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Homogenization of transport problems and
semigroups

Etienne Bernarda,b, François Golsea,b∗† and Francesco Salvaranic

In some cases, the homogenization of evolution differential equations whose solution is given by the action of
a semigroup on their initial data may lead to evolution problems with a completely different structure, usually integro-
differential equations whose dynamics is not defined by a semigroup, but involves memory effects. A typical example
is the homogenization—or discretization—of opacities in radiative transfer. In this paper, we propose a formulation of
homogenized equations in terms of a semigroup acting on an enlarged phase space (i.e. on functions involving more
variables than in the original problem). Copyright © 2010 John Wiley & Sons, Ltd.
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To the memory of Aldo Belleni-Morante (1938–2009)

1. Introduction

The mathematical modeling of the response of composite materials to external fields usually involves partial differential equations
with oscillating coefficients. Specifically, the wavelengths of these oscillations correspond with the spatial scales defined by the
microscopic structure of the composite, i.e. the scale at which the elementary constituents of the composite are assembled.
When investigating the macroscopic properties of such a composite material, a first step is to average out the oscillations of the
coefficients at a microscopic scale, and to filter the high-frequency oscillations they induce in the response fields one is interested in.
This mathematical process is called homogenization, since it may be viewed as the replacement of a composite material by an
equivalent homogeneous material. In the most favorable cases, this would be done by simply replacing the response coefficients
oscillating at microscopic scale in the field equation with coefficients for the equivalent homogeneous material where the oscillations
at microscopic scale have been eliminated.

Unfortunately, this picture is outrageously optimistic. In many cases, a single response coefficient oscillating at microscopic scale
will be replaced with several homogenized equivalent coefficients, for instance due to the persistence of anisotropy effects in the
microscopic structure of the composite material. Worse, the structure of the partial differential equation itself can be modified after
taking the homogenization limit, and this is precisely our concern in the present work. A striking example of such a change in
the structure of the homogenized equation was given by Tartar [1], who observed that the homogenization limit of the simplest
imaginable ordinary differential equation would lead to an integro-differential equation (i.e. involving memory terms). In other
words, the group property of the original evolution equation can be destroyed by the homogenization limit.

Some time later, Vanderhaegen [2, 3], Levermore-Pomraning-Sanzo-Wong [4], and Sentis [5] studied in detail the homogenization
problem for the absorption coefficient in transport theory (for either neutrons or photons). Their work also leads to integro-differential
equations as in the simple example considered by Tartar—and for the same basic reason.

The phenomena observed by Tartar in his simple example—i.e. the fact that the group property satisfied by the solutions of an
evolution equation can be destroyed by the homogenization limit—also occur in very different contexts. It has been very recently
identified in a classical problem in nonequilibrium statistical mechanics, namely the Boltzmann-Grad limit of the periodic Lorentz
gas, by Caglioti and the second author, and by Marklof and Strömbergsson in [6--8], as well as in a homogenization problem for
the linear Boltzmann equation in a periodically perforated domain, by the two first authors and Caglioti [9]. In all these works, the
solution of the equation at microscopic scale is given by a semigroup and, in order to keep the semigroup property after passing to
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the macroscopic limit, it is necessary to consider an enlarged phase space involving additional variables. The present paper explains
how the ideas in [7--9] can be applied in the context of the homogenization of opacities considered in [2--5, 10].

Semigroups and kinetic models have been among Aldo Belleni-Morante’s favorite scientific subjects. His own ideas have had
a great influence on the development of this field of mathematical analysis. In view of his own particular interest in photonics and,
more generally, transport problems in astrophysics, we dedicate this modest contribution to his memory.

