Exercises NMES

Exercise 1

Apply the Gaussian elimination method, without pivoting, to solve the linear system $A x=b$, where

$$
\left.\begin{array}{l}
\left(r_{1}\right) \\
\left(r_{2}\right) \\
\left(r_{3}\right)
\end{array}\right)\left[\begin{array}{lll}
2 & 4 & 10 \\
2 & 6 & 20 \\
1 & 4 & 18
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-6 \\
12 \\
18
\end{array}\right]
$$

showing the intermediate computations.
Solution: First we eliminate the first column of A under the diagonal term $a_{1,1}$. Compute $l_{2,1}=\frac{a_{2,1}}{a_{1,1}}=1$ and $l_{3,1}=\frac{a_{3,1}}{a_{1,1}}=\frac{1}{2}$. Then perform

$$
\begin{gathered}
\left(r_{1}\right) \\
\left(r_{2}\right)=\left(r_{2}\right)-l_{2,1} \cdot\left(r_{1}\right) \\
\left(r_{3}\right)=\left(r_{3}\right)-l_{3,1} \cdot\left(r_{1}\right)
\end{gathered}\left[\begin{array}{lll}
2 & 4 & 10 \\
0 & 2 & 10 \\
0 & 2 & 13
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-6 \\
18 \\
21
\end{array}\right]
$$

In the second step of the Gaussian elimination we eliminate the second column of A under the diagonal term $a_{2,2}$. Compute $l_{3,2}=\frac{a_{3,2}}{a_{2,2}}=1$. Then perform

$$
\left(\begin{array}{c}
\left(r_{1}\right) \\
\left(r_{2}\right) \\
\left(r_{3}\right)-l_{3,2}
\end{array} \cdot\left(r_{2}\right)\left[\begin{array}{ccc}
2 & 4 & 10 \\
0 & 2 & 10 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-6 \\
18 \\
3
\end{array}\right]\right.
$$

Finally compute the solution by back-substitution method:

$$
\begin{aligned}
& 3 x_{3}=3 ; \rightarrow x_{3}=1 \\
& 2 x_{2}+10 x_{3}=18 ; \rightarrow 2 x_{2}=18-10 ; \rightarrow x_{2}=4 \\
& 2 x_{1}+4 x_{2}+10 x_{3}=-6 ; \rightarrow 2 X_{1}=-6-10-16 ; \rightarrow x_{1}=-16
\end{aligned}
$$

Finally the solution of the linear system is $x=\left[\begin{array}{c}-16 \\ 4 \\ 1\end{array}\right]$.

Exercise 2

Write the LU factorization, without pivoting, of:

$$
\left.\begin{array}{c}
\left(r_{1}\right) \\
\left(r_{2}\right) \\
\left(r_{3}\right)
\end{array}\right)\left[\begin{array}{ccc}
2 & 4 & 4 \\
1 & 5 & 7 \\
3 & 12 & 18
\end{array}\right]
$$

showing the intermediate computations.

Solution: The steps are the same as for the Gaussian elimination method. Let $L=I_{n}$ and compute the entries in the first column of L while eliminating the elements in the first column of A below the diagonal: $l_{2,1}=\frac{a_{2,1}}{a_{1,1}}=\frac{1}{2}$ and $l_{3,1}=\frac{a_{3,1}}{a_{1,1}}=\frac{3}{2}$. Now replace the row $\left(r_{2}\right)$ and $\left(r_{3}\right)$ with $\left(r_{2}\right)-l_{2,1} \cdot\left(r_{1}\right)=(1,5,7)-\frac{1}{2} \cdot(2,4,4)=(1,5,7)-(1,2,2)=(0,3,5)$ $\left(r_{3}\right)-l_{3,1} \cdot\left(r_{1}\right)=(3,12,18)-\frac{3}{2} \cdot(2,4,4)=(3,12,18)-(3,6,6)=(0,6,12)$ respectively. Now the matrix A becomes

$$
\begin{gathered}
\left(r_{1}\right):=\left(r_{1}\right) \\
\left(r_{2}\right):=\left(r_{2}\right)-l_{2,1} \cdot\left(r_{1}\right) \\
\left(r_{3}\right):=\left(r_{3}\right)-l_{3,1} \cdot\left(r_{1}\right)
\end{gathered}\left[\begin{array}{ccc}
2 & 4 & 4 \\
0 & 3 & 5 \\
0 & 6 & 12
\end{array}\right]
$$

and L is

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 2 & 1 & 0 \\
3 / 2 & 0 & 1
\end{array}\right]
$$

