdx =

∫
Γ

∂nµ dΣ (2.6)

and we have to specify the evolution of µ. To this end, we define
the free energy of the system as

E(ρ) :=

∫
Ω


|∇ρ|

2

2
+ F(ρ)


dx

+

∫
Γ

σ
2

|∇Γ ρ|
2
+ G(ρ)


dΣ, (2.7)
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i.e., the sum of the Ginzburg–Landau (bulk) free energy and of a
surface free energy, where ∇Γ is the tangential gradient on Γ and
σ may vanish, due to a possible lack of boundary diffusive effects.
Here, F and G are suitable antiderivatives of the functions f and g
in (1.2) and (1.4).

We then assume that, a.e. in the reference time interval (0, T ),

µ = ∂mE(ρ), (2.8)

∂m denoting the subdifferential in the space H with respect to
the scalar product (2.5). As we will see below, by introducing
the weight m, we are able to consider the situation when the
‘‘boundary mass’’ is linked to the variable ρ in a different way with
respect to the ‘‘bulk mass’’. For instance, one can think of the case
when the dynamic boundary conditions arise as an approximation
of a thin diffusive layer occupied by a different material, as in the
so-called ‘‘concentrated capacity’’ models; see, e.g., [26–29].

It is then not difficult to check that (2.8) can be rephrased as the
system

µ = −∆ρ + f (ρ), inΩ, (2.9)

µ =
1
w
(−σ∆Γ ρ + g(ρ)+ ∂nρ), on Γ , (2.10)

where ∆Γ is the Laplace–Beltrami operator. Actually, to see
that (2.9)–(2.10) is equivalent to (2.8), it is sufficient to take a
sufficiently regular test function z,multiply (2.9) by z−ρ and (2.10)
by w(z − ρ), and integrate (i.e., we test (2.9)–(2.10) with the test
function z − ρ for the scalar product (2.5)). Integrations by parts
then lead to

(µ, z − ρ)m ≤ E(z)− E(ρ), (2.11)

which coincides with (2.8) by the definition of subdifferentials.
Of course, coupling (1.1)with (2.9)–(2.10) does not give a closed

system, since a boundary condition for µ is still missing (while
(2.10) or, equivalently, (1.4) provides, in fact, a boundary condition
for ρ).

The main novelty of the present approach is to consider,
as mentioned in the introduction, the class of those boundary
conditionswhich ensure the conservation of the total (i.e., bulk plus
boundary) mass. More precisely, we ask that

d
dt

∫
Ω

ρdm =
d
dt

∫
Ω

ρdx +

∫
Γ

ρw dΣ


= 0. (2.12)

This is in contrast with what happens with the usual Cahn–Hilliard
models for which only the bulk mass is conserved. However, in the
framework of dynamic boundary problems, it seems reasonable to
assume that the boundary gives a non-negligible contribution to
diffusion. Hence, (2.12) may appear as a more realistic condition.

Then, using (2.6), (2.12) yields the compatibility condition∫
Γ

(ρtw + ∂nµ) dΣ = 0. (2.13)

A class of boundary conditions guaranteeing the validity of (2.13)
(and, hence, of (2.12)) is given by

ρt +
1
w
(−δ∆Γµ+ ∂nµ) = 0, on Γ , (2.14)

where δ ≥ 0. Of course, (2.14) can be rephrased as the equivalent
form (1.3).

Remark 2.1. In [21], as mentioned in the introduction, similar
boundary conditions are derived in the context of permeablewalls.
Comparedwith our derivation, (2.14) (withw ≡ Const. and δ = 0;
such a boundary condition is then called a Wentzell boundary
condition) is somehow assumed and yields the conservation of
mass (2.12), whereas, here, (2.8) (and, thus, (2.10)) is assumed.
3. Weak formulation and main results

We introduce here our main assumptions, together with a
number of tools which are needed in order to reformulate system
(1.1)–(1.4) in a mathematically precise way and give a rigorous
statement of our results.

We first need some further discussion on the functional spaces.
Actually, we notice that we have the chain of continuous embed-
dings

V ⊂ V ⊂ H ⊂ V ′
⊂ V ′. (3.1)

More precisely, identifying H with its dual through the scalar
product (2.5), we obtain the Hilbert triplets (V ,H, V ′) and
(V,H,V ′). Indeed, it is not difficult to prove that the space V is
dense in H .

For later convenience, we set, for η ≥ 0,

Vη := V if η > 0 and Vη := V if η = 0 (3.2)

(in applications,η = δ orσ ). In particular, the norm ‖·‖Vη coincides
with the norm of V for η = 0 and with that of V for η > 0.

We also define the elliptic operators

A : V → V ′, ⟨Az1, z2⟩ :=

∫
Ω

∇z1 · ∇z2, (3.3)

AΓ : VΓ → V ′

Γ , ⟨AΓ z1, z2⟩Γ :=

∫
Γ

∇Γ z1 · ∇Γ z2, (3.4)

A : V → V ′, ⟨Az1, z2⟩V := ⟨Az1, z2⟩ + ⟨AΓ z1, z2⟩Γ , (3.5)

Aη : Vη → V ′

η,

⟨Aηz1, z2⟩Vη := ⟨Az1, z2⟩ + η⟨AΓ z1, z2⟩Γ .
(3.6)

Let us nowpresent our basic hypotheses on the nonlinear terms.
We assume that I is an open, possibly bounded, interval of R
containing 0 and that

f ∈ C0,1
loc (I,R), g ∈ C0,1

loc (R,R), f (0) = g(0) = 0. (fg1)

Moreover, we assume that

lim
r→∂ I

f (r)sign r = lim
|r|→+∞

g(r)sign r = +∞, (fg2)

f ′(r), g ′(r) ≥ −λ for some λ ≥ 0 (fg3)

and for a.e. r in I and in R, respectively. Then, we define, whenever
they make sense, the potentials

F(r) :=

∫ r

0
f (s) ds, G(r) :=

∫ r

0
g(s) ds (3.7)

and it follows from (fg2) that both F andG are bounded frombelow.
If I ≠ R, F is extended by continuity to the closure I and then
extended by +∞ outside I .

Remark 3.1. Actually, we will speak of singular potentials F in the
case when I is a bounded interval. A physically relevant case is
given by the so-called logarithmic potential

F(r) = (1 + r) ln(1 + r)+ (1 − r) ln(1 − r)− λr2, λ ≥ 0,
(3.8)

where I = (−1, 1), of course. The recent literature on Cahn–
Hilliard problems (see, e.g., [30,11]) shows that singular potentials
are considerably more difficult to deal with than ‘‘regular’’ ones,
especially in connection with dynamic boundary conditions.

To deduce a weak formulation of (1.1)–(1.4), we multiply (1.2)
and (1.4) by a test function φ ∈ Vσ and (1.1) and (1.3) by ψ ∈ Vδ
and then integrate. This leads to the relations



G.R. Goldstein et al. / Physica D 240 (2011) 754–766 757
∫
Ω

µφ +

∫
Γ

µφw =

∫
Ω

∇ρ · ∇φ +

∫
Ω

f (ρ)φ

+ σ

∫
Γ

∇Γ ρ · ∇Γ φ +

∫
Γ

g(ρ)φ, (3.9)∫
Ω

ρtψ +

∫
Γ

ρtψw = −

∫
Ω

∇µ · ∇ψ

− δ

∫
Γ

∇Γµ · ∇Γψ. (3.10)

We also set

F : H → H, F (v) := f (v), inΩ,

F (v) :=
g(v)
w
, on Γ ,

(3.11)

B : H → H, B(v) := f (v)+ λv, inΩ,

B(v) :=
g(v)+ λv

w
, on Γ .

(3.12)

Actually, the operator F is seen as a linear perturbation of the
maximal monotone operator B acting from H to itself. Notice the
occurrence of the function w in the denominator, due to the fact
that H is identified with H ′ through the scalar product (2.5), in
relation with the way the Hilbert triplet (V,H,V ′) is built. Of
course, the effective domains of B and F are in general strict
subsets of H .

Using (3.3)–(3.6) and (3.11), system (3.9)–(3.10) can then be
rewritten in the more compact form

ρt = −Aδµ, in V ′

δ, (3.13)

µ = Aσρ + F (ρ), in V ′

σ . (3.14)

However, under general conditions on the functions f , g , it is
very difficult, if not impossible, to prove an existence result for
system (3.13)–(3.14) in its present form.More precisely, due to the
dynamic boundary conditions, an H-uniform bound on the term
F (ρ) is generally out of reach. One way to overcome this difficulty
is to introduce a weaker notion of a solution, by suitably relaxing
the functional F (a different, albeit closely related, approach has
been proposed in [11]).

