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Abstract. This article studies a model for describing opinions’ evolution in a community
linked by microblogging directed network system. The network can evolve in time, by means
of the creation and the deletion of some connections. When a connexion is created, the
individuals have access to the whole history of posts written by the corresponding author
and, when a connexion is destroyed, all the posts written by the corresponding author be-
come invisible. The agents’ opinions are described by a set of continuous opinion variables
in the closed interval Ω = [−1, 1]. They represent the agreement (or disagreement) of the
corresponding agent with respect to a binary question (such as a referendum or an election
with two candidates). The model takes into account the effects on public opinion caused by
the sign and the intensity of the initial opinions of the agents, their activity in microblog-
ging platforms the presence of leaders and the possible manipulations of the visibility of the
posts by the microblogging platform owner. The model is written as a system of integro-
differential equations and simulated by using a Runge-Kutta method. We show that hidden
manipulation can have an important impact on the public opinion formation and that very
mild interventions of the network owner may induce major effects on the population. In our
simulations, the effect of hidden manipulation is shown to be more efficient in driving the
public opinion than the action of a leader, in the case of bounded confidence models and for
short-time intervals.

1. Introduction

In the last years, the use of internet, social media and social networks has become very pop-
ular because of its immediacy and ease of use and, because of the recent COVID-19 pandemics
and the social distancing due to the prevention health policies, the online dissemination of
verified or unverified contents has highly increased [18, 28, 30].

The online sharing of information, advices and suggestions may have a major effect on the
opinion formation phenomenon. The authors of web-based contents may have several reasons
which explain their actions. Many users simply aim to inform the audience about some
facts and the author’s interpretation and opinion about them, other simply forward news and
opinions which seem important to the sender and some others aim to persuade the audience
and drive the public opinion towards a given direction [22]. In many cases, the authors are
known, but sometimes they are not [3].

By looking at the contents written with persuasion purposes, several strategies can be
adopted. A strategy, which is the easiest to be detected, consists in the explicit declaration by
a known user of his\her viewpoint. The content develops all the arguments which support the
thesis of its author, whose identity is known. However, the public opinion can also be driven by
means of other techniques and several individuals may be the object of hidden manipulation,
with possible non-negligible consequences on the collective behaviour [27].

A very well-known case is the so-called Facebook-Cambridge Analytica data scandal [26],
which highlighted some possible consequences of social media sharing, especially in connexion
with non-apparent opinion manipulation techniques related to elections or referendums.

For these reasons, much attention has recently been paid to the power of social media and
social networks in the dynamics of collective choices, especially in the political and commercial
frameworks.
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The interest for these questions fits into a well established line of research, already active
for many years, which has led many authors to propose specific mathematical models for
describing the emergence of consensus in interacting groups. The main idea underlying this
line of research is the study of social influence as a micro-level process for deducing macro-
consequences for consensus or divisions in society.

A possible systematization of the contributions published up to now is based on the mathe-
matical properties of the models (see [29] and the references therein). In particular, the main
ingredient of all models is the opinion space, which can be discrete, continuous over a bounded
interval or continuous over R. The interaction can be pairwise, any-to-any or with respect to
the closest neighbours. The time variable can be discrete or continuous. The model can be
written under the form of a system of difference equations (see, for example, [16, 17, 23]), a
system of ordinary differential equations [1, 15, 12], a kinetic equation (e.g. [4, 7, 8, 9, 11, 35]),
a partial-differential equation [10, 35]. The Markov chain viewpoint has also been proposed
[6].

In [20], the authors provide an extensive analysis on the main modelling hypotheses and give
an extensive literature on the subject. In particular, they classify the reviewed models into
three classes: models of assimilative social influence, models with similarity biased influence
and models with repulsive influence.

Often, the outputs of the models confirm, on the one hand, many expected dynamics. On
the other hand, some models also predict certain counterintuitive behaviours. An example is
given by a recent general bounded confidence model proposed by Hegselmann and Krause in
[24] for a population influenced by their normal peers, exposed to an additional external source
of influence, such as radical groups or charismatic leaders. Their model foresees, for example,
that stronger signals may have less effect than weaker ones or that more radicals may reduce
the radicalization of the members of a population. Other studies have shown that a richer
dynamics can be deduced by taking into account external influence sources or heterogeneous
populations. For instance, [6] showed how restrictions in communication leading to the co-
existence of different opinions follow from the emergence of new absorbing states and [25]
studies how the interaction between open-minded and closed-minded groups induces a novel
class of equilibria consisting of multiple connected opinion clusters.