Now repeat the computations above to eliminate the portion of the second row of A below the diagonal. So $l_{3,2}=\frac{a_{3,2}}{a_{2,2}}=2$; replace now the third row $\left(r_{3}\right)$ with $\left(r_{3}\right)-l_{3,2}\left(r_{2}\right)$.

$$
\left(r_{3}\right)-l_{3,2} \cdot\left(r_{2}\right)=(0,6,12)-2 \cdot(0,3,5)=(0,6,12)-(0,6,10)=(0,0,2)
$$

So the matrix A has now become

$$
\begin{gathered}
\left(r_{1}\right):=\left(r_{1}\right) \\
\left(r_{2}\right):=\left(r_{2}\right) \\
\left(r_{3}\right):=\left(r_{3}\right)-l_{3,2} \cdot\left(r_{2}\right)
\end{gathered}\left[\begin{array}{lll}
2 & 4 & 4 \\
0 & 3 & 5 \\
0 & 0 & 2
\end{array}\right]
$$

and L is

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 2 & 1 & 0 \\
3 / 2 & 2 & 1
\end{array}\right] .
$$

Exercise 3

Compute the linear regression $r(x)=c_{0}+c_{1} x$ for the set of points

$$
(-3,0),(-2,0),(-1,0),(1,1),(2,2),(3,4)
$$

Solution: To compute the solution recall the least square linear problem

$$
\left[\begin{array}{cc}
m & \sum_{i=1}^{m} x_{i} \\
\sum_{i=1}^{m} x_{i} & \sum_{i=1}^{m}\left(x_{i}\right)^{2}
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=1}^{m} y_{i} \\
\sum_{i=1}^{m} y_{i} x_{i}
\end{array}\right] .
$$

which in this case is

$$
\left[\begin{array}{cc}
6 & 0 \\
0 & 28
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
7 \\
17
\end{array}\right]
$$

gives the solution which is

$$
c_{0}=\frac{7}{6}, \quad c_{1}=\frac{17}{28}
$$

Exercise 4

Compute the quadratic least-square approximation $r(x)=c_{0}+c_{1} x+c_{2} x^{2}$ for the set of points

$$
\left(-2, \frac{5}{2}\right),(-1,0),(0,-1),(1,0),\left(2, \frac{5}{2}\right)
$$

Solution: Here we want to minimize the quadratic function

$$
\left.F\left(c_{0}, c_{1}, c_{2}\right)=\sum_{i=1}^{m}\left(F\left(x_{i}\right)-c_{0}-c_{1} \cdot x_{i}-c_{2} \cdot x_{i}^{2}\right)\right)^{2}
$$

The problem is equivalent to solve

$$
(L S 2)\left[\begin{array}{ccc}
m & \sum_{i=1}^{m} x_{i} & \sum_{i=1}^{m}\left(x_{i}\right)^{2} \\
\sum_{i=1}^{m} x_{i} & \sum_{i=1}^{m}\left(x_{i}\right)^{2} & \sum_{i=1}^{m}\left(x_{i}\right)^{3} \\
\sum_{i=1}^{m}\left(x_{i}\right)^{2} & \sum_{i=1}^{m}\left(x_{i}\right)^{3} & \sum_{i=1}^{m}\left(x_{i}\right)^{4}
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=1}^{m} y_{i} \\
\sum_{i=1}^{m} x_{i} y_{i} \\
\sum_{i=1}^{m}\left(x_{i}\right)^{2} y_{i}
\end{array}\right] .
$$