To this end, we first define the convex (cf. (fg3)) functional

J : H → R ∪ {+∞},

J(ρ) :=

∫
Ω


F(ρ1)+

λ

2
ρ2
1


+

∫
Γ


G(ρ2)+

λ

2
ρ2
2


,

(3.15)

where, here, ρ = (ρ1, ρ2). Furthermore, for ρ = (ρ1, ρ2) ∈ H ,
we say that ρ ∈ D(J) if and only if ρ1 ∈ L2(Ω), ρ2 ∈ L2(Γ ),
F(ρ1) ∈ L1(Ω) and G(ρ2) ∈ L1(Γ ). If ρ ∈ H \ D(J), then we set
J(ρ) = +∞. Then, J is proper, convex, and lower semicontinuous
on H . Notice that, for ρ, κ ∈ D(J), it holds that

κ = (κ1, κ2) ∈ ∂m J(ρ) ⇐⇒ κ1 = f (ρ1)+ λρ1 a.e. inΩ

and κ2 =
g(ρ2)+ λρ2

w
a.e. on Γ .

(3.16)

In other words, B coincides with the H-subdifferential of J with
respect to the scalar product (2.5). Note that, if κ = (κ1, κ2) ∈ Vσ ,
then κ1 = κ|Ω and κ2 = κ|Γ . Then, since Vσ ⊂ H for any σ ≥ 0,
we can consider the restriction of J to Vσ and denote byBw (i.e., the
‘‘weak’’ form of B) its subdifferential with respect to the duality
between Vσ and V ′

σ . More precisely, for ρ ∈ Vσ and h ∈ V ′
σ , we

have

h ∈ Bw(ρ)
def

⇐⇒ ⟨h, z − ρ⟩Vσ ≤ J(z)− J(ρ) ∀z ∈ Vσ . (3.17)

It is not difficult to prove that, considering the Hilbert triplet Vσ ⊂

H ⊂ V ′
σ , graph(B)∩ (Vσ × V ′

σ ) is included in graph(Bw). In other
words,
∂m J(z) ⊂ Bw(z) ∀z ∈ Vσ . (3.18)

However, it is reasonable to expect this inclusion to be strict, both
because the domain of Bw may be larger than the restriction to Vσ
of the domain of B and because Bw is expected to be amultivalued
operator in the case when f is singular (for more details, we refer
the reader to [31,32], where this type of relaxed operators is deeply
examined when Vσ is replaced byW 1,p

0 (Ω)).
Introducing also the linear and continuous operator

Iw : Vσ → V ′

σ , ⟨Iwz1, z2⟩Vσ :=

∫
Ω

z1z2 +

∫
Γ

z1z2, (3.19)

and defining Fw := Bw − λIw, we can reformulate system
(3.13)–(3.14) in a weak setting and state a related well-posedness
result.

Theorem 3.2. Let us assume that (2.2) and (fg1)–(fg3) hold and that

ρ0 ∈ Vσ , F(ρ0) ∈ L1(Ω), G(ρ0) ∈ L1(Γ ). (3.20)

Assume also that

m0 := m(ρ0) ∈ I (3.21)

and take some T > 0 as a final time. Then, there exist functions ρ and
µ having the regularity

ρ ∈ L∞(0, T ; Vσ ), ρt ∈ L2(0, T ; V ′

δ), (3.22)

µ ∈ L2(0, T ; Vδ) (3.23)

which satisfy, a.e. in (0, T ),

ρt = −Aδµ, in V ′

δ, (3.24)

µ ∈ Aσρ + Fw(ρ), in V ′

σ , (3.25)

as well as the initial condition

ρ|t=0 = ρ0. (3.26)

Moreover, the function ρ is unique and we have, in particular, the
contractive estimate

‖ρ1 − ρ2‖L2(0,T ;Vσ ) ≤ c(T )‖ρ0,1 − ρ0,2‖V ′
δ
, (3.27)

where ρ0,1 and ρ0,2 are two initial data satisfying (3.20)–(3.21) for
the same value m0 and ρ1 and ρ2 are the ρ-components of the
corresponding solutions.

Notice the occurrence of the inclusion sign in (3.25) which is due
to the possible multivalued character of Bw (and, hence, of Fw).

Remark 3.3. Condition (3.21) is not automatic (i.e., it does not
always follow from (3.20)). For instance, in the case of the
logarithmic potential (3.8),we canhaveρ0 ≡ 1 and F(ρ0) ∈ L1(Ω).
However, we cannot deal with such an initial datum, since it does
not fulfill (3.21).

Remark 3.4. Notice that the above theorem only states the uni-
queness of ρ. Instead, µmay possibly be nonunique. Actually, this
a standard issue in Cahn–Hilliard models when a multivalued op-
erator appears in the formulation of the system (as happens in our
case withFw). A specific example for which nonuniqueness occurs
is constructed in [33, Rem. 2.3].

Our next result is devoted to the dissipativity of the system and to
smoothing properties of the solutions. Actually, in view of a long-
time analysis, we introduce the ‘‘finite-energy’’ phase space

X := {ρ ∈ Vσ : E(ρ) < +∞}. (3.28)

Notice that only the component ρ of a solution is considered, due
to the possible nonuniqueness of µ. The space X can be endowed
with the natural distance
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distX(ρ1, ρ2) := ‖ρ1 − ρ2‖Vσ + ‖F(ρ1)− F(ρ2)‖L1(Ω)

+ ‖G(ρ1)− G(ρ2)‖L1(Γ ). (3.29)

It is then not difficult to prove (cf., e.g., [34, Lemma 3.8]) that
(X, distX) is a complete metric space. To account for the conser-
vation of the spatial average (cf. (2.12) and (3.21)), givenm0 ∈ I =

dom(f ), we also set

X0 := {ρ ∈ X : m(ρ) = m0}. (3.30)

Theorem 3.5. Let the assumptions of Theorem 3.2 hold. In particular,
let us assume that, for a given m0 as above, ρ0 ∈ X0 and let us set
E0 := E(ρ0). Then, for all t ≥ 0, ρ(t) ∈ X0. Moreover, there exist a
number R0 which is independent of the initial datum (butmay depend
on m0) and a time T0 depending only on E0 such that E(ρ(t)) ≤ R0
for all t ≥ T0. In other words, the set B0 := {ρ ∈ X0 : E(ρ) ≤ R0}

is an absorbing set for the dynamical system S(·) associated with (the
ρ-components of) the solutions of system (3.24)–(3.25).

As a next step, without assuming any further property on the
initial datum, we show that any weak solution satisfies some
instantaneous regularization effect.

Theorem 3.6. Let the assumptions of Theorem 3.5 hold and let, as
above, E0 := E(ρ0). Let (ρ, µ) be a weak solution. Then, for any
τ > 0, the following properties hold:

‖ρt‖L2(t,t+1;Vσ ) ≤ Q (τ−1,E0) ∀t ≥ τ , (3.31)

‖µ‖L∞(τ ,+∞;Vδ) ≤ Q (τ−1,E0), (3.32)

where Q is a computable nonnegative function and is monotone
increasing with respect to each argument.

Restricting the class of admissible nonlinearities, we can show that
properties (3.31)–(3.32) also entail further regularity for ρ, both in
Ω and on Γ .

Theorem 3.7. Let the assumptions of Theorem 3.5 hold and let, in
addition, for a.e. r ∈ I ,

|f ′(r)| ≤ cf (1 + |f (r)|p0) for some p0 ∈ (0, 2) if δ > 0, (3.33)

|f ′(r)| ≤ cf (1 + |f (r)|4/3) if δ = 0 (3.34)

for some constant cf > 0. Let us also assume that

if I = R, then ∃cf ,g > 0 : |g(r)| ≤ cf ,g(1 + |f (r)|)

∀r ∈ R. (3.35)

Let (ρ, µ) be a weak solution. Then, for any τ > 0,

‖ρ‖L∞(τ ,+∞;H3/2(Ω)) + σ 1/2
‖ρ‖L∞(τ ,+∞;H2(Γ )) ≤ Q (τ−1,E0),

(3.36)

‖b(ρ)‖L∞(τ ,∞;H) ≤ Q (τ−1,E0), (3.37)

where Q is again a computable nonnegative monotone function.
Moreover,

‖F(ρ)‖L∞(τ ,+∞;Lp1 (Ω)) ≤ Q (τ−1,E0), (3.38)

for somep1 > 1. Finally, for almost all t > 0, the system can be rewrit-
ten in the ‘‘strong’’ form (1.1)–(1.4). More precisely, (1.1)–(1.2) hold
as equalities in H and (1.3)–(1.4) are satisfied in HΓ for a.e. t > 0.

Remark 3.8. Unfortunately, (3.33) (or (3.34)) is not satisfied by the
physically relevant logarithmic potential (3.8).

