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Abstract. The paper is devoted to the study of the asymptotic behavior of a
kinetic model proposed to forecast the phenomenon of opinion formation, with
both effect of self-thinking and compromise between individuals. By supposing
that the effects of self-thinking and compromise are very weak, we asymptoti-
cally deduce some simpler models who loose the kinetic structure. We explicitly
characterize the asymptotic state of the limiting equation and study the speed
of convergence towards equilibrium.

1. Introduction. The main goal of sociophysics consists in giving a statistical
physics modeling of large scale social phenomena, like opinion formation, cultural
dissemination or crowd behavior. This branch of research started in the early eight-
ies with a pioneering paper of Galam, Gefen and Shapir [13].

In the last twenty-five years, a substantial community, which includes mathe-
maticians, physicists and sociologists, has produced many works on the topic: for
example, several articles study how to predict the behavior of voters during an
election process, a referendum or some public opinion tendencies [15, 10, 11, 12].

In the literature, different techniques and viewpoints are available.
For instance, several authors base their analysis on Ising models, introduced in

social and political sciences by Galam et al. [14, 13] (see also, for example, [19, 18]).
Recently, some strategies based on nonequilibrium statistical mechanics have

been fruitfully applied [21, 1, 5, 8]. These papers show how the methods of this
discipline, originally devoted to the classical field of the kinetic theory of rarefied
gases, allow to study the collective behavior of a large enough number of individuals,
where none of which has a dominant role with respect to the others.

In particular, in a previous work [5], we have considered a classical issue of socio-
physics, namely the evolution of the opinion about a binary question (for example,
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the answer to a referendum) in a closed community. Our goal was to make compat-
ible two requirements. First, we wanted to reproduce some sociological collective
behavior (being conscious that individuals are not a physical system) and, at the
same time, to provide a mathematical analysis of the equations to go beyond numer-
ical experiments. The model is based on the assumption that the process of opinion
formation is obtained through the competition of two opposite effects, described by
two operators whose mathematical properties are quite different.

The first one is the binary exchange of ideas between individuals, with a ten-
dency to compromise, described by a collision operator. The second one is the
self-thinking process and is modelled as a weighted linear diffusion which vanishes
on the boundary of the opinion space. The opinion of individuals is represented by
a one-dimensional real variable between (−1) and (+1). The choice of the closed
interval [−1, 1] instead of R means that extreme opinions can actually be reached,
and not only asymptotically.

The crucial assumption on the closure of the community means that the total
number of individuals is constant. It is relevant, since the characteristical time
of opinion evolution is very small with respect to typical characteristical times
in population dynamics. In sociological terms, that means that the model only
provides forecasts on the opinion evolution in a short-time scale.

From a mathematical point of view, the study of the large-time behavior of the
kind of equations proposed in [5] is an active area of research. Indeed, the pres-
ence of two phenomena, described by operators with drastically different large-time
behaviors, makes the time asymptotics quite interesting: the asymptotic regime, if
any, should be driven either by the “dominant” operator or by a state which inherits
some properties of both operators as time grows.

In this article, we consider the time asymptotics of the model proposed in [5].
We shall restrain ourselves, however, to a very particular regime. We shall suppose
that both the collision operator and the diffusion term have a small effect in the
time evolution of the system. This assumption allows to deduce some approximated
equations of the model, then to obtain the stationary state in a closed form and
eventually to study the long-time asymptotics of the problem in a simpler way.

We name the resulting equation the quasi-invariant limit of the kinetic-diffusion
model defined in [5]. We point out that this point of view is very common, and has
been adopted in many articles concerning the study of models for granular gases
(see, for example, [2, 3, 17, 20] and the references therein).

This paper is organized as follows. In the next section, we briefly recall the
model and its main properties. Section 3 is devoted to the introduction of some
quasi-invariant limits, that reflect the relative strength of the operators. Finally, in
Section 4, we consider the asymptotic state of the equations proposed in Section 3,
and deduce the rate of decay to the stationary solution for the quasi-invariant
approximation. Some numerical experiments concerning the models are also shown
to enhance the theoretical study of the equations.

2. Original model. In order to make the paper self-consistent, we briefly recall
the model proposed in [5] and its main properties. It describes the time evolution
of the opinion set of an isolated population about binary questions. Our model is
based on only two independent variables: the time t ∈ R+ and the opinion variable
x ∈ Ω̄, where Ω denotes the open interval (−1, 1).
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The unknown of the model is the density (or distribution function) f = f(t, x),
defined on R+ × Ω̄, whose time evolution is described by an integro-differential
equation which takes into account two phenomena: self-thinking and binary inter-
actions.

The self-thinking process is modelled by a non-homogeneous diffusive term with
structure (α(x)fx)x, where the function α forces the diffusion to respect the bounds
of the opinion space Ω̄.