For the given set of points, it holds

$$
(L S 2)\left[\begin{array}{ccc}
5 & 0 & 10 \\
0 & 10 & 0 \\
10 & 0 & 34
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
4 \\
0 \\
20
\end{array}\right]
$$

We get immediately $c_{1}=0$. And then

$$
\left\{\begin{array} { l }
{ 5 c _ { 0 } + 1 0 c _ { 2 } = 4 } \\
{ 1 0 c _ { 0 } + 3 4 c _ { 2 } = 2 0 }
\end{array} \rightarrow \left\{\begin{array} { l }
{ 5 c _ { 0 } + 1 0 c _ { 2 } = 4 } \\
{ 1 4 c _ { 2 } = 1 2 }
\end{array} \rightarrow \left\{\begin{array}{l}
c_{0}+=\frac{4}{5}-\frac{60}{35}=-\frac{32}{35} \\
c_{2}=\frac{6}{7}
\end{array}\right.\right.\right.
$$

Therefore the solution is $r(x)=-\frac{32}{35}+\frac{6}{7} x^{2}$.

Exercise 5

Starting from $x^{(0)}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$, compute 2 iterations of the Jacobi method applied to the system $A x=b$, where

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 2
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Solution: Recall that for iterative methods, we can split $A=M-N$, so that the general step of an iterative method is

$$
x^{(k+1)}=x^{(k)}+M^{-1} r^{(k)}
$$

In the case of Jacobi method, $M=\operatorname{diag}(A)$

$$
M=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Before starting, compute the residual $r^{(0)}$

$$
r^{(0)}=b-A x^{(0)}=b=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

First iteration

Firstly, we have to compute $M^{-1} r^{(0)}$, which amounts to solving the linear system

$$
M u=r^{(0)}
$$

Since M is diagonal, it is easy to solve the linear system, obtaining the solution u

$$
u=\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{2}
\end{array}\right],
$$

so $x^{(1)}=x^{(0)}+u=(1 / 2,0,1 / 2)^{T}$. Then compute the residual $r^{(1)}=$ $b-A x^{(1)}$

$$
r^{(1)}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]-\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 2
\end{array}\right]\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
1
\end{array}\right]-\left[\begin{array}{c}
\frac{3}{2} \\
0 \\
\frac{3}{2}
\end{array}\right]=-\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{2}
\end{array}\right]
$$

Second iteration

As before, compute the solution of the linear system $M u=r^{(1)}$, that yields

$$
x^{(2)}=x^{(1)}+u=\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{2}
\end{array}\right]-\left[\begin{array}{c}
\frac{1}{4} \\
0 \\
\frac{1}{4}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{4} \\
0 \\
\frac{1}{4}
\end{array}\right] .
$$

Exercise 6

Starting from $x^{(0)}=(0,0,0)^{T}$, compute 2 iterations of the Gauss-Seidel method applied to the system $A x=b$, where

$$
A=\left[\begin{array}{lll}
1 & 4 & 1 \\
2 & 1 & 0 \\
0 & 2 & 1
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Solution: Recall that for iterative methods, we can split $A=M-N$, so that the general step of an iterative method is

$$
x^{(k+1)}=x^{(k)}+M^{-1} r^{(k)}
$$

In the case of Gauss-Seidel method, $M=\operatorname{tril}(\mathrm{A})$

$$
M=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 2 & 1
\end{array}\right]
$$

Before starting, compute the residual $r^{(0)}$

$$
r^{(0)}=b-A x^{(0)}=b=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

First iteration

Firstly, we have to compute $M^{-1} r^{(0)}$, which amounts to solving the linear system

$$
M u=r^{(0)}
$$

Since M is lower triangular, it is easier to solve the linear system by forwardsubstitution, obtaining the solution u

$$
u=\left[\begin{array}{r}
1 \\
-1 \\
3
\end{array}\right]
$$

so $x^{(1)}=x^{(0)}+u=(1,-1,3)^{T}$. Then compute the residual $r^{(1)}=b-A x^{(1)}$

$$
r^{(1)}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{lll}
1 & 4 & 1 \\
2 & 1 & 0 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{r}
1 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Second iteration As before, compute the solution of the linear system

$$
M u=r^{(1)}
$$

using forward substitution. This yields

$$
x^{(2)}=x^{(1)}+u=\left[\begin{array}{r}
1 \\
-1 \\
3
\end{array}\right]+\left[\begin{array}{r}
1 \\
-2 \\
4
\end{array}\right]=\left[\begin{array}{r}
2 \\
-3 \\
7
\end{array}\right] .
$$

Exercise 7

Starting from $v^{(0)}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, compute 2 iterations of the power method on the matrix

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

returning the eigenvector and eigenvalue approximation and showing the intermediate steps.