Remark 3.9. In other problems characterized by singular terms
and dynamic boundary conditions (cf., e.g., [8,20]), the growth
assumption (3.33) (or (3.34)) can be replaced by sign conditions
on g near the boundary of I (for instance, if I = (−1, 1), then g has
to be nonnegative near 1 and nonpositive near −1). This does not
seem to be possible here, due to the term wµ in (1.4) which may
be unbounded with respect to the spatial variables and ‘‘kill’’ the
sign conditions.

Remark 3.10. The compatibility assumption (3.35) simply states
that g cannot grow strictly faster than f , which is indeed true in all
relevant cases. Actually, (3.35) could be strongly relaxed by paying
the price of technical complications in the proof.

As a consequence of the above result, we easily obtain the
existence of a compact absorbing set for the dynamical process S(·).
Moreover, thanks to the contractive estimate (3.27), one can see
that S(·) is a closed semigroup in the sense of Pata and Zelik [35].
Thus, by exploiting [35, Thm. 2], we immediately deduce:

Corollary 3.11. Let the assumptions of Theorem 3.7 hold. Then,
the dynamical system S(·) possesses a compact global attractor A.
Furthermore, there exists cA ≥ 0 such that

‖ρ‖H3/2(Ω) + σ‖ρ‖H2(Ω) + ‖F(ρ)‖Lp1 (Ω) ≤ cA (3.39)

for all ρ ∈ A.

Remark 3.12. Of course, (3.39) follows as a direct consequence of
(3.36) and (3.38). It is also clear that it is not an optimal condition
and that it could be further improved, depending on the regularity
properties of f and g .

In the next subsection, we will give the proofs of the results
stated so far. The analysis and characterization of ω-limit sets of
single trajectories will then be presented separately in Section 3.3.

3.1. Proof of Theorem 3.2

We start by deriving several a priori estimates in order to
establish the weak sequential stability of the solutions. For the
sake of simplicity, we will perform these estimates by working
directly, albeit formally, on the ‘‘strong’’ formulation (3.9)–(3.10)
(or, equivalently, (3.13)–(3.14)) of the system. Actually, one should
rather consider a proper approximation of system (1.1)–(1.4)
(obtained, e.g., by suitably regularizing the functions f and g and
the initial datum), prove that the approximate system possesses
sufficiently smooth solutions, and then show that the family of
these solutions satisfies the a priori estimates uniformly with
respect to the approximation parameter. This has been done, in
fairly complete detail, in the recent article [20], devoted to the
Caginalp phase-field system with dynamic boundary conditions
and singular potentials. Since the procedure required for the
present system would be rather similar, we prefer to use here the
formal approach and refer the reader to [20] for further details.
The energy estimate. Take φ = ρt in (3.9) and ψ = µ in (3.10). We
then easily find

d
dt

E(ρ)+ ‖∇µ‖
2
+ δ‖∇Γµ‖

2
Γ = 0, (3.40)

where the ‘‘energy’’ E was defined in (2.7). Using (fg2) to recover
the full V -norm of ρ, it is then easy to infer

‖ρ‖L∞(0,T ;Vσ ) ≤ c, (3.41)

‖F(ρ)‖L∞(0,T ;L1(Ω)) + ‖G(ρ)‖L∞(0,T ;L1(Γ )) ≤ c, (3.42)

‖∇µ‖L2(0,T ;H) + δ1/2‖∇Γµ‖L2(0,T ;HΓ ) ≤ c. (3.43)

Here and below, (ρ, µ) should be considered as a sequence of
‘‘approximate’’ solutions and the letter c > 0 denotes constants
which are independent of the approximation parameters.
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In fact, the c ’s can depend here on f , g and on the ‘‘magnitude’’
of the initial datum. We will use the letter κ to denote constants
used in estimates from below, with the same dependences as c.
The constants c, κ are not allowed to depend on the final time T .
Specific constants will be denoted by ci, i ≥ 1.
A further estimate. Takingψ ≡ 1 in (3.10), we observe that the dm-
averagem(ρ) (cf. (2.4)) is conserved in time, namely,

m(ρ(t)) = m(ρ0) = m0 ∀t ≥ 0. (3.44)

Then, we can take φ := ρ − m(ρ) in (3.9) and obtain

⟨Aσρ, ρ⟩ + (F (ρ), ρ − m(ρ))m = (µ, ρ − m(ρ))m, (3.45)

where we recall that (·, ·)m is the inner product on H with respect
to the measure dm. Next, we observe that

(µ, ρ − m(ρ))m = (µ− µΩ , ρ − m(ρ))m
≤ ‖µ− µΩ‖m‖ρ − m(ρ)‖m

≤ c‖µ− µΩ‖m, (3.46)

whereµΩ is the standard spatial average ofµ inΩ and, to deduce
the last inequality, we have used (3.41) and the conservation
property (3.44). Moreover,

‖µ− µΩ‖m ≤ c‖µ− µΩ‖V ≤ c‖∇µ‖, (3.47)

thanks to the trace theorem and the Poincaré–Wirtinger inequal-
ity. Next, proceeding as in [30, Appendix], it is not difficult to prove
that

(F (ρ), ρ − m(ρ))m

≥ κ

∫
Ω

(|f (ρ)| + F(ρ))+

∫
Γ

(|g(ρ)| + G(ρ))


− c, (3.48)

where the constant c depends onρ only through the assigned value
m(ρ) = m0 (cf. (3.44)). Notice that condition (3.21) is also used
here. Then, squaring (3.45) and using (3.43), we obtain

‖f (ρ)‖L2(0,T ;L1(Ω)) + ‖g(ρ)‖L2(0,T ;L1(Γ )) ≤ c. (3.49)

The estimate of µ. Test (3.14) using 1. Performing standard integra-
tions and squaring, we find∫ T

0

∫
Ω

µ

2 ≤ c
∫ T

0

∫
Γ

µ

2 + c‖f (ρ)‖2
L2(0,T ;L1(Ω))

+ c‖g(ρ)‖2
L2(0,T ;L1(Γ ))

≤ c
∫ T

0

∫
Γ

µ

2 + c, (3.50)

thanks to (3.49). Then, integrating in time, adding the squared
L2(0, T ;H)-norm of ∇µ to both sides, and using (3.43), we infer∫ T

0

∫
Ω

µ

2 + ‖∇µ‖
2
L2(0,T ;H) ≤ 2

∫ T

0

∫
Γ

µ

2 + c. (3.51)

Next, noting that the quantity on the left-hand side is an equiva-
lent norm on L2(0, T ; V ) and using the trace theorem and standard
interpolation inequalities, we have, for ϵ ∈ (0, 1/2),

‖µ‖
2
L2(0,T ;V ) ≤ c(1 + ‖µ‖

2
L2(0,T ;L2(Γ )))

≤ c(1 + ‖µ‖
2

L2(0,T ;H
1
2 +ϵ

(Ω))

)

≤ c + c‖µ‖
1+2ϵ
L2(0,T ;V )

‖µ‖
1−2ϵ
L2(0,T ;H)

≤ c + c‖µ‖
1+2ϵ
L2(0,T ;V )

‖µ‖

2(1−2ϵ)
3

L2(0,T ;V )
‖µ‖

(1−2ϵ)
3

L2(0,T ;H−2(Ω))

≤ c +
1
2
‖µ‖

2
L2(0,T ;V ) + c‖µ‖

2
L2(0,T ;H−2(Ω))

. (3.52)
Now, let us take

φ ∈ H2
0 (Ω) ⊂ V

in (3.9). Then, the Γ -components vanish, since φ has zero trace.
Thus, using also the continuous embedding H2

0 (Ω) ⊂ L∞(Ω), we
obtain

|⟨µ, φ⟩H2
0 (Ω)

| ≤ c(‖∇ρ‖H + ‖f (ρ)‖L1(Ω))‖φ‖H2
0 (Ω)

. (3.53)

Squaring, integrating over (0, T ), passing to the supremum with
respect to φ with unit norm, and using (3.41) and (3.49), we then
deduce that the last term on the right-hand side of (3.52) is con-
trolled. Recalling also (3.43), we finally infer

‖µ‖L2(0,T ;Vδ) ≤ c. (3.54)

Passing to the limit. In order to prove the existence of a weak solu-
tion, we exploit estimates (3.41)–(3.43), (3.49), and (3.54) to show
that any sequence of approximate solutions (let us denote it by, say,
(ρn, µn), where n is the approximation parameter intended to go
to +∞) admits at least a subsequence which converges to a weak
solution of our system. Of course, this part is again formal, since the
approximation has not been specified. That said, what we obtain is
the existence of a pair (ρ, µ) and of a nonrelabelled subsequence
of n such that

ρn → ρ weak star in L∞(0, T ; Vσ ), (3.55)

µn → µ weakly in L2(0, T ; Vδ). (3.56)

In addition, using the continuity of the linear operatorAδ in (3.13),
we see that

ρn,t → ρt weakly in L2(0, T ; V ′

δ), (3.57)

whence, recalling (3.55) and using the Aubin–Lions compactness
lemma,

ρn → ρ strongly in C0([0, T ];H1−ϵ(Ω)) (3.58)

for all ϵ > 0. In particular, we have the a.e. convergence of ρn, both
inΩ and on Γ .