We suppose that the Fourier coefficient α satisfies the assumptions listed below.

Definition 2.1. Let α : Ω̄ → R be a nonnegative function of class C1(Ω̄). We say
that α is admissible if α(x) = α(−x) for all x ∈ Ω̄ and α(−1) = α(1) = 0.

The exchange of opinions inside the population is modelled by borrowing the
collisional mechanism of a typical interaction in the kinetic theory of gases: whereas
in rarefied gas dynamics the particles exchange momentum and energy in such a
way that the principles of classical mechanics are satisfied, here the “collision”
between individuals allows the exchange of opinions. Let x, x∗ ∈ Ω̄ the opinions
of two individuals before an interaction. The opinions after the interaction change
according to the following formula:















x′ =
x + x∗

2
+ η(x)

x − x∗

2
,

x′
∗ =

x + x∗

2
+ η(x∗)

x∗ − x

2
.

(1)

The function η : Ω̄ → R is the attraction coefficient: in general, it is a smooth
function which describes the degree of attraction of the average opinion with respect
to the starting opinion of the agent. Since the interaction must respect the bounds
of the interval Ω, we need that 0 ≤ η < 1.

Once defined the collision rule (1), the interaction between individuals and the
corresponding exchange of opinions is described by a collisional integral of Boltz-
mann type.

The collisional integral, which will be henceforth denoted as Q, has the classical
structure of the dissipative Boltzmann kernels.

Let ϕ = ϕ(x) be a suitably regular test function. We define the weak form of the
collision kernel as

〈Q(f, f), ϕ〉 = β

∫∫

Ω2

f(t, x)f(t, x∗) [ϕ(x′) − ϕ(x)] dx∗dx. (2)

Note that the particular form of the collision rule (1) only enters through the test
function ϕ(x′). The cross section β > 0 is a parameter which governs the probability
that an exchange of opinions can occur. In order to keep the description as simple
as possible, we suppose that β is purely a positive constant.

The evolution law of the unknown f = f(t, x) is then given by a partial integro-
differential equation of second order with respect to x:

∫

Ω

ft(t, x)ϕ(x) dx =

∫

Ω

[α(x)ϕ′(x)]x f(t, x) dx + 〈Q(f, f), ϕ〉 (3)

posed in (t, x) ∈ [0, T ]× Ω, T > 0, for all ϕ ∈ C2(Ω̄), with initial condition

f(0, x) = fin(x) for all x ∈ Ω̄. (4)

For the sake of simplicity, in the whole paper, we shall suppose that ‖fin‖L1(Ω) =
1.
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We point out that Equation (3) translates the presence of two opposite phe-
nomena. The collision term reflects the sociological hypothesis that the individuals,
after an exchange of opinion, adjust their own ideas with a tendence to compromise:
hence this term gives a concentration effect. On the other hand, the self-thinking
introduces a diffusive behavior in the equation, whose properties heavily depend on
the functional form of the Fourier coefficient α.

The following results hold [5].

Proposition 1. Let f = f(t, x) be a nonnegative weak solution of (3)–(4), with a

nonnegative initial datum fin ∈ L1(Ω). Then we have

‖f(t, ·)‖L1(Ω) = ‖fin‖L1(Ω) = 1 for a.e. t ≥ 0.

Moreover, since |x| ≤ 1, from the previous result, we immediately deduce that
all the moments of f are bounded:

Corollary 1. Let f = f(t, x) be a nonnegative weak solution of problem (3)–(4),
with nonnegative initial datum fin ∈ L1(Ω). Then, for a.e. t ≥ 0 we have that

∫

Ω

xnf(t, x) dx ≤ ‖fin‖L1(Ω) = 1

for all n ∈ N.

The following existence theorem guarantees that problem (3)–(4) makes sense.

Theorem 2.2. Let fin a nonnegative function of class L1(Ω). Then there exists a

nonnegative weak solution f ∈ L∞(0, T ; L1(Ω)) of (3)–(4), where (3) takes sense in

D′(−T, T ).

3. Quasi-invariant limit. The goal of the paper is the study of the quasi-invariant
limit of problem (3)–(4). We shall be interested in situations where only very small
modifications of the opinion are allowed by the processes of diffusion and collision.

This means that η(x) is very close to 1 for any x ∈ Ω̄. Since the quasi-invariant
limit procedure must be valid in the whole interval Ω, the spatial details of η are not
relevant when passing to the limit. Therefore, we can assume that η is a constant,
i.e. we write, for a fixed small enough ε ∈ (0, 1/2), that

ηε(x) = 1 − 2 ε, ∀x ∈ Ω̄.