Solution: In the first iteration of the power method we compute:

$$
\begin{aligned}
w_{1} & =A v_{0}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]=;\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
\left\|w_{1}\right\| & =\sqrt{2^{2}+1^{2}}=\sqrt{5} \\
v_{1} & =\frac{w_{1}}{\left\|w_{1}\right\|}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right] ; \\
\lambda_{1} & =v_{1}^{T} A v_{1}=\frac{1}{5}\left[\begin{array}{ll}
2 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\frac{1}{5}\left[\begin{array}{ll}
2 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
5 \\
4
\end{array}\right]=\frac{14}{5}
\end{aligned}
$$

In the second iteration of the power method we compute:

$$
\begin{aligned}
w_{2} & =A v_{1}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \cdot \frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
5 \\
4
\end{array}\right] ; \\
\left\|w_{2}\right\| & =\frac{1}{\sqrt{5}} \sqrt{5^{2}+4^{2}}=\sqrt{\frac{41}{5}} ; \\
v_{2} & =\frac{w_{2}}{\left\|w_{2}\right\|}=\frac{1}{\sqrt{41}}\left[\begin{array}{l}
5 \\
4
\end{array}\right] ; \\
\lambda_{2} & =v_{2}^{T} A v_{2}=\frac{1}{41}\left[\begin{array}{ll}
5 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
5 \\
4
\end{array}\right]=\frac{1}{5}\left[\begin{array}{ll}
5 & 4
\end{array}\right] \cdot\left[\begin{array}{l}
14 \\
13
\end{array}\right]=\frac{122}{41} .
\end{aligned}
$$

Exercise 8

Apply two bisection iterations to solve the equation

$$
x^{3}+3 x-2=0 \quad \text { in }[0,1] .
$$

Solution: Let $F(x)=x^{3}+3 x-2$. We are looking the solution in the interval $[0,1]$, so first check that $F(0)$ and $F(1)$ have different sign. Indeed

$$
F(0)=-2, \quad F(1)=2
$$

First iteration. We start with $a=0$ and $b=1$. Compute the midpoint $m=\frac{a+b}{2}$, and evaluate $F(m)$.

$$
m=\frac{1}{2}, \quad F(m)=\frac{1}{8}+\frac{3}{2}-2=-\frac{3}{8} .
$$

Therefore, since $F(m)<0$, replace update $a, a:=m$.
Second iteration. Compute the midpoint $m=\frac{a+b}{2}$ and evaluate $F(m)$.

$$
m=\frac{3}{4}, \quad F(m)=\frac{27}{64}+\frac{9}{4}-2=\frac{43}{64}
$$

Since, $F(m)>0$, then for the next iteration we update $b, b:=m$.

Exercise 9

With initial guess $x^{(0)}=1$ apply one Newton iteration to find an approximate solution of the equation

$$
(2 x-1)\left(3 x^{2}-2 x+1\right)=0
$$

Solution: We have to solve the equation $F(x)=0$ where

$$
F(x):=(2 x-1)\left(3 x^{2}-2 x+1\right)
$$

Recall that the generic Newton iteration is given as follows

$$
x^{(k+1)}=x^{(k)}-\frac{F\left(x^{(k)}\right)}{F^{\prime}\left(x^{(k)}\right)},
$$

so firstly compute F^{\prime}

$$
F^{\prime}(x)=2\left(3 x^{2}-2 x+1\right)+(2 x-1)(6 x-2) .
$$

So, compute the first iteration of the Newton method

$$
x^{(1)}=x^{(0)}-\frac{F\left(x^{(0)}\right)}{F^{\prime}\left(x^{(0)}\right)}=1-\frac{2}{8}=1-\frac{1}{4}=\frac{3}{4} .
$$