Next, by (3.55), (3.56), and the continuity of the linear operator
Aσ in (3.14), we end up with

B(ρn) → B weakly in L2(0, T ; V ′

σ ) (3.59)

and we have to identify the limit function B in some way. To do
this, we first notice that (3.55)–(3.56) and (3.59) are sufficient for
taking the limit of (3.14) which reads

µ = Aσρ + B − λIw(ρ). (3.60)

Actually, it is immediate to take the limit of Iw(ρn), since Iw
is linear and continuous. Then, we test (3.14) (written at the n-
approximation level) using ρn in the Vσ -duality and integrate. This
gives∫ T

0
(B(ρn), ρn)m =

∫ T

0
⟨B(ρn), ρn⟩Vσ

=

∫ T

0
(µn, ρn)m −

∫ T

0
(‖∇ρn‖

2
+ σ‖∇Γ ρn‖

2
Γ )

+ λ

∫ T

0
(‖ρn‖

2
+ ‖ρn‖

2
Γ ), (3.61)

where we have used the identification of H with H ′ through the
scalar product (2.5). Then, taking the lim sup as n ↗ +∞ of (3.61),
using relations (3.55)–(3.59), and comparing with (3.60) tested by
using ρ, it is not difficult to infer

lim sup
n↗+∞

∫ T

0
⟨B(ρn), ρn⟩Vσ ≤

∫ T

0
⟨B, ρ⟩Vσ , (3.62)
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whence, recalling (3.18) and using, e.g., [36, Prop. 1.1, p. 42], we
obtain

B ∈ Bw(ρ) a.e. in (0, T ) (3.63)

and (3.60) actually coincides with (3.25). Observing that passing
to the limit in (3.13) and the initial condition is immediate,
thanks to (3.56)–(3.58), we have the validity of (3.24) and (3.26).
Since (3.22)–(3.23) are obvious consequences of (3.55)–(3.59), this
concludes the proof of existence.
Uniqueness. We will prove a contractive estimate. Let us consider
two initial data ρ0,1, ρ0,2 both belonging to the space X0 (and,
hence, having in particular the same dm-averagem0). Let (ρ1, µ1),
(ρ2, µ2) be the solutions corresponding to these initial data and
let us denote by (ρ, µ) their difference. We take the difference of
(3.24) (written for both solutions), integrate with respect to time,
and test the resulting equation with µ in the Vδ-duality. This gives

(ρ, µ)m = −
1
2

d
dt

∫
Ω

|∇(1 ∗ µ)|2

+ δ

∫
Γ

|∇Γ (1 ∗ µ)|2 − 2(ρ0, 1 ∗ µ)m


(3.64)

and, using the fact that m(ρ0) = 0 and the Poincaré–Wirtinger
inequality, we obtain

2|(ρ0, 1 ∗ µ)m| ≤ 2‖ρ0‖V ′
δ
‖1 ∗ µ− (1 ∗ µ)Ω‖Vδ

≤ c‖ρ0‖2
V ′
δ
+

1
2
‖∇(1 ∗ µ)‖2

+
δ

2
‖∇Γ (1 ∗ µ)‖2

Γ . (3.65)

Next, testing the difference of (3.25) (written, again, for both
solutions) with ρ in the Vσ -duality and using the monotonicity of
Bw, we infer

(ρ, µ)m ≥ ‖∇ρ‖
2
+ σ‖∇Γ ρ‖

2
Γ − λ(‖ρ‖

2
+ ‖ρ‖

2
Γ ) (3.66)

and we have to control the last term on the right-hand side. To
do this, we first notice that, by standard trace theorems, for ϵ ∈

(0, 1/2), it holds that

λ(‖ρ‖
2
+ ‖ρ‖

2
Γ ) ≤ c‖ρ‖

2

H
1
2 +ϵ

(Ω)

≤
1
2
‖∇ρ‖

2
+ c‖ρ‖

2
H−1(Ω)

,

(3.67)

the latter inequality following from the chain of compact embed-
dings V ⊂ H1/2+ϵ(Ω) ⊂ H−1(Ω). Thus, collecting (3.64)–(3.67),
we have
1
2

d
dt

∫
Ω

|∇(1 ∗ µ)|2 + δ

∫
Γ

|∇Γ (1 ∗ µ)|2 − 2(ρ0, 1 ∗ µ)m


+

1
2
‖∇ρ‖

2
+ σ‖∇Γ ρ‖

2
Γ ≤ c1‖ρ‖

2
H−1(Ω)

. (3.68)

We now consider the linear operator B : H2(Ω) ∩ H1
0 (Ω) → H

defined by

Bu = h ⇐⇒ −∆u = h and u|Γ = 0. (3.69)

Then, we integrate the difference of (3.24) (written for both solu-
tions) in time and test the resulting equality with KB−1ρ, for K > 0
to be chosen, to obtain

K‖ρ‖
2
H−1(Ω)

≤ K
∫
Ω

∇(1 ∗ µ) · ∇B−1ρ

 + K(ρ0, B−1ρ)m

≤
K
2

‖ρ‖
2
H−1(Ω)

+ cK‖∇(1 ∗ µ)‖2

+ cK‖ρ0‖
2
H−1(Ω)

. (3.70)
Thus, summing (3.68) and (3.70), choosing K ≥ 4c1, applying
Gronwall’s lemma, and recalling (3.65), we finally obtain the con-
tractive estimate

‖ρ‖
2
L2(0,T ;Vσ )

≤ c(‖ρ‖
2
L2(0,T ;H−1(Ω))

+ ‖∇ρ‖
2
L2(0,T ;H)

+ σ‖∇Γ ρ‖
2
L2(0,T ;HΓ )

)

≤ cT (‖ρ0‖2
H−1(Ω)

+ ‖ρ0‖
2
V ′
δ
), (3.71)

whence (3.27) follows by observing that ‖ · ‖H−1(Ω) ≤ c‖ · ‖V ′
δ
.

In particular, in the case when ρ0,1 = ρ0,2, then ρ1 = ρ2 almost
everywhere, i.e., we have the uniqueness of ρ. On the other hand,
our argument only implies that ∇(1 ∗ µ) = 0 almost everywhere,
whenceµ1 differs fromµ2 by a functionwhich is constant in space,
but may be time dependent. However, the possible multivalued
character ofFw prevents us fromusing Eq. (3.25) to prove that such
a constant vanishes. �

3.2. Regularization properties of the solutions

Proof of Theorem 3.5. The procedure is standard. It is however
worth noting that it is still necessary to proceed by working on the
approximate statement and then passing to the limit. The reason
for this is that we need to consider the operator F in its ‘‘strong’’
form in order to use pointwise arguments. That said, it is sufficient
to combine the ‘‘energy estimate’’ and the ‘‘further estimate’’. More
precisely, we sum (3.40) and η times (3.45), where η ∈ (0, 1)
will be chosen later. Then, proceeding as in (3.46)–(3.48), it is not
difficult to find
d
dt

E(ρ)+ ‖∇µ‖
2
+ δ‖∇Γµ‖

2
Γ + η‖∇ρ‖

2
+ ση‖∇Γ ρ‖

2
Γ

+ κη

∫
Ω

(|f (ρ)| + F(ρ))+

∫
Γ

(|g(ρ)| + G(ρ))


≤ cη‖∇µ‖ ‖ρ − m(ρ)‖m + cη (3.72)

for some κ > 0. From this point on, the constants κ , c , and ci are
allowed to depend on the initial datum throughm0 = m(ρ0) only.
Then, the right-hand side of (3.72) can be estimated as follows:

≤ cη‖∇µ‖(‖ρ‖V + c)+ cη

≤ c2η1/2‖∇µ‖
2
+ c2η3/2(‖ρ‖

2
+ ‖∇ρ‖

2)+ c. (3.73)

Now, thanks to assumption (fg2), F is superquadratic and, conse-
quently, there exists c3 depending on c2 and κ , but not on η, such
that

κη

2

∫
Ω

F(ρ)− c2η3/2‖ρ‖
2

≥ −c3 (3.74)

for all η ∈ (0, 1). Thus, choosing η small enough that c2η1/2 ≤ 1/2,
we finally end up with

d
dt

E(ρ)+
1
2
‖∇µ‖

2
+ δ‖∇Γµ‖

2
Γ +

η

2
‖∇ρ‖

2
+ ση‖∇Γ ρ‖

2
Γ

+
κ

2
η

∫
Ω

(|f (ρ)| + F(ρ))+

∫
Γ

(|g(ρ)| + G(ρ))