An individual opinion has social effects only if it is disseminated within the community
itself. For this reason, the medium of transmission is important. In this paper, we will
specifically study the effects of microblogging and social networking services, on which users
may post messages and interact with other users, as they have proven to be an efficient tool
for conveying opinions and they may have an effect in influencing the public opinion [19].

In this article, we aim to understand the effects of two phenomena which induce opinion
modifications, which we call hidden and explicit influencing. For the purposes of the article,
explicit influence is the effect on the population’s opinion by a known influencer, whereas
hidden influence is the effect of the platform owner in highlighting or in hiding information.

The sociological literature agrees that one of the main dynamics of opinion formation is
consensus [32, 34] and, consequently, many mathematical models of social interaction, such as
the well-known Hegselmann-Krause model [23], the Deffuant-Neau-Amblard-Weisbuch model
[17] and the Cucker-Smale model [16] are based on consensus dynamics if the confidence bound
is large enough.

Opinion formation being mainly driven by consensus, it is clear that the neutrality of the
blogging platform a crucial factor. Indeed, if the platform is not neutral (for example, by
hiding some posted opinions or by ordering them in a deliberated way), then the process of
opinion formation is biased.

One of the goals of this article is the study of a particular technique of manipulation, which
does not hide any posts, but rather ranks them in such a way that only some tendencies
are highlighted (for example, by means of an ordering algorithm based on AI semantic al-
gorithms). Note that this technique is more sophisticated than the usual strategy based on
opinion manipulation bots, i.e. software applications that automatically produce posts on the
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web [36], because it works with trusted posts of real individuals, often directly known by the
reader. This technique requires, however, that the owner of the microblogging platform net-
work is involved in the manipulation dynamics. This phenomenon is known as filter bubble:
it results in the partial visibility of a global situation caused by the selection of online contents
by an algorithm [31]. In fact, search engines often use known information about the user (such
as location, search history, online behaviour) to select and classify information to show [13].
Information filtering processes take place on the individual, the social, and the technological
levels: this behaviour is known as the triple-filter-bubble framework [21].

We provide a model which shows in a quantitative way the evolution of the opinions in a
closed community by taking into account two main features of the agents, their post produc-
tivity and their opinions, as well as the evolution of the network between the individuals, the
presence of an external influencer and the policy of the blogging platform in visualizing the
posts among the interested users.

The model presented in this article cannot be simply attributed to one of these classes
indicated in [20], even if assimilative social influence plays a major role. Our model, which
generalizes the model described in [24], has the following features.

- It takes into account in a unified way the effect of an external agent, which can be
either the platform owner or an external influencer, whose action can considerably
modify the evolution of the final state of the system, the time evolution of the net-
work and the productivity of the agents. In this way, both hidden manipulation and
public persuasion actions can be described by the same model and their effects on the
opinion evolution can be compared. The unified approach is possible through a set of
highlighting functions, which can model both the effect of an explicit external agent
and the hidden manipulation obtained through a selection criterion which modifies the
visibility of the opinions expressed within the network.

- It takes into account the agent’s memory. Most models of opinion formation, including
the model introduced in [24], are local in time. The introduction of memory terms has
an effect on the opinion evolution and implies the use of specific mathematical and
numerical strategies.

- The structure of the model is well adapted for studying existence and uniqueness of
the solution by using sophisticated mathematical tools.

We have chosen to work in a continuous-time framework. This choice has several advantages,
mainly at the theoretical level. It allows, on the one hand, to apply the theory of regular
Lagrangian flows (see Definition 3.1 and Theorem 3.2) to individuate under which conditions
the system admits a unique solution. On the other hand, it opens the way to the rigorous
study of the long-time asymptotics of the model, especially the relaxation speed to equilibrium,
by using recent mathematical techniques, such as those described in [2] and in [12]. At
the numerical level, we have used a discretization based on Runge-Kutta routines, which is
consistent with the continuous model.

In order to highlight the importance of this step, we give a counterexample which shows
that the property of uniqueness of the solution may fail even in the case of an apparently
reasonable model.