2. Homogenization of an ODE

Our starting point is the following elementary, yet fairly instructive example, due to Tartar [1].
Let a∈L∞(TN), assume without loss of generality that a�0 a.e. on TN , and consider, for each �>0, the ODE with unknown

u� ≡u�(t, z)∈R: ⎧⎪⎨
⎪⎩

du�

dt
+a

( z

�

)
u� =0, t>0, z ∈RN,

u�(0, z)=uin(z),

(1)

where uin ∈L2(RN)∩L∞(RN). Obviously, for each �>0, one has

u�(t, z)=uin(z)e−ta(z/�), t>0, z ∈RN,

so that, in the limit as �→0+, one has

u�⇀u in L∞(R+×RN) weak-*,

where the limit u is explicitly given by the formula

u(t, z)=uin(z)�(t), t�0, z ∈RN, (2)

with

�(t)=
∫

TN
e−ta(y)dy, t�0. (3)

This example shows that the homogenized solution u does not satisfy the equation

du

dt
+au=0

where a is the average of a on TN , i.e.

a=
∫

TN
a(y)dy,

as someone unfamiliar with the intricacies of homogenization might (naively) expect. Worse, unless a is a.e. constant on TN , there
does not exist any A∈R such that

du

dt
+Au=0.

(Should such an A exist, it would be referred to as the ‘homogenized coefficient’ equivalent to the oscillating coefficient a(z / �).)
Equivalently, although for each �>0 the solution u� is defined in terms of uin by the semigroup S�(t) defined on L2(RN) by the
formula

S�(t)�=�(z)e−ta(z/�), (4)

the homogenized solution u is not given in terms of uin by a semigroup acting on L2(RN), since (by convexity of the exponential)

�(t1 +t2) �=�(t1)�(t2), t1, t2>0,

unless a is a.e. constant on TN—meaning that there are no fast oscillations in the original problem (1), so that there is no need for
homogenization in this case.

In fact, Tartar (see lecture 35 in [1]) proved that the homogenized solution satisfies the following integro-differential equation:

⎧⎪⎨
⎪⎩

du

dt
(t, z)+au(t, z)=

∫ t

0
K(t−s)u(s, z)ds, t>0, z ∈RN,

u(0, z)=uin(z),

(5)
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where the Laplace transform of K is given by the expression

K̃(p) :=
∫ ∞

0
e−ptK(t)dt =

∫
TN

(p+a(y))dy−
(∫

TN

dy

p+a(y)
dy

)−1
, p>0.

Concerning the appearance of an integro-differential equation such as (5) as the homogenization limit of an ODE, it is instructive
to compare the situation above with the problem

⎧⎪⎨
⎪⎩

dv�

dt
+b

(
t

�

)
v� =0, t>0,

v�(0)=vin,

(6)

with unknown v� ≡v�(t)∈R, where b∈L∞(T1). In this case

v�(t)=vin exp

(
−

∫ t

0
b(s / �)ds

)
→vine−Bt =v(t)

for each t�0 as �→0+, where

B :=
∫ 1

0
b(�)d�.

Indeed,

1

t

∫ t

0
b(s / �)ds= �

t

∫ t/�

0
b(�)d�→ lim

t→+∞
1

t

∫ t

0
b(�)d�=B

as �→0+. Hence, the homogenized equation obtained from (6) is
⎧⎪⎨
⎪⎩

dv

dt
+Bv =0, t>0,

v(0)=vin,

and in this case, B is the equivalent absorption coefficient obtained from the oscillating absorption coefficient b(t / �) by homoge-
nization.

The difference between the homogenization of problems (1) and (6) is that in the latter case, the oscillating variable in the
coefficient b is the time variable, and Equation (6) provides a bound on the time derivative of the solution v�, thereby excluding
the possibility of fast oscillations in t in the solution v�.

At variance with this case, in Tartar’s example (1), the oscillating variable is z, and equation (1) does not involve derivatives in z
to prevent the buildup of fast oscillations in z in the solution u�. In that example, the fast oscillations in z in both a(z / �) and u�
combine to produce the integral term on the right-hand side of (5).

Obviously, Example (1) can be generalized to the case where the quasi-periodic oscillating coefficient a(z / �) is replaced with
a bounded family a� ≡a�(z) of functions in L∞(RN) converging in the sense of Young measures as �→0+.

3. A semigroup in extended phase space

As a warm-up, we shall in this section consider again Tartar’s example above, and express the homogenization limit of (1) in terms
of a semigroup defined on an extended phase space—i.e. acting on functions with additional variables.