≤ c. (3.75)

Recalling (2.7), we obtain, in particular,

d
dt

E(ρ)+ κE(ρ)+ κ‖∇µ‖
2
+ κδ‖∇Γµ‖

2
Γ

+ κ

∫
Ω

|f (ρ)| +

∫
Γ

|g(ρ)|


≤ c (3.76)

for some (new) value of κ > 0. Then, Gronwall’s lemma immedi-
ately gives the dissipative estimate
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E(ρ(t))+ κ

∫ t+1

t


‖∇µ‖

2
+ δ‖∇Γµ‖

2
Γ

+

∫
Ω

|f (ρ)| +

∫
Γ

|g(ρ)|


≤ E0e−κt
+ c, ∀t ≥ 0, (3.77)

whence the thesis of the theorem. �

Proof of Theorem 3.6. The main ingredient is a new a priori es-
timate (as above, we derive it formally, although we should still
work on some kind of approximation). We compute the time
derivative of (3.9),∫
Ω

µtφ +

∫
Γ

µtφw =

∫
Ω

∇ρt · ∇φ +

∫
Ω

f ′(ρ)ρtφ

+ σ

∫
Γ

∇Γ ρt · ∇Γ φ

+

∫
Γ

g ′(ρ)ρtφ. (3.78)

Then, we take φ = ρt in the above formula and also setψ = µt in
(3.10). This clearly gives

d
dt


1
2
‖∇µ‖

2
+
δ

2
‖∇Γµ‖

2
Γ


+ ‖∇ρt‖

2
+ σ‖∇Γ ρt‖

2
Γ

= −

∫
Ω

f ′(ρ)ρ2
t −

∫
Γ

g ′(ρ)ρ2
t

≤ λ(‖ρt‖
2
+ ‖ρt‖

2
Γ ). (3.79)

To estimate the right-hand side, we proceed as in the proof of
uniqueness.More precisely, we first observe that, at least at the ap-
proximate level, ρt ∈ H , say, a.e. in time. Thus, we can test (3.13)
with B−1ρt (cf. (3.69)). As in (3.70), we obtain

‖ρt‖
2
H−1(Ω)

= −

∫
Ω

∇µ · ∇B−1ρt ≤ ‖∇µ‖ ‖∇B−1ρt‖

≤
1
2
‖ρt‖

2
H−1(Ω)

+ c‖∇µ‖
2. (3.80)

Summing now (3.79) and K times (3.80), with K > 0 to be chosen,
and noting that (cf. (3.67))

λ‖ρt‖
2
+ λ‖ρt‖

2
Γ ≤

1
2
‖∇ρt‖

2
+ c4‖ρt‖2

H−1(Ω)
, (3.81)

we can take K ≥ 4c4. Then, the uniform Gronwall lemma (see,
e.g., [37, Lemma 1.1.1]), also on account of the dissipative esti-
mate (3.77), gives (3.31). Moreover, we obtain a locally uniform
bound on the gradient of µ. To have the full Vδ-norm of µ, we
first have to come back to the ‘‘further estimate’’ and notice that,
thanks to the above procedure, (3.49) can now be improved (and
rephrased) as

‖f (ρ)‖L∞(τ ,+∞;L1(Ω)) + ‖g(ρ)‖L∞(τ ,+∞;L1(Γ )) ≤ Q (τ−1,E0). (3.82)

Then, we go back to the ‘‘estimate of µ’’ and repeat (3.50)–(3.53),
butwithout integrating in time.We then obtain, pointwise in time,

‖µ‖V ≤ c‖f (ρ)‖L1(Ω) + c‖g(ρ)‖L1(Γ )

+ c(‖∇ρ‖H + ‖f (ρ)‖L1(Ω)). (3.83)

Finally, for any t ≥ τ > 0, we can compute the essential supre-
mum of the right-hand side of (3.83) over (t, t + 1). By (3.77) and
(3.82), this gives (3.32) and concludes the proof. �

Proof of Theorem 3.7. Let us now fix τ > 0 and take t ≥ τ so
that properties (3.31)–(3.32) hold.We then consider, for t ≥ τ , the
elliptic system

−∆ρ + b(ρ) = µ+ λρ, (3.84)
−σ∆Γ ρ + g(ρ) = wµ− ∂nρ, (3.85)
where we have set b(r) := f (r) + λr , for r ∈ I . Notice that, in
the framework of weak solutions, we are not allowed to intend
(3.84)–(3.85) in the present (strong) form. However, this may
be done at the approximate level. For simplicity, let us proceed
formally and look for (pointwise in time) estimates of the nonlinear
terms. In what follows, we denote by C a constant behaving as the
right-hand side of (3.31)–(3.32), i.e., monotonically depending on
E0 and τ−1.

Then, we test both (3.84) and (3.85) by b(ρ) and integrate by
parts. We obtain

‖b(ρ)‖2
+

∫
Γ

g(ρ)b(ρ)+

∫
Ω

b′(ρ)|∇ρ|
2
+ σ

∫
Γ

b′(ρ)|∇Γ ρ|
2

≤

∫
Ω

(µ+ λρ)b(ρ)+

∫
Γ

wµb(ρ). (3.86)

Let us first provide an estimate for the right-hand side. We first
note that∫
Ω

(µ+ λρ)b(ρ) ≤
1
4
‖b(ρ)‖2

+ c(‖µ‖
2
+ ‖ρ‖

2)

≤
1
4
‖b(ρ)‖2

+ C, (3.87)

thanks to (3.77) and (3.32). Next, we observe that∫
Γ

wµb(ρ) ≤ ‖wµ‖Lp(Γ )‖b(ρ)‖Lq(Γ ), (3.88)

where p and q are conjugate exponents with p > 4/3. Using
standard trace theorems, we find

‖b(ρ)‖Lq(Γ ) ≤ c‖b(ρ)‖
W

1, 3q
2+q (Ω)

≤ c(‖b(ρ)‖ + ‖b′(ρ)∇ρ‖
L

3q
2+q (Ω)

). (3.89)

Next, we notice that

‖b′(ρ)∇ρ‖
L

3q
2+q (Ω)

≤ ‖b′(ρ)1/2∇ρ‖ ‖b′(ρ)1/2‖
L

6q
4−q (Ω)

(3.90)

and, of course, we also have

‖wµ‖Lp(Γ )‖b(ρ)‖ ≤
1
4
‖b(ρ)‖2

+ ‖wµ‖
2
Lp(Γ ). (3.91)

Thus, collecting (3.88)–(3.91), we end up with∫
Γ

wµb(ρ) ≤
1
2
‖b′(ρ)1/2∇ρ‖

2
+

1
4
‖b(ρ)‖2

+ c‖wµ‖
2
Lp(Γ )(‖b

′(ρ)‖
L

3q
4−q (Ω)

+ 1) (3.92)

and, expressing q in terms of p, we finally have

1
2
‖b(ρ)‖2

+

∫
Γ

g(ρ)b(ρ)+
1
2

∫
Ω

b′(ρ)|∇ρ|
2

+ σ

∫
Γ

b′(ρ)|∇Γ ρ|
2

≤ c‖wµ‖
2
Lp(Γ )


‖b′(ρ)‖

L
3p

3p−4 (Ω)
+ 1


+ C

≤ cη‖wµ‖

3p
2
Lp(Γ ) + η‖b′(ρ)‖

3p
3p−4

L
3p

3p−4 (Ω)

+ C, (3.93)

where η > 0 is a (small) constant to be chosen. Now, the procedure
differs, depending on the value of δ. Indeed, if δ > 0, we obtain,
from (2.2) and (3.32),

‖wµ‖Lp(Γ ) ≤ Cp ∀p ∈ (4/3,+∞), (3.94)
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the constant Cp depending on p. Thus, by (3.33) (which holds, of
course, also for b, since it is a linear perturbation of f ), we can take
p large enough that

η

∫
Ω

|b′(ρ)|
3p

3p−4 ≤ cf η
∫
Ω

|b(ρ)|
3pp0
3p−4 + c

≤
1
4

∫
Ω

|b(ρ)|2 + c (3.95)

and the right-hand side is controlled by the first term in (3.93).
Instead, if δ = 0, we just have

‖wµ‖L4(Γ ) ≤ c, (3.96)

thanks to the continuity of the trace operator from V to L4(Γ ).
Thus, we take p = 4 and obtain, using (3.34) (which still holds
for b),

η

∫
Ω

|b′(ρ)|
3
2 ≤ cf η

∫
Ω

|b(ρ)|2 + c ≤
1
4

∫
Ω

|b(ρ)|2 + c, (3.97)

provided that we choose η small enough. Therefore, in both cases,
we can control the right-hand side of (3.86) (or, equivalently, of
(3.93)).