Exercise 10

With initial guess $\underline{x}^{(0)}=[1,1]^{T}$ apply one Newton iteration to find an approximate solution of the system

$$
\underline{F}(\underline{x})=\left[\begin{array}{c}
x_{1}^{2}-2 x_{1}+x_{2}+7 \\
2 x_{1}-x_{2}+2
\end{array}\right]
$$

Solution: Recall that the Newton's iteration for multivariate functions is given by

$$
\underline{x}^{(k+1)}=\underline{x}^{(k)}-\left(J_{F}\left(\underline{x}^{(k)}\right)\right)^{-1} \cdot \underline{F}\left(\underline{x}^{(k)}\right),
$$

where J_{F} is the Jacobian matrix of \underline{F}. We have

$$
J_{F}(\underline{x})=\left[\begin{array}{ll}
\frac{\partial F_{1}}{\partial x_{1}} & \frac{\partial F_{1}}{\partial x_{2}} \\
\frac{\partial F_{2}}{\partial x_{1}} & \frac{\partial F_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
2 x_{1}-2 & 1 \\
2 & -1
\end{array}\right] .
$$

For $k=0$, that is the first iteration, we have

$$
\underline{F}\left(\underline{x}^{(0)}\right)=\left[\begin{array}{c}
1^{2}-2+1+7 \\
2-1+2
\end{array}\right]=\left[\begin{array}{l}
7 \\
3
\end{array}\right], \quad \text { and } \quad J_{F}\left(\underline{x}^{(0)}\right)=\left[\begin{array}{cc}
0 & 1 \\
2 & -1
\end{array}\right],
$$

and we have to compute $\underline{u}=\left[u_{1}, u_{2}\right]^{T}$ solution of $J_{F}\left(\underline{x}^{(0)}\right) \cdot \underline{u}=\underline{F}\left(\underline{x}^{(0)}\right)$. The solution of this linear system is

$$
\left\{\begin{array} { l }
{ u _ { 2 } = 7 } \\
{ 2 u _ { 1 } - u _ { 2 } = 3 }
\end{array} \rightarrow \left\{\begin{array}{l}
u_{2}=7 \\
u_{1}=\frac{3+7}{2}=5
\end{array}\right.\right.
$$

and the first newton iteration step gives

$$
\underline{x}^{(1)}=\underline{x}^{(0)}-\underline{u}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
5 \\
7
\end{array}\right]=-\left[\begin{array}{l}
4 \\
6
\end{array}\right] .
$$

Exercise 11

Given the function $f(x)=\cos (2 \pi x)$ compute its Lagrange interpolant of degree 2 through the points $x_{1}=0, x_{2}=1 / 2, x_{3}=1$.

Solution 1: Recall that the Lagrange interpolant of f of degree k, over the points $x_{1}, x_{2}, \ldots, x_{k+1}$, is

$$
\Pi_{k}(f):=\sum_{i=1}^{k+1} f\left(x_{i}\right) L_{i}(x), \quad \text { where } \quad L_{i}(x):=\prod_{\substack{j=1 \\ j \neq i}}^{k+1} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)} .
$$

In order to compute $\Pi_{2}(f)$ on the points x_{1}, x_{2}, x_{3}, we have

$$
\begin{aligned}
& L_{1}(x)=\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}=\frac{\left(x-\frac{1}{2}\right)(x-1)}{\left(-\frac{1}{2}\right)(-1)}=(2 x-1)(x-1), \\
& L_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}=\frac{(x-0)(x-1)}{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}=-4 x(x-1), \\
& L_{3}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}=\frac{(x-0)\left(x-\frac{1}{2}\right)}{(1)\left(\frac{1}{2}\right)}=x(2 x-1),
\end{aligned}
$$

and also

$$
\begin{aligned}
& f\left(x_{1}\right)=\cos \left(2 \pi x_{1}\right)=\cos (0)=1, \\
& f\left(x_{2}\right)=\cos \left(2 \pi x_{2}\right)=\cos (\pi)=-1, \\
& f\left(x_{3}\right)=\cos \left(2 \pi x_{3}\right)=\cos (2 \pi)=1 .
\end{aligned}
$$