Hence we shall perform the asymptotics ε → 0+.
With this choice, the collision mechanism (1) can be rewritten as







x′ = (1 − ε)x + εx∗,

x′
∗ = (1 − ε)x∗ + εx,

(5)

and its Jacobian is J(x, x∗) = 1 − 2ε > 0.
In order to get the collision term, we write the Taylor expansion of the test

function ϕ up to the second order. For any (x, x′), there exists θ ∈ [0, 1] such that

ϕ(x′) = ϕ(x) + (x′ − x)ϕ′(x) +
(x′ − x)2

2
ϕ′′(θx′ + (1 − θ)x).

Thanks to (5), it is clear that

(x′ − x)2

2
ϕ′′(θx′ + (1 − θ)x) = O(ε2).
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If we denote fε the solution of problem (3)–(4) with the collision mechanism (5),
whose existence is guaranteed by Theorem 2.2, (2) becomes

〈Q(fε, fε), ϕ〉 = β

∫∫

Ω2

fε(t, x)fε(t, x∗)ϕ
′(x)(x′ − x) dx∗dx + O(ε2)

= εβ

∫∫

Ω2

fε(t, x)fε(t, x∗)ϕ
′(x)(x∗ − x) dx∗dx + O(ε2),

for any ϕ ∈ C2(Ω̄).
The quasi-invariant self-thinking process is modelled by a Fourier coefficient of

type

αε(x) = εkα(x), x ∈ Ω̄, (6)

such that k > 0 and α does not depend on ε.
Three categories of choice for k are possible, leading to different kinds of quasi-

invariant opinion approximations. In the sequel, we discuss the three situations,
which have quite different behaviors. Since the cross section β is constant in our
model, a common feature of the approximations is that the resulting equations are
purely partial differential equations, unlike what often happens in the case of the
granular gases. For granular gases, indeed, the cross section of the process normally
depends on the relative velocity of the particles, and this feature originates an
integral term in the quasi-elastic limit.

3.1. The collision-dominated regime. In this subsection, we assume that k > 1.
Therefore, the effects dues to the exchange of opinions between individuals are
predominant. If we rescale the time variable as τ = ε t, the model is reduced to

d

dτ

∫

Ω

fε

(τ

ε
, x
)

ϕ(x) dx = β

(
∫

Ω

fε

(τ

ε
, x
)

ϕ′(x) dx

)(
∫

Ω

fε

(τ

ε
, x
)

xdx

)

− β

∫

Ω

fε

(τ

ε
, x
)

xϕ′(x) dx + O(εk−1).

By letting ε → 0+ in the previous equation, we formally deduce the following
equation for the unknown

g(τ, x) = lim
ε→0+

fε

(τ

ε
, x
)

,

posed for τ ∈ [0, +∞):

d

dτ

∫

Ω

g(τ, x)ϕ(x) dx = β

(
∫

Ω

g(τ, x)ϕ′(x) dx

)(
∫

Ω

g(τ, x)xdx

)

−β

∫

Ω

g(τ, x)xϕ′(x) dx (7)

for all ϕ ∈ C2(Ω̄), supplemented with the initial condition

g(0, x) = fin(x) for all x ∈ Ω̄.

Equation (7) can be simplified. If we set ϕ(x) = 1 and ϕ(x) = x in (7), we
respectively deduce that

d

dτ

∫

Ω

g(τ, x) dx =
d

dτ

∫

Ω

x g(τ, x) dx = 0.
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Hence, in the collision-dominated regime, the weak form of the quasi-invariant limit
for (3)–(4) has the following structure:

d

dτ

∫

Ω

g(τ, x)ϕ(x) dx = β m1(0)

∫

Ω

g(τ, x)ϕ′(x) dx

− β

∫

Ω

g(τ, x)xϕ′(x) dx (8)

for all ϕ ∈ C2(Ω̄), where

m1(0) =

∫

Ω

fin(x)xdx,

with initial condition

g(0, x) = fin(x) for all x ∈ Ω̄. (9)

This is a linear partial differential equation of first order, with a coefficient de-
pending on the initial datum of the model, more precisely on the first moment of
fin.

It is interesting to note that, in this case, all the moments of the solution can be
explicitly computed. Indeed, if we consider the test function ϕ(x) = xn, n ≥ 2, we
obtain from (8) the following evolution equation for the moments:

dmn

dτ
= β n[m1(0)mn−1 − mn], n ≥ 2,

where

mn(τ) =

∫

Ω

xng(τ, x) dx, n ≥ 2.

By induction, since the first moment is conserved, we can deduce that all the mo-
ments are uniformly bounded and that

lim
τ→+∞

mn(τ) = [m1(0)]n

for all n ∈ N. Hence, g(τ, ·) converges in the distributional sense to a Dirac mass
when τ goes to +∞. We recover the fact that, when the binary interactions between
individuals are predominant, there is a tendency to compromise, see [9].