To obtain an estimate from (3.93), we still have to control the
second term on the left-hand side. Actually, if f is a ‘‘regular’’
function (i.e., I = R), the monotonicity of b and the second of (fg2)
show that b and g have the same sign for |r| large enough. Thus,
clearly, thanks also to (3.35),∫
Γ

g(ρ)b(ρ) ≥ κ‖g(ρ)‖2
Γ − c. (3.98)

If I ≠ R, we have to estimate this term directly. Noting that,
by (fg1), g is uniformly bounded on I and using Gagliardo’s trace
theorem (cf., e.g., [38]), we obtain∫

Γ

g(ρ)b(ρ)
 ≤ c‖b(ρ)‖L1(Γ ) ≤ c‖b(ρ)‖W1,1(Ω)

≤ c‖b(ρ)‖L1(Ω) + c‖b′(ρ)∇ρ‖L1(Ω)

≤ c‖b(ρ)‖L1(Ω) + cη‖b′(ρ)‖L1(Ω)

+ η‖b′(ρ)|∇ρ|
2
‖L1(Ω) (3.99)

and the last term on the right-hand side is estimated, for η small
enough, by the third term on the left-hand side of (3.93), while
the first two terms, as above, can be controlled by the first term in
(3.93), thanks to (3.33) or (3.34) (we leave the details to the reader).

Since the above estimates hold pointwise in time, passing to
the supremum with respect to t ∈ [τ ,+∞) and recalling the
‘‘meaning’’ of the constant C , we have

‖b(ρ)‖L∞(τ ,+∞;H) ≤ Q (E0, τ
−1). (3.100)

Moreover, thanks to the boundedness of ρ (for ‘‘singular’’ f ) or to
(3.98) (for ‘‘regular’’ f ), we also have

‖g(ρ)‖L∞(τ ,+∞;HΓ ) ≤ Q (E0, τ
−1). (3.101)

In particular, with (3.100)–(3.101) at our disposal, at least for t ≥

τ > 0 we can identify, the nonlinear terms with respect to the
topology of H (rather than in the duality between V ′

σ and Vσ as
we did in (3.59)–(3.63)). In other words, (3.37) holds and we can
replace Fw(ρ) with F (ρ) in (3.25). Hence, (3.24)–(3.25) can be
rewritten as (3.13)–(3.14) or, equivalently, (3.9)–(3.10).

In particular, (3.9) can be seen as a weak formulation of
(3.84)–(3.85). Then, we can apply standard elliptic regularity
results (see, e.g., [20, Lemma 2.2 and Rem. 2.3] for a precise state-
ment) to obtain an H2-estimate for ρ if σ > 0 and an H3/2-
estimate if σ = 0. Namely, we have proved (3.36). At this point,
if we integrate by parts the gradient terms in (3.9)–(3.10), esti-
mates (3.31)–(3.32), (3.100)–(3.101), and (3.36) allow us to prove,
by comparison arguments, that

‖∆ρ‖L∞(τ ,+∞;H) + sup
t≥τ

‖∆µ‖L2(t,t+1;V ) ≤ Q (E0, τ
−1) (3.102)

and to give sense to the normal derivatives. More precisely, by the
first of (3.102), (3.36), and proper trace theorems, we have

‖∂nρ‖L∞(τ ,+∞;H−1/2(Γ )) + σ 1/2
‖∂nρ‖L∞(τ ,+∞;H1/2(Γ ))

≤ Q (E0, τ
−1). (3.103)

From this relation, we can see that, for all t > 0, (1.4) makes sense
as an equality in HΓ (actually, in the case σ = 0, we first obtain it
in the space H−1/2(Γ ). Then, we see that it holds in HΓ by simply
comparing terms). Analogously, the second of (3.102) gives

sup
t≥τ

‖∂nµ‖L2(t,t+1;H−1/2(Γ )) ≤ Q (E0, τ
−1), (3.104)

so (1.3) can be interpreted at least in H−1/2(Γ ). Actually, we can
say more. Indeed, in the case δ = 0, ∂nµ equals −wρt ; thus, (1.3)
holds inHΓ , by (3.36). The same holds for δ > 0, since we can view
(1.1)+ (1.3) as a coupled (time-dependent) elliptic system and ap-
ply once more [20, Lemma 2.2]. Hence, we have, in all cases,

sup
t≥τ

‖∂nµ‖L2(t,t+1;HΓ ) ≤ Q (E0, τ
−1) (3.105)

and, summarizing, (3.9)–(3.10) can be interpreted in the strong
form (1.1)–(1.4).

To conclude the proof, we have to show (3.38), which is, how-
ever, immediate. Actually, in the singular case, it is clear that
|F(r)| ≤ c(1+|b(r)|) for any r ∈ I , whence (3.38) holds for p1 = 2,
thanks to (3.100). In the regular case, i.e., if I = R, using the mono-
tonicity of b, we have, instead,

F(r) =

∫ r

0
(b(s)− λs)ds ≤ |rb(r)| + cr2, (3.106)

whence (3.38) now follows from (3.100), (3.36), and interpolation
(again, for p1 = 2 if σ > 0 and for all p1 ∈ (1, 2) if σ = 0). The
proof of the theorem is complete. �

Remark 3.13. If the initial datum is more regular, one can use the
standard (instead of the uniform) Gronwall lemma in the proof of
Theorem 3.6 and see that estimates (3.31)–(3.32) (as well as all the
subsequent ones) also hold for τ = 0, with the right-hand sides
replaced by a quantity suitably depending on some better norm of
the initial datum. To be more precise, what is needed is that the
term under the time derivative on the left-hand side of (3.79) is
controlled at t = 0, namely,

µ|t=0 ∈ Vδ. (3.107)

Notice, however, that µ|t=0 is not prescribed as an initial datum
and, in fact, (3.107) has to be obtained by asking formore regularity
on ρ0 (both in Ω and on Γ ) and deducing the corresponding
regularity on µ|t=0 by comparison in (1.2) and in (1.4) evaluated
at t = 0. We leave the details to the reader.

Remark 3.14. The growth condition (3.33) or (3.34) could actually
be relaxed a bit. Indeed, in the above procedure, one could test the
equations with |b(ρ)|s sign (b(ρ)) for a suitable s ∈ (0, 1) in order
to look for an estimate of b(ρ) in Ls+1(Ω), rather than in H . Such
a weaker estimate is compatible with a (slightly) more general
class of nonlinearities; it is anyway still sufficient, of course, to
interpret the system in the stronger form. We do not give the
details, since the procedure would involve a number of boring
technical complications to provide just a small extension of the
result.
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3.3. Characterization of ω-limit sets

In this final subsection, we deal with the long-time behavior of
single trajectories and use the well-posedness and regularization
results to characterize their ω-limit sets. We will always assume
that the hypotheses of Theorem 3.7 (among which, in particular,
(3.33)–(3.35)) hold, so that the evolutionary system can be
interpreted in the strong form (1.1)–(1.4), at least for t > 0.

Our first step consists in analyzing the stationary problem asso-
ciated with (1.1)–(1.4). As far as the µ-component is concerned, it
reads

−∆µ∞ = 0, inΩ, (3.108)
−δ∆Γµ∞ = −∂nµ∞, on Γ (3.109)

and, clearly, µ∞ solves the system if and only if it is a constant
function. Thus, the ρ-system becomes

−∆ρ∞ + f (ρ∞) = µ∞, inΩ, (3.110)
−σ∆Γ ρ∞ + g(ρ∞) = wµ∞ − ∂nρ∞, on Γ , (3.111)

where µ∞ is a constant which is, at least a priori, undetermined.
We can now prove the existence of (nonempty) ω-limit sets of

weak solutions.

Theorem 3.15. Let the assumptions of Theorem 3.7 hold and let
(ρ, µ) be a solution. Then, the function t → ρ(t) possesses a
nonempty ω-limit set which only consists of solutions ρ∞ of the
stationary problem (3.110)–(3.111). More precisely, for any sequence
{tn} diverging to +∞, there exist a nonrelabelled subsequence and a
solution (ρ∞, µ∞) of (3.108)–(3.111) such that

ρ(tn) → ρ∞, µ(tn) → µ∞ (3.112)

in suitable topologies. Moreover, any such ρ∞ satisfies, in addition,

m(ρ∞) = m0, (3.113)

where m0 is the dm-average of the initial datum ρ0.