Finally

$$
\begin{aligned}
\Pi_{2}(f) & =f\left(x_{1}\right) L_{1}(x)+f\left(x_{2}\right) L_{2}(x)+f\left(x_{3}\right) L_{3}(x) \\
& =1 \cdot(2 x-1)(x-1)+(-1) \cdot(-4 x)(x-1)+1 \cdot x(2 x-1) \\
& =2 x^{2}-2 x-x+1+4 x^{2}-4 x+2 x^{2}-x \\
& =8 x^{2}-8 x+1 .
\end{aligned}
$$

Solution 2: An alternative solution consists in the following observation. $\Pi_{2}(f)$ is the degree two polynomial $c_{1}+c_{2} x+c_{3} x^{2}$, where the coefficients c_{1}, c_{2}, c_{3} are solution of the following linear system

$$
\left[\begin{array}{lll}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
f\left(x_{3}\right)
\end{array}\right]
$$

For this exercise we have

$$
\left[\begin{array}{llc}
1 & 0 & 0 \\
1 & \frac{1}{2} & \frac{1}{4} \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right]
$$

In particular $c_{1}=1$ and it remains to solve

$$
\left\{\begin{array} { l }
{ 2 c _ { 2 } + c _ { 3 } = - 8 } \\
{ c _ { 2 } + c _ { 3 } = 0 }
\end{array} \rightarrow \left\{\begin{array} { l }
{ 2 c _ { 2 } + c _ { 3 } = - 8 } \\
{ c _ { 3 } = - c _ { 2 } }
\end{array} \rightarrow \left\{\begin{array}{l}
c_{2}=-8 \\
c_{3}=8
\end{array}\right.\right.\right.
$$

Again we found that $\Pi_{2}(f)=1-8 x+8 x^{2}$.

Exercise 12

Given the Cauchy problem:

$$
\left\{\begin{array}{l}
y^{\prime}(t)=-2 \operatorname{tty}(t)+2 t^{3} \text { for } t>0 \\
y(0)=-1
\end{array}\right.
$$

compute two steps by the implicit Euler method, with $\Delta t=1$, in order to approximate $y(2)$. Report the intermediate computations.

Solution: We denote by $y_{n}:=y\left(t_{n}\right)$, where $t_{n}=t_{0}+n \Delta t$, and here we have $t_{0}=0, t_{1}=1$ and $t_{2}=2$. The Implicit Euler (IE) method is given by

$$
\frac{y_{n+1}-y_{n}}{\Delta t}=f\left(t_{n+1}, y_{n+1}\right)
$$

and for this exercise, we have $f(t, y(t))=-2 t y(t)+2 t^{3}$. Thus, the IE method applied to our Cauchy problem leads to solving, for each step, the following equation:

$$
\frac{y_{n+1}-y_{n}}{\Delta t}=-2 t_{n+1} y_{n+1}+2 t_{n+1}^{3}, \quad\left(\text { Implicit in the unknown } y_{n+1}\right) .
$$

Therefore we manipulate it as

$$
\begin{aligned}
y_{n+1}+2 \Delta t \cdot t_{n+1} \cdot y_{n+1} & =y_{n}+2 \Delta t \cdot t_{n+1}^{3} ; \\
y_{n+1} & =\frac{y_{n}+2 \Delta t \cdot t_{n+1}^{3}}{1+2 \Delta t \cdot t_{n+1}}, \quad\left(\text { Explicitated in } y_{n+1}\right) .
\end{aligned}
$$

Finally, the computation of the first step is

$$
y_{1}=\frac{y_{0}+2 \Delta t \cdot t_{1}^{3}}{1+2 \Delta t \cdot t_{1}}=\frac{-1+2}{1+2}=\frac{1}{3}
$$

and the computation of the second step is

$$
y_{2}=\frac{y_{1}+2 \Delta t \cdot t_{2}^{3}}{1+2 \Delta t \cdot t_{2}}=\frac{1 / 3+16}{1+4}=\frac{1+48}{15}=\frac{49}{15},
$$

Exercise 13

Write the pseudo-code of the composite trapezoidal quadrature rule, then use the composite trapezoidal quadrature rule to compute an approximation of

$$
\int_{0}^{2 \pi} \sin ^{2}(t) d t
$$

by splitting the integration interval $[0,2 \pi]$ into four uniform subintervals. Report the intermediate computations.