3.2. The diffusion-dominated regime. The self-thinking predominance corre-
sponds to the choice 0 < k < 1. If we rescale the time as τ = εk t and disregard
all the term of non-zero order with respect to ε, the model is reduced to the non-
homogeneous degenerate parabolic equation for the unknown

g(τ, x) = lim
ε→0+

fε

(τ

ε
, x
)

,

posed for τ ∈ [0, +∞):

d

dτ

∫

Ω

g(τ, x)ϕ(x) dx =

∫

Ω

(αϕ′)
′
(x) g(τ, x) dx (10)

for all ϕ ∈ C2(Ω̄), with initial condition

g(0, x) = fin(x) for all x ∈ Ω̄. (11)

This problem is the weak form of the equation studied in [6], in which the con-
vergence of the associated semi-group is proven. In subsection 4.2, we provide an
exponential estimate on the convergence speed. The result can be interpreted in the
following way. When people mostly think by themselves, the opinion distribution
becomes uniform.
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3.3. The equilibrated regime. In this latter case, we suppose that k = 1. If we
rescale time as τ = ε t, the model is reduced to the following form:

d

dτ

∫

Ω

fε

(τ

ε
, x
)

ϕ(x) dx =

∫

Ω

(αϕ′)
′
(x) fε

(τ

ε
, x
)

dx

+ β

(
∫

Ω

fε

(τ

ε
, x
)

ϕ′(x) dx

)(
∫

Ω

fε

(τ

ε
, x
)

xdx

)

− β

∫

Ω

fε

(τ

ε
, x
)

xϕ′(x) dx + O(ε).

If ε → 0+, we formally deduce the following partial differential equation (in a weak
form) for the unknown

g(τ, x) = lim
ε→0+

fε

(τ

ε
, x
)

,

that is

d

dτ

∫

Ω

g(τ, x)ϕ(x) dx =

∫

Ω

(αϕ′)
′
(x) g(τ, x) dx

+ β

(
∫

Ω

g(τ, x)ϕ′(x) dx

)(
∫

Ω

g(τ, x)xdx

)

(12)

− β

∫

Ω

g(τ, x)xϕ′(x) dx,

for all ϕ ∈ C2(Ω̄), posed for τ ∈ [0, +∞), with initial condition

g(0, x) = fin(x) for all x ∈ Ω̄. (13)

Equation (12) is a non-homogeneous nonlinear Fokker-Planck-type equation. The
nonlinearity comes from the first moment of g, i.e.

m1(τ) =

∫

Ω

g(τ, x)xdx.

If we put ϕ(x) = x in Equation (12), we immediately obtain

dm1

dτ
(τ) =

∫

Ω

α′(x)g(τ, x) dx. (14)

The following general properties of m1 hold. Since x ∈ Ω̄,

|m1(τ)| ≤ ‖fin‖L1(Ω), a.e. τ > 0,

and since the stationary solution of Equation (12) must be even by parity of the
equation, then

lim
τ→+∞

m1(τ) = 0.

The first moment of g can sometimes be exactly computed. This allows to obtain a
further simplification which makes the equation particularly simple. Let us detail
two cases.

3.3.1. Even initial datum. The first particular case we consider is obtained when
fin is even. With that type of initial datum, problem (12) is invariant by parity.
Hence its solution is even for all t > 0 and therefore m1(τ) = 0. Equation (12) can
then be simplified into

d

dτ

∫

Ω

g(τ, x)ϕ(x) dx =

∫

Ω

(αϕ′)
′
(x) g(τ, x) dx − β

∫

Ω

g(τ, x)xϕ′(x) dx
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for all ϕ ∈ C2(Ω̄), posed for τ ∈ [0, +∞]. The previous equation is the weak form
of a linear Fokker-Planck equation.

3.3.2. Specific form of the Fourier coefficient. When the Fourier coefficient can be
written as α(x) = κ(1 − x2) with κ > 0, we get from (14)

m1(τ) = m1(0) exp(−2κτ),

where m1(0) is the first moment of the initial datum

m1(0) =

∫

Ω

fin(x)xdx.

This leads us to
d

dτ

∫

Ω

g(τ, x)ϕ(x) dx = κ

∫

Ω

[

(1 − x2)ϕ′
]′

(x) g(τ, x) dx

− β

∫

Ω

g(τ, x)xϕ′(x) dx (15)

+ βm1(0) exp(−2κτ)

(
∫

Ω

g(τ, x)ϕ′(x) dx

)

,

for all ϕ ∈ C2(Ω̄), posed for τ ∈ [0, +∞), with initial condition (13).
Here the equation has a coefficient that depends on the initial datum fin through

m1(0). The equation obtained by using this specific form of the Fourier coefficient
will be studied in the next section (see Theorem 4.5).