Let a� ≡a�(z) be a bounded family of functions in L∞(RN) converging in the sense of Young measures to (�z)z∈RN (see [11]
for a lucid presentation of the notion of Young measures.) In other words, (�z)z∈RN is a family of probability measures on R that
measurably depends on z, and satisfies, for each f ∈Cb(R)

f (a�)⇀Fa in L∞(RN) weak-*, with Fa(z)=
∫

R
f (�)d�z(�)=: 〈�z, f 〉

in the limit as �→0+. Without loss of generality, we henceforth assume that a���>0 a.e. on RN .
For each �>0, let u� ≡u�(t, z) be the solution of

⎧⎪⎨
⎪⎩

du�

dt
+a�(z)u� =0, t>0, z ∈RN,

u�(0, z)=uin(z),

(7)

where uin ∈L1 ∩L∞(RN).
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Proposition 3.1
In the limit as �→0+, one has

u�⇀u=
∫ +∞

0
U ds in L∞(R+×RN) weak-*,

where U≡U(t, s, z) is the solution of ⎧⎪⎨
⎪⎩

�tU−�sU=0, t, s>0, z ∈RN,

U(0, s, z)=−uin(z)
d�̃z

ds
(s).

(8)

(We recall that the notation �̃z designates the Laplace transform of �z .)

Before giving the (elementary) proof of this result, a few remarks are in order.
First, the equation satisfied by U is a free transport equation, where s∈R+ is the space variable. Since the vector field −�s

is outgoing on the boundary of the half-line R+, there is no need of a boundary condition for s=0, so that the problem (8) is
well-posed—in L2(R+×RN; e−sds dz), for instance.

Next, although the homogenization limit u of u� as �→0+ is not of the form u(t, ·)=S(t)uin with S(t) a semigroup on L2(RN),
the function U is defined by a semigroup in terms of its initial data (since the equation satisfied by U is a free transport equation.)
Specifically

U(t, s, z)=�(t)U(0, s, z) with �(t)�(s, z)=�(t+s, z), t, s>0, z ∈RN.

In other words, while there does not exist any semigroup S(t) acting on L2(RN) such that S�(t)→S(t) in the weak operator topology
for each t>0 as �→0+, one has

S�(t)→
∫ +∞

0
�(t)ds

in that same topology.

Proof
For each �>0, define

U�(t, s, z) :=u�(t, z)a�(z)e−sa�(z), t, s�0, z ∈RN.

Obviously

(�t −�s)U�(t, s, z)=a�(z)e−sa�(z)
(

du�

dt
(t, z)+a�(z)u�(t, z)

)

so that U� satisfies ⎧⎨
⎩

�tU�−�sU� =0, t, s>0, z ∈RN,

U�(0, s, z)=uin(z)a�(z)e−sa�(z).
(9)

Since a�>0 a.e. on RN , one has

‖U�(t, ·, ·)‖L∞(R+×RN)�‖uin‖L∞(RN).

Hence U� is bounded and therefore (by the Banach–Alaoglu theorem) relatively weak-* compact in L∞(R+×R+×RN)). If U is a
weak-* limit point of U� as �→0+, by passing to the limit in the sense of distributions in the free transport equation satisfied by
U�, we conclude that (�t −�s)U=0.

Since U� is bounded in L∞(R+×R+×RN), the free transport equation satisfied by U� implies that �tU� is bounded in L∞(R+×
RN; W−1,∞(R+)). Therefore, U�n |t=0⇀U|t=0 in L∞(RN; W−1,∞(R+))) weak-* for each subsequence �n ↓0 such that U�n⇀U in L∞(R+×
R+×RN) weak-*. Since

U�|t=0⇀uin(z)

∫ +∞

0
ae−sad�z(a)=−uin(z)

d�̃z

ds
(s) in L∞(R+×RN) weak-*

and problem (8) has a unique solution, U�⇀U in L∞(R+×R+×RN)) weak-* as �→0+.
Since a�(z)��>0 a.e. in z ∈RN , one has∫ +∞