The outputs of the model show that hidden manipulation is a very efficient tool for influ-
encing a population. In particular, we have compared the effects of hidden manipulation and
the explicit influence of a leader in order to drive the population’s consensus towards a given
value. Our simulations show that, under the circumstances of our tests, hidden manipulation
can be a more efficient strategy for modifying the final consensus with respect to the action of
an external leader, at least on finite time intervals. Our simulations show moreover that the
fraction of individuals with positive opinion exhibits high-frequency oscillations, which may
be seen as similar to random effects in the evolution of such a quantity. However, as we will
detail when describing the numerical simulations, the effect is purely deterministic.

The structure of the article is the following. In Section 2, we describe our mathematical
model. Then, in Section 3, we propose our counterexample and discuss the well-posedness of
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our model. Section 4 describes and discusses several numerical results, including the stability
of the manipulation process with respect to the number of connexions within the network.
Because of its intrinsic interest in opinion dynamics and of its practical applications, the
discrete-time version of the model is also meaningful. We provide its detailed description in
the Appendix.

2. Description of the mathematical model

We consider a population composed of N ∈ N∗ interacting individuals, described – at the
individual level – by N time-dependent functions

xi : R+ → Ω = [−1, 1] i = 1, . . . , N.

The functions xi (i = 1, . . . , N) represent the opinion of the agent labelled with the index i
with respect to a binary question (which can be, for example, a referendum, an election with
two candidates or the opinion with respect to a commercial product). When xi = 1, the i-th
agent completely agrees with the underlying question whereas, when xi = −1, the i-th agent
is in full disagreement with the underlying question. All intermediate values belonging to
the open interval (0, 1) denote partial agreement with the binary question, with a conviction
proportional to the magnitude of xi and, symmetrically, the intermediate values belonging
to the open interval (−1, 0) denote partial disagreement with the binary question, with a
conviction proportional to the absolute value of xi. When xi = 0, the agent has no preference
about the binary question.

We suppose that the individual opinion is publicly available under the form of posts in the
blogging platform and that it evolves only through reciprocal influence. The individuals of the
population are totally or partially interconnected by means of an oriented graph, represented
by a set of time-dependent functions of binary type

σi,j : R+ → {0, 1} for all i, j = 1, . . . , N.

If the i-th agent is following the j-th agent at time t ∈ R+, then σi,j(t) = 1, otherwise
σi,j(t) = 0. The matrix whose entries are the quantities σi,j will be denoted, in the whole
article, as the interaction matrix.

In what follows, we suppose that the population is interconnected in such a way that, for
all i = 1, . . . , N and for all t ∈ R+, there exists at least an index j 6= i such that σi,j = 1
(it means that no agent is fully isolated). We suppose moreover that each agent has a total
access to his\her own posts: σi,i = 1, for all t ∈ R+ and for all i = 1, . . . , N . It is important
to underline that, like in real social media, the interaction matrix is often sparse.

We moreover denote with bi = bi(t) the number density, with respect to t, of microblogs
posted by the i-th individual.

Our model aims to forecast the opinion evolution on a short-time horizon (for example the
dynamics of a referendum campaign). Consequently, we can assume that there is no loss of
attention about the underlying question.

The set of ordinary differential equations of our model describes the opinion evolution
through a consensus dynamics, and takes into account the activities of the agents as mi-
crobloggers. Its precise form is the following:

(2.1)



dbi

dt
(t) = µi(γi − bi(t))

N∑
j=1

σi,j(t)
∫ t

0
bj(θ) dθ, γi, µi > 0

dxi

dt
(t) = αi(xi(t))(Φi(t)− xi(t)),
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where

(2.2) Φi(t) =



N∑
j=1

σi,j(t)
∫ t

0
bj(θ)xj(θ)ψi,j(θ)dθ

N∑
j=1

σi,j(t)
∫ t

0
bj(θ)ψi,j(θ)dθ

t > 0

N∑
j=1

σi,j(0)bj(0)xj(0)ψi,j(0)

N∑
j=1

σi,j(0)bj(0)ψi,j(0)
t = 0

and

(2.3) ψi,j =
{
ψi,j(θ, xj(θ), bj(θ)) > 0 i 6= j

1 i = j.

The model is coupled with suitable initial conditions: for all i = 1, . . . , N
(2.4) bi(0) = b0

i ∈ (0, γi),

(2.5) xi(0) = x0
i ∈ Ω.