4. Mathematical aspects of the quasi-invariant limit equations.

4.1. The collision-dominated regime. Equation (8) with initial condition (9) is
the weak form of a linear partial differential equation of first order. The following
result ensures that this problem admits an explicit solution.

Theorem 4.1. Let fin ∈ H1
0 (Ω) and consider, for any τ > 0, the nonempty open

intervals Ωτ defined by

Ωτ =

(

m1(0) − (1 + m1(0))e−βτ , m1(0) + (1 − m1(0))e−βτ

)

 Ω,

g(τ, x) =

{

eβτfin

(

(x − m1(0))eβτ + m1(0)
)

if x ∈ Ωτ ,
0 if x ∈ Ω̄\Ωτ .

(16)

The function g given by (16) is C0(Ω̄) and is a weak solution to Equation (8)
with initial condition (9). Moreover, we have

‖g(τ, · )‖L1(Ω) = ‖fin‖L1(Ω)

| supp g(τ, ·)| ≤ 2e−βτ .

Proof. Both estimates are immediate. Let us check that g solves (8). We first
compute, for ϕ ∈ C1(Ω̄),

∫

Ω

g(τ, x)ϕ(x) dx = eβτ

∫

Ωτ

fin

(

(x − m1(0))eβτ + m1(0)
)

ϕ(x) dx

=

∫

Ω

fin(y)ϕ
(

(y − m1(0))e−βτ + m1(0)
)

dy,

and then obtain that
d

dτ

∫

Ω

g(τ, x)ϕ(x) dx = −βe−βτ

∫

Ω

fin(y)ϕ′
(

(y − m1(0))e−βτ + m1(0)
)

dy.
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Figure 1. Explicit asymptotic and approximate numerical solutions

In the same way, one can compute
∫

Ω

g(τ, x)ϕ′(x) dx and

∫

Ω

g(τ, x)xϕ′(x) dx.

It is then easy to prove that g solves (8).

Note that, asymptotically in time, Theorem 4.1 ensures that g(τ, ·) converges to
the Dirac mass centred at m1(0) with an exponential rate of decay.

We can numerically recover that behavior. Indeed, we can compare the explicit
form of g given by (16) with the numerical solution fε(·/ε) obtained with the code
developped in [5]. For the numerical computations, we fix ε = 0.01, β = 50 as
collision frequency, and k = 4, α(x) = (1 − x2)1/3 in (6). Moreover, we choose
fin(x) = 3/8 (1 − x2)(2 − x), so that m1(0) = −0.1. In Figure 1, one can check
that both profiles are centred at x = −0.1, and have the same concentration effect:
indeed, both supports narrowed around −0.1 with respect to τ . It is not surprising
that the graphs in Fig. 1 cannot be superimposed, since the diffusive effect is still
taken into account for the numerical solution. The collision numerical method uses a
slightly modified Bird method [4], which is responsible for the numerical oscillations
on Fig. 1.

4.2. The diffusion-dominated regime. The existence and uniqueness theorem
for the approximated equation in the diffusion-dominated case has been proved in
[6]. We only add here some results on the convergence speed towards equilibrium
which can be explicitly deduced.

If, for example, the even function α satisfies the assumption

K := sup
x∈(−1,1)

[

(1 − x)

∫ x

−1

(1 + t)2

α(t)
dt

]1/2

< +∞ (17)

we can use the following theorem on weighted 1-dimensional Poincaré inequalities
[7], here written in a simplified form:
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Theorem 4.2. If Condition (17) holds and α is a nonnegative measurable function

which is finite a.e., then, for all Lipschitz continuous function f on Ω, we have
∫

Ω

α |f ′(x)|
2

dx ≥
1

2K

∫

Ω

∣

∣

∣

∣

f(x) −
1

2

∫

Ω

f(v) dv

∣

∣

∣

∣

2

dx.

The strong form of Equation (10) with initial condition (9) reads

gτ = (α gx)x (18)

g(0, x) = fin(x), (19)

lim
x→±1

α(x)gx(τ, x) = 0. (20)

for x ∈ Ω and τ > 0.
A standard a-priori estimate for the Neumann problem (18)–(20) can be obtained

by differentiating the equation with respect to x, then multiplying each term of the
equation by α gx, and integrating with respect to x in Ω, i.e.

d

dτ

∫

Ω

α gx
2 dx = −

∫

Ω

(α gx)x
2
dx ≤ 0. (21)

Consequently, if ‖α(fin
′)

2
‖L1(Ω) < +∞, then the quantity α(gx)2 is uniformly

bounded in L1(Ω).
We now multiply Equation (18) by (g−1/2) and integrate with respect to x ∈ Ω.