Proof. Let {tn} ⊂ [0,+∞) be any sequence of times diverging to
+∞. Then, thanks to (3.36), we see that, up to a (nonrelabelled)
subsequence, ρ(tn) tends to some limit ρ∞ strongly in Vσ . We can
set, for t ∈ [0, 1], (ρn, µn)(t) := (ρ, µ)(tn + t) and notice that
(ρn, µn) solves, for t ∈ [0, 1], problem (1.1)–(1.4). Moreover, it
satisfies the ‘‘initial’’ condition ρn|t=0 = ρ(tn). Furthermore, due
to (3.36), it holds that

ρn → ρ weakly star in L∞(0, 1; Vσ ), (3.114)

while (3.32) entails

µn → µ weakly star in L∞(0, 1; Vδ). (3.115)

Additionally, integrating (3.40) over (0,+∞), we find∫
+∞

0
(‖∇µ‖

2
+ δ‖∇Γµ‖

2
Γ ) ≤ E0, (3.116)

which, using the continuity of the linear operator Aδ in (3.24), also
entails∫

+∞

0
‖ρt‖

2
V ′
δ
≤ Q (E0). (3.117)

Consequently, we have

ρn,t → 0 strongly in L2(0, 1; V ′

δ), (3.118)

which yields that ρ in (3.114) is constant in time and, hence,
coincides with ρ∞ = lim ρn(0).
At this point, we can take the limit of (1.1)–(1.4), written for
(ρn, µn), over the time interval (0, 1). To do this, we first notice
that, by (3.114), (3.100)–(3.101),

b(ρn) → b weakly star in L∞(0, 1;H), (3.119)

g(ρn) → g weakly star in L∞(0, 1;HΓ ). (3.120)

Moreover, by (3.114), (3.118), and the Aubin–Lions lemma,

ρn → ρ∞ strongly in L2(0, 1; H). (3.121)

Thanks to the standard monotonicity argument [36, Prop. 1.1,
p. 42], we then have

b = b(ρ∞), a.e. in (0, 1)×Ω (3.122)

and, analogously, g coincides a.e. on Γ with g(ρ∞).
Summarizing, we see that ρ∞ and µ solve, a.e. in the time

interval (0, 1), the system

−∆µ = 0, inΩ, (3.123)
−δ∆Γµ = −∂nµ, on Γ , (3.124)
−∆ρ∞ + f (ρ∞) = µ, inΩ, (3.125)
−σ∆Γ ρ∞ + g(ρ∞) = wµ− ∂nρ∞, on Γ . (3.126)

From (3.125)–(3.126), it is then clear that also µ is constant with
respect to time. Thus, we can denote it by µ∞. Moreover,
(3.123)–(3.124) imply that µ∞ is also constant with respect
to the space variables. Then, (3.124)–(3.125) actually reduces
to (3.109)–(3.110). Finally, since m(ρ(tn)) = m0 for all n, thanks
to (3.44), (3.113) immediately follows by letting n ↗ +∞, which
concludes the proof. �

As a next step, we analyze a bit more carefully the set of the
solutions of the stationary problem (3.110)–(3.111) which can be
reached in the ω-limit. We first have:

Lemma 3.16. Let the assumptions of Theorem3.7 hold and let (ρ, µ)
be a solution. Then, there exists a constant c5 depending on the initial
datum only through m0 such that, for any µ∞ in the ω-limit set of ρ ,
it holds that

|µ∞| ≤ c5. (3.127)

Proof. We test both (3.110) and (3.111) with ρ∞ − m0, where
ρ∞ lies in the ω-limit set of ρ (and, hence, satisfies, in addition,
(3.113)). Proceeding as in (3.48), we then have

‖∇ρ∞‖
2
+ σ‖∇Γ ρ∞‖

2
Γ

+ κ

∫
Ω

(|f (ρ∞)| + F(ρ∞))+

∫
Γ

(|g(ρ∞)| + G(ρ∞))


≤ (µ∞, ρ∞ − m0)m + c = c. (3.128)

Indeed, the latter scalar product vanishes, since µ∞ is a constant
and (3.113) holds. Consequently, we have

‖ρ∞‖
2
Vσ + ‖f (ρ∞)‖L1(Ω) + ‖g(ρ∞)‖L1(Γ ) ≤ c. (3.129)

The thesis then follows by integrating both (3.110) and (3.111)
with respect to the space variables and using (3.129). �

Our next aim is to show that there exists a compact subinterval
I1 ⊂ I such that any element ρ∞ of the ω-limit set can only take
values in I1. In other words, ρ∞ is bounded in the regular case and
is ‘‘separated from the singularities’’ in the singular one. However,
in the singular case this requires some additional hypotheses.

Lemma 3.17. Let the assumptions of Theorem3.7 hold and let (ρ, µ)
be a solution. Let us also assume that either f is regular (i.e., I = R)
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or there exists ε > 0 such that

g(r)− w∗c5 ≥ 0 ∀r ≥ r∗
− ε,

g(r)+ w∗c5 ≤ 0 ∀r ≤ r∗ + ε,
(3.130)

where c5 is the constant in (3.127) and we have written I = (r∗, r∗).
Then, there exists a compact subinterval I1 ⊂ I such that any element
ρ∞ of the ω-limit set of ρ takes values in I1.

Proof. We test (3.110) with (ρ∞ − M)+ for M > 0 to be chosen.
Using (3.111), we then have

‖∇(ρ∞ − M)+‖
2
+ σ‖∇Γ (ρ∞ − M)+‖

2
Γ

+

∫
Ω

(f (ρ∞)− µ∞)(ρ∞ − M)+

+

∫
Γ

(g(ρ∞)− wµ∞)(ρ∞ − M)+ = 0. (3.131)

It is now clear that, if f is regular, then, thanks to (2.2), (fg2) and
(3.127), we can always choose M large enough that the last two
terms in the left-hand side are nonnegative. On the other hand,
if f is singular, then M has to stay in I . Thus, nothing changes in
what relates to the third term in (3.131) which can still be made
nonnegative by taking M close enough to r∗. Concerning, instead,
the boundary term, in order to ensure the same, we need the first
of (3.130). The lower bound is then obtained in a similar way by
testing (3.110) with −(ρ∞ +M)− and using the second inequality
of (3.130). �

Remark 3.18. Since the constant c5 depends, in particular, on m0,
(3.130) can be seen as an assumption of compatibility between g ,
m0, and w which is more likely to be satisfied when m0 is close
to 0. Of course, it may very well happen that there exists some
nonlinearity g satisfying all other hypotheses, but forwhich (3.130)
holds for no value of m0. In such a case, the elements of the ω-
limit set may not be separated from the singularities of f and the
subsequent analysis cannot be performed.

We now show that, under the same hypotheses on the nonlinear
terms, also the solutions of the evolution problem are separated
from the singularities of f , at least for sufficiently large times.

Lemma 3.19. Let the assumptions of Lemma 3.17 (among which, in
particular, is (3.130), in the case of a singular function f ) hold and let
(ρ, µ) be a solution. Then, there exist a compact subinterval I2 ⊂ I
and a time T1 depending on the solution such that ρ(t, x) ∈ I2 for
almost all x ∈ Ω and t ≥ T1.

Proof. We only give the proof in the case σ > 0, which is almost
immediate. Actually, if f is regular, i.e., I = R, then the result
directly follows from (3.36) and the continuous embedding

H2(Ω) ⊂ C0,α(Ω), α ∈ (0, 1/2). (3.132)

In the case of a singular function f , the assertion follows from
the uniform separation of any element of the ω-limit set
(cf. Lemma 3.17), from relation (3.36) again, and from the embed-
ding (3.132) which entails that the elements of the ω-limit set are
reached with respect to the uniform convergence. So, one can take
any compact subinterval I2 of I such that I1 is contained in the in-
terior of I2.

