Numerical Methods in Engineering Sciences W4/2/2021

Written Exam

First name:
Last name:

Student ID:

 \Box I want to take the BASIC EXAM \Box I want to take the ADVANCED EXAM

Exam rules:

- Basic exam: the maximum grade is 24/30.
- Advanced exam: the maximum grade is 30/30 cum laude.

Total time is 1 hour. Students who get a positive grade in the written part (i.e., at least 18/30) might choose to take an oral exam. For students who choose the basic written exam, the maximum grade obtainable can never exceed 24/30.

BASIC EXAM

1. Apply the Gaussian elimination method, without pivoting, to solve the linear system Ax = b, where

[3	-2	4	x_1		[1]	
2	2	2	x_2	=	2	
1	1	-1	x_3		5	

showing the intermediate computations.

2. Write the pseudocode of the Newton method. Then, with initial guess $x_0 = 1$ apply one Newton iteration to the equation

$$(6x+4)(x+2) = 0$$

ADVANCED EXAM

3. Write the pseudo-code of the composite midpoint quadrature rule, then use the composite midpoint quadrature rule to compute an approximation of

$$\int_{-1}^{2} (t+2t^2) \, dt$$

by splitting the integration interval [-1, 2] into three subintervals. Report the intermediate computations.

4. Write the pseudo-code of the Jacobi method (for solving linear systems) and prove its convergence for diagonally dominant matrices.