Solution:

The composite trapezoidal quadrature rule amounts to approximating the function to be integrated with the Lagrange piecewise-linear approximation and integrating it. The extema of the four subintervals are $t_{1}=0$, $t_{2}=\frac{\pi}{2}, t_{3}=\pi, t_{4}=\frac{3 \pi}{2}, t_{5}=2 \pi$. The width of such subintervals is $\frac{\pi}{2}$. So

$$
\int_{0}^{2 \pi} \sin ^{2}(t) d t \simeq \frac{\pi}{4} \sum_{i=1}^{4} \int_{t_{i}}^{t_{i+1}} \Pi_{1}\left(\sin ^{2}\right)(t) d t=\frac{\pi}{4} \sum_{i=1}^{4}\left[\sin ^{2}\left(t_{i}\right)+\sin ^{2}\left(t_{i+1}\right)\right] .
$$

Compute each term of the sum individually:

- $\sin ^{2}(0)+\sin ^{2}\left(\frac{\pi}{2}\right)=1$,
- $\sin ^{2}\left(\frac{\pi}{2}\right)+\sin ^{2}(\pi)=1$,
- $\sin ^{2}(\pi)+\sin ^{2}\left(\frac{3 \pi}{2}\right)=1$,
- $\sin ^{2}\left(\frac{3 \pi}{2}\right)+\sin ^{2}(2 \pi)=1$,
combining all the terms yields

$$
\int_{0}^{2 \pi} \sin ^{2}(t) d t \simeq \frac{\pi}{4}(1+1+1+1)=\pi
$$

Exercise 14

Describe the Crank-Nicolson scheme for the solution of an ODE and explain its relation with the trapezoidal quadrature rule. Then, compute one step of the Crank-Nicolson scheme for the problem

$$
\left\{\begin{array}{l}
y^{\prime}(t)=2 t(1-y(t)) \\
y(0)=3
\end{array}\right.
$$

selecting $\Delta t=1$.
Solution: Let $t_{n}=t_{0}+n \Delta t$ and $y_{n}=y\left(t_{n}\right)$. We are given $t_{0}=0$ and $\Delta t=1$, and have to compute one step of Crank-Nicolson, i.e. compute y_{1}, for $t_{1}=1$.

For the Crank-Nicolson scheme, we approximate the derivative using a finite difference and the ODE field with the average of the fields at two consecutive timesteps

$$
\frac{y_{n}-y_{n-1}}{\Delta t}=\frac{1}{2}\left(f\left(t_{n}, y_{n}\right)+f\left(t_{n-1}, y_{n-1}\right)\right) \text {. }
$$

In our case, $f(t, y)=2 t(1-y)$ and $\Delta=1$, therefore

$$
y_{n}-y_{n-1}=\frac{1}{2}\left(2 t_{n}\left(1-y_{n}\right)+2 t_{n-1}\left(1-y_{n-1}\right)\right) .
$$

In order to compute y_{1}, substitute t_{0}, t_{1}, y_{0} in the equation above and solve for y_{1}.

$$
\begin{aligned}
y_{1}-y_{0} & =\frac{1}{2}\left(2 t_{1}\left(1-y_{1}\right)+2 t_{0}\left(1-y_{0}\right)\right) \\
y_{1}-3 & =\frac{1}{2}\left(2 \cdot 1 \cdot\left(1-y_{1}\right)+2 \cdot 0 \cdot(1-3)\right)
\end{aligned}
$$

to obtain $y_{1}=2$.