As regards the case σ = 0, the same argument does not ap-
ply, since, from (3.36), we can only obtain precompactness in the
H3/2-norm, which does not entail uniform convergence. Nonethe-
less, this problem can be overcome by proving a further estimate
on f (ρ), whose details can be found in [9, Lemma 6.3]. �

Lemma 3.20. Let the assumptions of Lemma 3.17 hold and let (ρ, µ)
be a solution. Additionally, assume that
f ∈ C1,1
loc (I,R), g ∈ C1,1

loc (R,R), w ∈ W 1,∞(Γ ). (3.133)

Then, there exist a time T2 and a constant C depending on the solution
such that

‖ρ‖L∞(T2,+∞;H5/2(Ω)) + σ 1/2
‖ρ‖L∞(T2,+∞;H3(Ω)) ≤ C . (3.134)

Proof. We take, for t ≥ T1, the time derivatives of (3.9) and of
(3.10) and set φ = ρtt and ψ = µt therein. Using the previous
lemma and the local Lipschitz continuity of f ′ and g ′ given by
(3.133), we then have

1
2

d
dt


‖∇ρt‖

2
+ σ‖∇Γ ρt‖

2
Γ +

∫
Ω

f ′(ρ)ρ2
t +

∫
Γ

g ′(ρ)ρ2
t


+ ‖∇µt‖

2
+ δ‖∇Γµt‖

2
Γ

≤
1
2

∫
Ω

f ′′(ρ)ρ3
t +

∫
Γ

g ′′(ρ)ρ3
t


≤ C(‖ρt‖3

L3(Ω) + ‖ρt‖
3
L3(Γ )) ≤ C‖ρt‖

3
V . (3.135)

Since the term under the time derivative may be unbounded from
below, due to the nonmonotonicity of f and g , we add to (3.135)
the inequality

K
d
dt

‖ρt‖
2
H−1(Ω)

≤ cK‖ρt‖H−1(Ω)‖ρtt‖H−1(Ω)

≤ cηK 2
‖ρt‖

2
H−1(Ω)

+ η‖∇µt‖
2, (3.136)

where the last passage follows by computing the H−1-norm of ρtt
by using (the time derivative of) Eq. (1.1). Then, taking η > 0
small enough and K > 0 large enough, the sum of the terms under
time derivatives in (3.135) and (3.136) becomes nonnegative. Thus,
recalling (3.31) and using the uniform Gronwall lemma, we obtain

‖ρt‖L∞(T2,+∞;Vσ ) ≤ C, (3.137)

e.g., for T2 = T1 + 1. Next, we consider (1.1) + (1.3) as a coupled
time-dependent linear elliptic system, where, even in the worse
case σ = 0, the forcing terms satisfy, thanks also to the last of
(3.133),

‖ρt‖L∞(T2,+∞;V ) + ‖wρt‖L∞(T2,+∞;H1/2(Γ )) ≤ C . (3.138)

Hence, by elliptic regularity (cf. [20, Lemma 2.2]) and standard
bootstrap arguments, we have, at least,

‖µ‖L∞(T2,+∞;H2(Ω)) + δ1/2‖µ‖L∞(T2,+∞;H3(Ω)) ≤ C . (3.139)

We then turn to (1.2) + (1.4) and note that, even in the worse case
σ = δ = 0, the forcing terms satisfy

‖µ− f (ρ)‖L∞(T2,+∞;V ) + ‖wµ− g(ρ)‖L∞(T2,+∞;VΓ ) ≤ C . (3.140)

A further application of elliptic regularity results then yields
(3.134). �

Next, let us consider a solution (ρ, µ) under the assumptions of
Lemma 3.20. Due to this lemma, ρ eventually is precompact in
H2(Ω).

Then, we denote by S the family of the stationary solutions ρ∞

satisfying the constraint (3.113). In the case of a singular function
f , all elements of S are separated from the singularities, thanks
to Lemma 3.17. Actually, one easily sees that the conclusions of
Lemma 3.17 hold for all stationary solutions (ρ∞, µ∞) under the
constraint (3.113) (and not only for those belonging to the ω-limit
set of some weak solution). Moreover, deriving further estimates
on the elements of S as in the proof of Lemma 3.20, it is not difficult
to prove that S is bounded (at least) in H5/2(Ω). Furthermore, the
elements of S are the only stationary solutions which can belong to
theω-limit set of ρ. For simplicity, we restrict ourselves to the case
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m0 = 0 (otherwise, it would be sufficient towork on the translated
trajectory ρ − m0) and denote by W (Vσ ) the (closed) subspace
of H2(Ω) (Vσ , respectively) consisting of the functions having zero
dm-average. Thus,ρ eventually belongs toW and also the elements
of S have zero average.

We can then take an open neighborhood U of S in the W-
norm, chosen such that, in the case of a singular function f , any
element of U is uniformly separated from the singularities. A
simple contradiction argument then shows that ρ eventually takes
values in U.

We restrict the energy functional E to the set U and state a
suitable version of the Simon–Łojasiewicz inequality, whose proof
can be obtained by proceeding along the lines of [7, Prop. 6.6] (see
also [9, Prop. 6.6]).

Lemma 3.21. Let ρ∞ ∈ U be a critical point of E and let F , G be
analytic. Then, there exist constants θ ∈ (0, 1/2], Λ > 0, and ι > 0
such that

|E(ρ)− E(ρ∞)|
1−θ

≤ Λ‖E ′(ρ)‖V′
σ

(3.141)

for all ρ ∈ W such that

‖ρ − ρ‖W ≤ ι, (3.142)

where E ′ denotes the Fréchet derivative of the functional E , restricted
to U, with respect to the norm of Vσ .

Actually, we can be evenmore precise. Since S is bounded (at least)
in H5/2(Ω), it can be covered by a finite number of H2(Ω)-balls
with arbitrarily small radius. This entails that U can be properly
restricted in such away that it still satisfies all the properties stated
above and, in addition, the Simon–Łojasiewicz inequality (3.141)
holds in thewholeUwith constants θ,Λ, ιwhich are independent
of the point ρ∞.

We are now ready to state the main result of this section.

Theorem 3.22. Let the assumptions of Lemma 3.20 hold, let F and
G be analytic, and let (ρ, µ) be a solution with m0 = 0. Then, the
ω-limit set of ρ consists of one single point.

Proof. We first notice that, thanks to (3.40), the energy E(ρ) is a
decreasing function of time and tends, as t ↗ +∞, to some value
E∞. Moreover, it is clear thatE(ρ∞) = E∞ for allρ∞ in theω-limit
set.

Note that U is an open neighborhood of S (and, a fortiori, of the
ω-limit set) in the W-norm. Also, since ρ is precompact in W, due
to (3.134), a direct check shows that there exists some T3 > 0 such
that ρ(t) ∈ U for all t ≥ T3. Let us fix (an arbitrary) t ≥ T3. Then,
we know that there exists ρ∞ (a priori depending on the choice
of t) such that (3.141) holds. We now compute, as in [7, Proof of
Theorem 2.3] and for t ≥ T3, the derivative

− ∂t(E(ρ(t))− E∞)
θ

= −θ∂t(E(ρ(t))− E∞)(E(ρ(t))− E∞)
θ−1

≥ −θ
∂tE(ρ(t))
Λ‖E ′(ρ)‖V′

σ

(3.143)

and we can estimate the right-hand side as in [7].
Actually, on the one hand, we can take advantage of (3.40). On

the other hand, E ′(ρ) can be computed directly. Indeed, given any
k ∈ Vσ , a straightforward calculation leads to

⟨E ′(ρ), k⟩Vσ =

∫
Ω

(∇ρ · ∇k + f (ρ)k)

+

∫
Γ

(σ∇Γ ρ · ∇Γ k + g(ρ)k)

=

∫
Ω

(−∆ρ + f (ρ))k

+

∫
Γ

(−σ∆Γ ρ + g(ρ)+ ∂nρ)k. (3.144)
Notice that the integrations by parts are rigorous, since ρ eventu-
ally lies in W.

Thus, using (1.2) and (1.4), we obtain

⟨E ′(ρ), k⟩Vσ = (µ, k)m = (µ− µΩ , k)m. (3.145)

Indeed, we can subtract µΩ (the ‘‘standard’’ average of µ overΩ),
sincem(k) = 0. Thus, using the Poincaré–Wirtinger inequality and
passing to the supremum with respect to k ∈ Vσ with unit norm,
we have

‖E ′(ρ)‖V′
σ

≤ c‖E ′(ρ)‖H ≤ c‖µ− µΩ‖H ≤ c‖∇µ‖. (3.146)

Next, estimating the right-hand side of (3.143) with the help of
(3.40) and (3.146), we infer the relation

− ∂t(E(ρ)− E∞)
θ

≥ θ
‖∇µ‖

2
+ δ‖∇Γµ‖

2
Γ

Λc‖∇µ‖

≥ c(θ,Λ)(‖∇µ‖ + δ1/2‖∇Γµ‖Γ ), (3.147)

which holds for any t ≥ T3. Integrating over (T3,+∞), we obtain

∇µ ∈ L1(T3,+∞;H), δ1/2∇Γµ ∈ L1(T3,+∞;HΓ ). (3.148)

Now, from (1.1) and (1.3), we have, for any φ ∈ Vδ ,

⟨ρt , φ⟩Vδ = (ρt , φ)m =

∫
Ω

∇µ · ∇φ + δ

∫
Γ

∇Γµ · ∇Γ φ. (3.149)

Thus, taking φ ∈ Vδ with unit norm and passing to the supremum,
it follows from (3.148) that

ρt ∈ L1(T3,+∞; V ′

δ), (3.150)

which shows that the whole trajectory ρ converges to a single ele-
ment ρ∞ ∈ S, as desired. �
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