We immediately obtain

1

2

d

dτ

∫

Ω

(

g −
1

2

)2

dx = −

∫

Ω

α (gx)2 dx.

The right-hand-side of the above equation is uniformly bounded with respect to t
because of (21). Thanks to Theorem 4.2, if α satisfies (17), it comes

d

dτ

∫

Ω

(

g −
1

2

)2

dx = −
1

K

∫

Ω

(

g −
1

2

)2

dx,

and we get the exponential convergence towards the constant equilibrium solution
1/2:

∥

∥

∥

∥

g(τ, ·) −
1

2

∥

∥

∥

∥

L2(Ω)

≤

∥

∥

∥

∥

fin −
1

2

∥

∥

∥

∥

L2(Ω)

e−τ/2K . (22)

We can also perform a numerical comparison between

τ 7→ Fε(τ) = 2 log

(

∥

∥

∥

∥

fε

(τ

ε
, ·
)

−
1

2

∥

∥

∥

∥

L2(Ω)

)

and

τ 7→ F0(τ) = 2 log

(

∥

∥

∥

∥

fin −
1

2

∥

∥

∥

∥

L2(Ω)

)

−
τ

K
≃ −2.303− 1.307 τ.

As a matter of fact, the computation of fε can be made in the case when ε = 0.05,
β = 50, and α(x) = (1 − x2)1/3, k = 0.9 in (6), and fin(x) = 3/4 (1 − x2). Note
that we can then numerically compute an approximate value of K ≃ 0.765 in (17).
Figure 2 shows the relative positions of the plots of F0 and Fε.

The plot of Fε is almost a draw line, at least when time is not too large, which
suggests for fε

(

τ
ε , ·
)

an exponential rate of convergence to a stationary solution
which is close to the stationary solution of g (i.e. 1/2). Of course, the two as-
ymptotic states of fε

(

τ
ε , ·
)

and g(τ, ·) do not coincide, but they differ with an error
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Figure 2. Comparison between log L2 norms

which is at most of order O(ε1−k), as shown in the derivation of the quasi-static
approximation in Section 3. Since ε1−k is really significant, we cannot be surprised
by the fact that estimate (22) is not satisfied by fε. Nevertheless, asymptotically,
the plot of Fε should numerically converge to a constant value which gives the error
committed, in the L2 norm, when the asymptotic limit of fε

(

τ
ε , ·
)

is identified with
the asymptotic limit of g(τ, x).

4.3. The equilibrated regime. This subsection is devoted to prove some impor-
tant properties of Equation (12). We first characterize their stationary states, as
proved in the following proposition:

Proposition 2. There exists a probability density q ∈ C2(Ω̄), which is a stationary

solution of Equation (12). The stationary solution q has the following explicit form:

q(x) = ξ exp

(

−β

∫ x

0

s

α(s)
ds

)

, x ∈ Ω̄,

where ξ ∈ R is an arbitrary constant.

Proof. A stationary solution q(x) of the Fokker-Planck equation (12) satisfies the
following weak form:

∫

Ω

(αϕ′)
′
q dx − β

∫

Ω

x q ϕ′ dx = 0 (23)

for all ϕ ∈ C2(Ω̄), by parity (see 3.3).

If we assume that q is smooth enough, say, for example, q ∈ W 1,1
loc (Ω), then we

can integrate by parts the first term in Equation (23), and deduce that
∫

Ω

[αq′ + βxq]ϕ′ dx = 0

for all ϕ ∈ C2(Ω̄). Hence,

αq′ + βxq = 0,
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and therefore q can be written under the following form:

q(x) = ξ exp

(

−β

∫ x

0

s

α(s)
ds

)

,

where ξ ∈ R.

As a next step, we consider the existence theory and the asymptotic decay to-
wards the stationary state for Equation (12). The simultaneous presence of a non-
linearity and of the degeneracy of the second order term makes the study of the
general case quite difficult. In this paper, we obtain some results for the case
α(x) = κ(1−x2), with κ > 0 (see 3.3.2). This assumption allows to linearize Equa-
tion (12) and to find, for an appropriate choice of the parameter β, an exponential
rate of convergence towards equilibrium.

In this framework, the stationary solution is simply of the form q(x) = (1 −
x2)β/2κ.

The strategy of the proof is the following. We first consider a lifted version of
Equation (15), and then prove by compactness the existence of a solution of the
non-lifted problem. We hence consider the following family of initial-boundary value
problems

∂τuδ = ∂x

(

(α + δ)∂xuδ

)

+ β∂x(xuδ) − βe−2κτ

(
∫

Ω

xfin(x) dx

)

∂xuδ,
(24)

with initial and boundary conditions

uδ(0, x) = fin(x), lim
x→±1

∂xuδ(t, x) = 0, (25)

where δ > 0 is the lifting parameter and the other quantities are the same as in
Equation (12).