T
|U�(t, s, z)|ds=e−Ta�(z)|u�(t, z)|�e−T�‖uin‖L∞(RN)

so that, for each test function �∈L1(R+×RN),∫ +∞

0

∫
RN

(∫ +∞

T
|U�(t, s, z)|ds

)
|�(t, z)|dt dz →0 uniformly in �>0
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as T →+∞, by dominated convergence. Since on the other hand

u�(t, z)=
∫ +∞

0
U�(t, s, z)ds,

we conclude that

u� =
∫ +∞

0
U�ds⇀

∫ +∞

0
U ds

in L∞(R+×RN) weak-*. �

4. Homogenization of opacities in radiative transfer

In this section, we shall apply the method described above to the equation of radiative transfer.
Radiative transfer is a kinetic theory for a gas of photons exchanging energy with a background material (such as a plasma, a

stellar or a planetary atmosphere). This energy exchange is the result of absorption, emission or scattering of photons by the atoms
in the background matter. The state at time t of the population of photons is given by the specific radiative intensity denoted
I(t, x,	,
) that is ch
 times the number density of photons with frequency 
 located at the position x with direction 	. Here, c is the
speed of light while h is Planck’s constant.

Neglecting scattering processes, the radiative intensity satisfies the radiative transfer equation

1

c
�tI+	·∇xI=�(
, T)B
(T)−�(
, T)I. (10)

Here B
(T) is the specific radiative intensity at frequency 
 of a black body at temperature T , whereas �(
, T)>0 is the opacity, or
absorption cross-section per unit volume, of the background material at temperature T for an incident radiation with frequency 
.
While B
(T) has the explicit expression

B
(T)= 2h
3

c2

1

eh
/kT −1
,

the opacity �(
, T) is in general not known explicitly but tabulated. What is worse, the dependence of �(
, T) in either 
 or T is quite
involved, and the function 
 �→�(
, T) can be wildly oscillating, even for T fixed, as can be seen on the graph given below (Figure 1).

We recognize in (10) the same type of difficulty that was handled in the two previous sections, since oscillations in the opacity �(
, T)
are due to the dependence of that coefficient in the frequency 
, whereas the streaming (or free transport) operator (1 / c)�t +	·∇x
acts on the variables t and x only.

Henceforth, we assume for simplicity that the temperature T ≡T(t, x) is given in the background medium which occupies the
Euclidian space R3. We consider the following model problem:

⎧⎪⎨
⎪⎩

1

c
�t I�+	·∇xI� =��(
, T)B
(T)−��(
, T)I�,

I�|t=0 = Iin(x,	,
)

(11)

posed for (t, x,	,
)∈R∗+×R3 ×S2 ×R∗+. Here the oscillations of the opacity are recorded by the small parameter � that is the typical
‘oscillation wavelength’ in the variable 
.

Figure 1. Opacity of a boron plasma (see [12] on p. 98).
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We henceforth assume that the given temperature profile T is bounded away from 0 and +∞, i.e. that T ∈ [�,�] for some constants
0<�<�, and that the family (��(
, T))�>0 satisfies the uniform bound

0<m���(
, T)�M, for each �,
>0 and T ∈ [�,�].

Furthermore, we assume that, for each T>0, the family ��(·, T) converges in the sense of Young measures to (�T

 )
>0 as �→0+.

By the method introduced in the previous section, we can formulate a theorem on the homogenized limit of the model problem (11)
in the following manner.

Theorem 4.1
In the limit as �→0+, one has

I�⇀I=
∫ +∞

0
J ds in L∞(R+×R3 ×S2 ×R+) weak-*,

where J≡ J(t, s, x,	,
) is the solution of
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

c
�tJ+	 ·∇xJ−�sJ= d2�̃T




ds2
B
(T),

J|t=0 =−Iin(x,	,
)
d�̃T




ds
(s),

(12)

posed for (t, s, x,	,
)∈R∗+×R∗+×R3 ×S2 ×R∗+, where the notation �̃T

 denotes the Laplace transform of �T


 .