We now describe each term of the model.
The equations satisfied by the functions bi(t) are of logistic type. We indeed suppose

that the activity of the i-th microblogger is proportional to the number of total microblogs
seen by him\her up to a saturation phenomenon The parameters γi and µi represent the
posts’ production saturation values and the logistic growth rates for the i-th individual. We
are indeed considering a short-time model, which means that we do not expect any interest
decrease about the underlying question.

In our model, when σi,j = 0, the i-th agent loses all the posts sent by the j-th agent, but
he\she will see again all the posts of the j-th agent as soon as σi,j = 1, as customary in many
microblogging platforms.

The equations describing the time behaviour of the opinions xi(t), i = 1, . . . , N , are of con-
sensus type. We suppose that the i-th agent modifies his\her own opinion through a consensus
dynamics by taking into account the opinions of the individuals he\she is following. In (2.1),
the time evolution of the functions xi is governed by the joint contribution of two terms. The
functions αi : Ω → R+ are somehow the analogous of the admissible functions defined in [9]
(Definition 2.6): they may be agent-dependent and translate the idea that individuals with a
stronger opinion are more stable in their convictions. In general, we suppose that all the αi

are even functions (because of the symmetry under the exchange of the underlying question
with its opposite) and of class W 1,1(Ω).

The variation of the opinion for the i-th agent with respect to time, at time t, is given by
the difference (Φi − xi), weighted by the term αi.

The functions Φi describe a weighted average opinion of the posts seen by the i-th agent.
We suppose that all the posts of the followed individuals are available and that a post of an
agent at a given time strictly reflects his\her opinion at the same time.

We suppose that the weighted opinion deduced by the set of posts available to the i-th
agent is given by the integral in time of all the posts sent by all the individuals followed by
the i-th agent, weighted with suitable highlighting functions ψi,j .

The highlighting functions, in a non-manipulated environment, may describe the memory
of the agents. If the posts are ordered only with respect to time, a plausible form of these
highlighting functions may be a negative exponential in time or the characteristic function
of a suitable subset of the interval (0, t). This assumption reflects the idea that more recent
posts have a greater influence on the readers than older posts. However, in a manipulated
situation, the highlighting functions describe the possible manipulation induced by the owner
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of the platform. Since the highlighted posts are chosen by the owner of the platform in order
to maximise their effect, it is therefore important to allow the platform owner to consider the
whole history of posts, including the oldest ones.

Note that timing is a crucial factor in opinion formation dynamics (see [7] for a discussion
about this point): for this reason we allow that the manipulation strategy may vary in time.

In both cases, these quantities are normalized by the total number of posts, weighted by the
highlighting functions. Note that the quantities σi,j in front of this weighted average (which
guarantee that only the agents followed by the i-th individual are taken into account in this
average) are considered at time t. It means that, when a user follows another agent, he\she has
a complete access to all his\her posts, and, when a user decide to eliminate another individual
from his\her set of contacts, he\she looses the access to all his\her comments.

As said before, the highlighting functions ψi,j , in a manipulated situation, describe the
manipulation effect. These terms are supposed to be under the control of the microblogging
network’s provider. When there is no manipulation, the ψi,j depend only on t for all i, j =
1, . . . , N . In the case of hidden manipulation, we suppose that ψi,i depend only on the time
variable for all i = 1, . . . , N for preventing the individual to see any manipulation effect
on his\her own posts. Moreover, we suppose that ψi,j(t) ∈ (0, 1] for all t ∈ R+ (hence,
ψi,j ∈ L∞(R+) for all i, j = 1, . . . , N). In a manipulated situation, the highlighting functions
may depend on time, on the opinion of the agents followed by the i-th agent and of the number
of posts seen by him\her.

We do not allow complete censorship; consequently, we suppose ψi,j > 0 in (2.3). A
possible implementation of a manipulation technique consists in simply promoting, in the
ranking of posts, those which are favourable to the thesis supported by the manipulator and
by postponing in the ranking the unfavourable posts. The effectiveness of this technique is the
consequence of the information overload of microblogging platforms [33]: usually not every
post is read, especially when their number is high, and the reader limit himself to the first
ones. As we will see in the next sections, the effect of the highlighting functions may result in
a modification of the asymptotic state of the system.

If we suppose that ψi,j = 1 for all i, j = 1, . . . , N , and all the αi are constant, we obtain a
linear system of ODEs for the unknowns xi of Hegselmann-Krause type [23].