Standard theory of linear parabolic equations [16] gives the following result:

Proposition 3. Let fin ∈ Hp(Ω), p ∈ N, and T > 0. Then there exists a unique

solution uδ ∈ C([0, T ]; Hp(Ω)) for the initial-boundary value problem (24)–(25).
Moreover, the solution is nonnegative if fin ≥ 0 a.e. Finally, there exists a nonneg-

ative constant J only depending on T , β, fin and κ, such that

‖uδ(τ, · )‖Hp(Ω) ≤ J, ∀δ > 0.

Proof. The existence part of the proposition is classical, as well as the nonnegativity
of the solution [16].

The boundedness of the H1 norm can be obtained by means of an a priori
estimate. We differentiate Equation (24) with respect to x and then multiply it by
∂xuδ. After integrating with respect to x in Ω, we deduce

1

2

d

dτ

∫

Ω

(∂xuδ)
2
dx = −

∫

Ω

(α + δ) (∂xxuδ)
2
dx

+ 2κ

∫

Ω

x ∂xuδ ∂xxuδ dx +
3

2
β

∫

Ω

(∂xuδ)
2
dx

≤

(

3

2
β − κ

)
∫

Ω

(∂xuδ)
2
dx.
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We can eventually write

‖∂xuδ‖L2(Ω) ≤ ‖fin
′‖L2(Ω)e

(3β/2−κ)τ . (26)

The uniform boundedness (with respect to δ) of higher order derivatives is obtained
in the same way (note that the equation is linear). Hence, the last part of the
proposition follows.

Proposition 3 allows to prove the following theorem, which guarantees the exis-
tence of a weak solution for the equilibrated quasi-invariant limit of (3)–(4), when
α(x) = κ(1 − x2).

Theorem 4.3. Problem (15) posed for τ ∈ [0, +∞), for all ϕ ∈ C2(Ω̄), with

a nonnegative initial condition fin ∈ Hp(Ω), has a nonnegative weak solution in

C([0, T ]; Hp(Ω)), for any T > 0. When p ≥ 2, the solution is unique in Hp.

Proof. We consider a family of solution (uδ) for the initial-boundary value problem
(24)–(25), written in the following weak form:

d

dτ

∫

Ω

uδ(τ, x)ϕ(x) dx = κ

∫

Ω

[

(1 − x2)ϕ′(x)
]

x
uδ(τ, x) dx

− β

∫

Ω

uδ(τ, x)xϕ′(x) dx

+ βm1(0) exp(−2κτ)

(
∫

Ω

uδ(τ, x)ϕ′(x) dx

)

,

for all ϕ ∈ C2(Ω̄), posed for τ ∈ [0, +∞), with nonnegative initial datum fin ∈
Hp(Ω).

Since uδ ∈ C([0, T ]; Hp(Ω)) for any δ > 0 and since, moreover, the family is
uniformly bounded in Hp(Ω), up to a subsequence, (uδ) weakly converges in Hp(Ω),
for a.e. τ , let g be its limit. This function g solves the weak form of the initial-
boundary value problem described in the theorem. As a matter of fact, the equation
itself is linear with respect to the unknown function.

Eventually, we have to check that g satisfies the correct initial condition. Let us
integrate the lifted equation with respect to τ in [0, θ]. We obtain that

∣

∣

∣

∣

∫

Ω

(uδ(θ, x) − fin(x))ϕ(x) dx

∣

∣

∣

∣

≤ κ

∫ θ

0

∫

Ω

∣

∣

[

(1 − x2)ϕ′(x)
]

∂xuδ(τ, x)
∣

∣ dxdτ

+ β

∫ θ

0

∫

Ω

|∂x(uδ(τ, x)x)ϕ(x)| dxdτ

+ β |m1(0)|

∫ θ

0

∫

Ω

|∂xuδ(τ, x)ϕ(x)| dxdτ.

Thanks to the upper bound of ‖uδ(τ, · )‖H1(Ω) given by Proposition 2, the right-
hand side of the previous inequality vanishes when θ goes to 0. That proves that
g(0, ·) = fin in w-H1(Ω).

In order to prove that the solution g is nonnegative, we simply note that weak
convergence in H1 implies strong convergence in L2 and almost everywhere. Hence,
the constructed solution g is nonnegative since the sequence (uδ) is nonnegative
too.
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Uniqueness is easily obtained by standard energy estimates for the non-lifted
equation in strong form.

We note that the previous theorem guarantees uniqueness of the solution (in the
class of regular enough functions, say g(τ, ·) ∈ H2(Ω), which is a necessary condition
to use the strong formulation) without imposing boundary conditions.