The proof of this theorem is essentially the same as that of Proposition 3.1—except for the source term in (11)—and we do not
repeat it.

Observe that the homogenized problem (12) is a transport equation where the space variables are x and s, and therefore defines
a semigroup acting on the extended phase space R+×R3 ×S2 ×R+ ={(s, x,	,
)}, instead of the usual phase space R3 ×S2 ×R+ =
{(x,	,
)} familiar in radiative transfer problems. More precisely, the solution of (12) is given in terms of the Duhamel formula for
the transport semigroup in extended phase space defined by the left-hand side of that equation. This is at variance with the
homogenized radiative transfer equations obtained in [4, 5] which are written in the usual phase space, but involve memory terms
as in Tartar’s example—and precisely for the same reason.

Notice that we have assumed that the initial data Iin do not have fast oscillations in the 
 variable—as is the case of B
. In general,
treating the case of an oscillating initial data Iin

� (in the 
 variable, say) would require considering the joint Young measure of Iin
�

and ��—i.e. the Young measure of the couple (Iin
� ,��) viewed as a function of 
 with values in R2. The complexity of the resulting

model could be reduced in the case where the oscillations of Iin
� and �� are independent so that the joint Young measure is the

tensor product of the Young measure of Iin
� by that of ��.

A few words about the meaning of the additional variable s appearing in the homogenized equation (12) are in order. The original
equation (11) can be viewed as a balance equation for the number density of photons with frequency 
 located at the position x with
direction 	 at time t, that is (1 / ch
)I�(t, x,	,
). The loss term −��(
, T)I�(t, x,	,
) on the right-hand side of (11) models the absorption
of photons by the matter as follows. Assuming for simplicity that �� ≡��(
) is independent of temperature, the probability that a
photon with frequency 
 is not absorbed in the time interval [0, t] is e−t��(
). In the homogenized equation (12), the loss of photons
due to absorption by the atoms of the surrounding matter is described by the term −�sJ on the left-hand side. Any characteristic
line of the streaming operator (1 / c)�t +	 ·∇x −�s being of the form t �→ (x+ct	, s−t), the unknown quantity (1 / ch
)J(t, s, x,	,
) in
(12) should be viewed as the number density at time t of photons with frequency 
 at the position x in the direction 	 which will
be absorbed precisely at time s+t. In other words, in the homogenized model (12), the additional variable s should be viewed
as the ‘life expectancy’ of photons, and their number density is disintegrated with respect to—in probabilistic terms, conditioned
relatively to—this new variable. The absorption of photons is described by characteristic lines of the streaming operator on the
left-hand side of equation (12) leaving the phase space s>0, and not by prescribing the probability that a photon of frequency 
 is
absorbed in the infinitesimal interval of time [t, t+dt].

5. Conclusion

We have explained how the notion of a ‘kinetic theory in extended phase space’ introduced in [7] can be used in the homogenization
problem for opacities in radiative transfer (Theorem 4.1), and how it avoids considering integro-differential equations whose solutions
do not have the semigroup property, as in Tartar’s elementary example.

The formalism presented here could be applied to various problems of the same nature. For instance, as mentioned above,
opacities are strongly oscillating functions of the frequency variable, which seriously complicates the discretization of the radiative
transfer equation. Usually, this is done by replacing the radiative intensity I(
) with the vector (Ij)1�j�n, where

Ij �
∫ 
j+1


j

I(
)d
,
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and where the frequency groups—i.e. the intervals (
j ,
j+1)—are chosen appropriately. Of course the main difficulty is to understand
what to do with the absorption term

∫ 
j+1


j

�(
)I(
)d
.

The projection of the radiative intensity on frequency groups as above is an instance of homogenization process, and one could
hope that the considerations outlined in Theorem 4.1 might be helpful in this context.

Similar difficulties exist in the theory of neutron transport—with the neutron kinetic energy being the analogue of the frequency
in radiative transfer. One could hope to apply the same method as above to this type of problem also; however, scattering processes
are more important and should be taken into consideration, at variance with the discussion in the present paper. We hope to return
to these questions in a forthcoming publication.
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