Without manipulation phenomena, the evolution of the population is the consequence of
several factors inside the population. The number of individuals with opinion of the same sign
is, of course, important and is the goal of the majority of polls. However, it is not enough
for explaining the evolution of the population’s global opinion, because at least two other
factors are of paramount importance: the activity in sharing their opinions – here measured
by means of the individual number of posts bi – and the conviction degree of each agent,
which corresponds to the absolute value of his/her opinion, |xi(t)|. The implementation of
polls with multiple answers about a binary question, modulated on a scale, is hence very useful
for producing accurate forecasts (see, for example, [11]).

Leaders are modelled by individuals with peculiar forms of the highlighting functions and
of the corresponding entries of the interaction matrix. By supposing the existence of only one
leader in the population (for simplicity labelled by the index N), the entries of the interaction
matrix involving the leader have the form

σN,i = 0, σi,N = 1 for all i = 1, . . . , N − 1

and the highlighting functions are such that ψi,N � ψi,j for all i = 1, . . . , N − 1 and j =
1, . . . , N − 1.

3. Basic mathematical properties of the model

This section is devoted to the mathematical analysis of our model. In particular, we will
discuss the well-posedness of the model (i.e. the existence and the uniqueness of the solution),
which is key feature of any good mathematical model.
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In particular, we underline that the lack of uniqueness is a serious limitation to the pre-
dictive value of any mathematical model. A considerable advantage of the choice to model
the phenomenon with a system of multi-agent differential equations is precisely the possibil-
ity of studying, with sophisticated techniques of mathematical analysis, the conditions that
guarantee the uniqueness of the solution of the model.

3.1. A counterexemple. We first describe a counterexample that emphasizes the importance
of well-posedness in opinion formation multi-agent systems.

Consider a population composed by N interacting agents. We introduce a N × N matrix
S whose entries, denoted with σi,j , describe the effects of the influence of the agent labelled
with the index i on the agent labelled with index j. In what follows, we suppose that σi,j

may assume only two values, zero and one. When σi,j = 0, we suppose that there exist no
interaction between the corresponding individuals and, when σi,j = 1, the i-th individual has
an influence on the opinion of the j-th individual.

Let xi = xi(t) ∈ the opinion of the i-th agent. For simplicity, we will work in an unbounded
domain, hence xi ∈ R for all i = 1, . . . , N .

The equations of the counterexample are the following. Let

(3.1) φ(y) =


√
y − y y ≥ 0

−
√
|y| − y y < 0.

Figure 1. Plot of the graph of the function y 7→ φ(y).

The evolution of xi with respect to time is given by the set of differential equations

(3.2) x′i(t) = 1
2

N∑
i=1

σi,jφ(xi − xj), i = 1, . . . , N.

This set of equations models a system which tends to consensus when the starting opinions
of the agents are such that |xi − xj | > 1. When individuals interact with other agents having
opinions very similar to their own, the binary encounters induce different shades of opinion.

The equations hence describe a model of optimal distinctiveness, which reconciles the op-
posing needs of assimilation and differentiation from others. This behaviour has been analyzed
in the literature [14].

We now suppose that
- N ≥ 2 is an even natural number;
- σ2i−1,2i = 1 and σ2i,2i−1 = 1 for all i = 1, . . . , N/2 and zero otherwise;
- all the initial opinions of the agents are equal to zero, i.e.

(3.3) x′i(0) = 0, i = 1, . . . , N.
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System (3.2) can hence be decoupled in N/2 independent 2× 2 systems having the form
x′2i−1(t) = 1

2φ(x2i−1 − x2i)

x′2i(t) = 1
2φ(x2i − x2i−i)

with initial conditions x′2i−1(t) = 0 and x′2i(t) = 0 for all i = 1, . . . , N/2. Thanks to the parity
property of φ, if we subtract the second equation from the first one, we end with
(3.4) [x2i−1 − x2i(t)]′(t) = φ(x2i−1 − x2i), i = 1, . . . , N/2.
The solutions of (3.4) are hence the solutions of the Cauchy problem for the ordinary differ-
ential equation

(3.5) z′(t) =


√
z − z z ≥ 0

−
√
|z| − z z < 0.

z(0) = 0,

where z(t) = x2i−1(t)−x2i(t) for a given i. It is easy to verify, by direct inspection, that both

z(t) = 0 and z(t) = (e−t/2 − 1)2

are solutions of (3.5) for t ≥ 0. Hence, system (3.1)-(3.2)-(3.3) does not have a unique solution.