The next step consists in proving that, in fact, the previous result of existence,
which is local in time, although with an upper bound time which can be arbitrar-
ily large, is indeed global for a wise choice of parameters κ and β. Moreover, in
this case, we deduce exponentially fast convergence towards the stationary solution
characterized in Proposition 2. The proof is based on a suitable a priori estimate.
In order to make the result more readable, we choose κ = 1.

We start by proving the following property:

Lemma 4.4. Let g be the solution of Equation (15) posed for τ ∈ [0, +∞), with

nonnegative and compactly supported initial condition fin ∈ Hp
0 (Ω), with p ≥ 2.

Then g(t,±1) = 0 for any t ∈ [0, τ ].

Proof. Since β > 0, the stationary solution q vanishes in x = ±1. The initial
condition fin is compactly supported in Ω. Thanks to a standard Sobolev imbedding,
it is also in L∞(Ω). Hence, there exists a suitable stationary solution q∗ of Equation
(15), such that q∗ ≥ fin almost everywhere. Note that the masses of q∗ and fin can
be different.

We now consider the unique solution of Equation (15) with initial datum (q∗ −
fin), given by Theorem 4.3. This result ensures that the time evolution of the differ-
ence between the solution with initial datum fin and q∗ also preserves nonnegativity.
Consequently, the trace of the solution g on the boundary is nil.

We are almost ready to prove the main result on the initial-value problem for
Equation (15) with κ = 1. We first note that the constant K given by Theorem 4.2
is finite and satisfies 0.76 ≤ K ≤ 0.77.

Theorem 4.5. Let fin be a nonnegative and compactly supported function in H2
0 (Ω)

such that ‖fin‖L1(Ω) = 1, and 0 < β < 1/K, where the constant K is given by

Theorem 4.2. Then the solution g to the equilibrated problem (15) with κ = 1, posed

for τ ∈ [0, +∞), for all ϕ ∈ H1(Ω), with initial datum fin ∈ Hp(Ω), converges

exponentially fast to the stationary solution q given by Proposition 2, where ξ is

chosen such that ‖q‖L1(Ω) = 1.

Proof. We consider the strong form of Equation (15)

gτ =
(

αgx

)

x
+ β(x g)x − βm1(0)e−2τgx,

with initial condition g(0, x) = fin(x), where α(x) = 1−x2. Since the initial datum
is normalized, it is easy to see that the stationary solution, in this case, is given by

q(x) = ξ(1 − x2)β/2, where ξ−1 =

∫

Ω

(1 − x2)β/2 dx.

It is clear that q satisfies

(αq′)′ + β(xq)′ = 0.

Let us substract the equations respectively satisfied by gτ and q, multiply the
obtained equation by (g−q) and integrate with respect to x in Ω. We easily deduce,
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Figure 3. Numerical convergence of (fε) to the stationary solution

after an integration by parts, that

1

2

d

dτ

∫

Ω

(g − q)2 dx = −

∫

Ω

α(x)(g − q)x
2
dx

+
β

2

∫

Ω

(g − q)2 dx − βm1(0)e−2τ

∫

Ω

gx(g − q) dx,

where we have used that both g and q have zero traces on the boundary of the
interval Ω. Since g also satisfies (26), using Theorem4.2, we can write

d

dτ
‖g − q‖2

L2 ≤

(

β −
1

K

)

‖g − q‖2
L2

+βm1(0)‖fin
′‖L2 exp

[(

3β

2
− 3

)

τ

]

‖g − q‖L2.

With our assumption on β and the approximate value of K, it is clear that

−γ1 :=
3β

2
− 3 < 0 and − γ2 :=

1

2

(

β −
1

K

)

< 0.

Hence we get

d

dτ
‖g − q‖L2 ≤ −γ2‖g − q‖L2 + Me−γ1τ ,

where M is a constant. We can safely assume that γ1 6= γ2. Therefore, we can
deduce that

‖g − q‖L2 ≤

(

‖fin − q‖L2 +
M

γ2 − γ1

)

e−γ2τ −
M

γ2 − γ1
e−γ1τ

≤ ‖fin − q‖L2 e−min(γ1,γ2)τ ,

which means exponential convergence towards equilibrium.
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)

w.r.t. time

Remark 1. Apparently, the exponentially fast convergence of fε in τ also holds for
at least some values of β ≥ 1/K. As a matter of fact, if we pick ε = 10−4 and β = 30,
it is quite clear, on Fig. 3, that (fε), which is an approximation of g of order O(ε),
still converges to the stationary solution when the time increases. Nevertheless,
the convergence rate is not merely exponential: a piecewise exponential behavior is
indeed shown on Fig. 4.
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