3.2. Well-posedness analysis. A crucial step is hence the identification of the conditions
on a differential multi-agent system which guarantee the existence and the uniqueness of the
solution. This study is detailed in the present subsection.

We first remark that our model is composed of two sets of weekly coupled unknowns: the
functions representing the number of posts written by the i-th individual (denoted bi) and the
the functions representing the opinions xi.

It is possible to decouple the equations satisfied by the unknowns bi in Equation (2.1): the
first family of equations in Equation (2.1), i.e.,

(3.6)


dbi

dt
(t) = Fi(t, b1, . . . , bN (t)) := µi(γi − bi(t))

N∑
j=1

σi,j(t)
∫ t

0
bj(θ) dθ

bi(0) = b0
i ∈ (0, γ)

can be solved as a coupled system for all the bi, by applying the standard Cauchy-Lipschitz
theory, all the Fi being of class C∞((R+)N+1). We can hence deduce that there exists one
and only one vector b = (b1, . . . , bN ) ∈ C∞((R+)N ), solution of system (3.6) with initial data
bi(0) = b0

i .
Consider the second half of system (2.1) with known vector b ∈ C∞((R+)N ):

(3.7)


dxi

dt
(t) = αi(xi(t))(Φi(t)− xi(t)) i = 1, . . . , N

xi(0) = x0
i ∈ Ω.

All the Φi satisfy the following bound for all T > 0:
0 ≤ Φi ≤ max

j=1,...,N
sup

t∈[0,T ]
|xj(t)|.

As a consequence of the binary character of the interaction matrix and the regularity hy-
potheses of the highlighting functions ψi,j ∈ L∞(R+), the terms Φi – which are linear with
respect to the opinion variables – cannot be more regular than L∞ functions with respect
to time. Moreover, the equations are not sufficiently regular with respect to the unknown
x = (x1, . . . , xN ) for applying the Cauchy-Lipschitz theory because of the low regularity of
the vector α = (α1, . . . αN ).
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For this reason, we need to base our study on a more general theory (we refer to the lecture
notes [5] and to the references therein for a complete introduction to the theory of flows
associated to non-smooth vector fields).

The Cauchy problem (3.7) has the following structure:

(3.8)
{
ẋ(t) = η(t, x(t))
x(0) = x0,

where x : [0, T ]→ ΩN is the opinion vector for the whole population and η : [0, T ]×ΩN → RN

is the associated vector field, which may have no Lipschitz regularity.
Let LN be the N -dimensional Lebesgue measure and consider a map X : [0, T ]×RN → RN .

The fact that X(t, ·)#LN ≤ LLN for all t ∈ [0, T ], where the symbol # represents the push-
forward of a measure, means that there exists L > 0 such that, for all t ∈ [0, T ] and for all
φ ∈ C0

c (RN ) ≥ 0, ∫
RN

φ(X(t, x))dx ≤ L
∫
RN

φ(x)dx.

For a given vector field η, we consider as admissible solutions to the system the maps called
regular Lagrangian flows (see [5]):

Definition 3.1. A regular Lagrangian flow is a map X : [0, T ]× RN → RN such that:
i) for LN -a.e. x ∈ RN , the function t→ X(t, x) is a solution of the ODE in the integral

sense, i.e. such that:

X(t, x) = x0 +
∫ t

0
η(s,X(s, x))ds for all t ∈ [0, T ];

ii) there exists a constant L > 0 such that X(t, ·)#LN ≤ LLN , for all t ∈ [0, T ].

The constant L is called compressibility constant. The following theorem holds [5]:

Theorem 3.2. Consider η ∈ (L1[0, T ];W 1,1(RN ;RN )), such that η ∈ L∞([0, T ] × RN ;RN )
and [divxη]− ∈ L1([0, T ];L∞(RN )). Then there exists a unique regular Lagrangian flow X
associated to the field η, solution of the Cauchy problem (3.8).

By using the notation of this article, we immediately deduce:

Theorem 3.3. Consider the Cauchy problem (2.1)-(2.5) for t ∈ [0, T ], T > 0. Let σi,j : R+ →
{0, 1} for all i, j = 1, . . . , N be a set of functions of class L∞(0, T ). Let ψi,j(t) ∈ (0, 1] for all
t ∈ R+ for all i, j = 1, . . . , N . Suppose moreover that the field α ∈ (L1[0, T ];W 1,1(ΩN ;RN )),
α ∈ L∞([0, T ]× ΩN ;RN ) and [divxα]− ∈ L1([0, T ];L∞(ΩN )). Let b0

i ∈ (0, γi), γi > 0, µi > 0
and x0

i ∈ Ω for all i = 1, . . . , N .
Then, there exists one and only one solution of (2.1)-(2.5). The opinion vector x is a

regular Lagrangian flow and b ∈ C∞((R+)N ).
Moreover, if α is a Lipschitz field with respect to the opinion vector x, uniformly in time,

then existence and uniqueness of the solution hold in the classical sense for both b and x.

4. Numerical results

Because of the weak coupling of the model, already described in the previous section, the
numerical simulations have been produced by decoupling the problem in two sub-problems.

We introduce the functions

(4.1) Bi =
∫ t

0
bi(θ) dθ, i = 1, . . . , N,

which represent the total number of microblogs posted at time t by the individual labelled
with the index i. Thanks to the regularity of b, proved in the previous section, we deduce
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immediately that (3.6) can be written as a pure differential system:

(4.2)



dbi

dt
(t) = µi(γi − bi(t))

N∑
j=1

σi,j(t)Bj(t)

dBi

dt
(t) = bi(t)

bi(0) = b0
i ∈ (0, γ)

Bi(0) = 0.

We have first solved the Cauchy problem (4.2) and then we have stocked the results of
the problem. We have subsequently used them as input data for solving the Cauchy problem
(3.7). Both systems have been discretized by means of a standard fourth-order Runge-Kutta
routine.

In what follows, we always suppose that

(4.3) αi(s) = β(1− s2), β > 0, for all i = 1, . . . , N.

This specific form of the nonlinear fields αi is coherent with the hypothesis that individuals
with extreme opinions are more stable in their convictions.

We separately treat two network geometries. The first geometry describes a strongly con-
nected network (i.e. there exists a path linking each pair of agents of the population) and
the second one describes a partially interconnected network, composed of separate clusters of
agents.

The time evolution of the opinions in each geometry is then analyzed by looking at differ-
ent situations: the first one without hidden manipulation, the second in presence of hidden
manipulation. The last geometry presents a comparison between hidden manipulation and
explicit influence.

In all the numerical simulations, we consider a population composed of N = 103 partially
interconnected individuals. The choice of this value for N allows to produce readable figures
and to work with a population in which an individual behaviour has little effect at the collective
level. Of course, simulations with a greater number of agents are possible and do not induce
major difficulties, at least when N is not too big.

The time step of the Runge-Kutta algorithm is ∆t = 5×10−3 and the simulations have been
displayed for t ∈ [0, 5], t being measured in weeks. We moreover choose the following numerical
values. For all i, µi = µ∗ = 10−4: we hence suppose that the post’s production is saturated
after 3 weeks; the maximum number of daily posts for each agent is set to γi = γ∗ = 10 and
the relaxation constant (which represents the interaction frequency between the agents) in
(4.3) is β = 2.

For each numerical experiment, we systematically show two figures. The first one describes
the time evolution of the individual opinion with respect to time for the whole number of
individuals and the second one shows the time evolution of the quantity

S+ = 1
N

N∑
i=1

1xi(t)>0,

which represents the fraction of individuals which favour the underlying binary question at a
given time t ∈ R+. Of course, from S+ is possible to deduce the fraction of individuals which
do not approve the underlying binary question at a given time t ∈ R+:

S− = 1− S+ = 1
N

N∑
i=1

1xi(t)≤0.

When needed, we add the visualization of the interaction matrix and of the evolution of the
number of posts.
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4.1. Strongly connected population. In this first series of tests, the form of the interaction
matrix is the following. We first impose that

σi,i = 1 for all i = 1, . . . , N ;
σi,i+1 = 1 for all i = 1, . . . , (N − 1) σN,1 = 1.
σi+1,i = 1 for all i = 1, . . . , (N − 1) σ1,N = 1.

These conditions guarantee that the network represented by the interaction matrix is strongly
connected. Moreover, we add some extra non-zero entries to the interaction matrix by means
of a sampling from the uniform distribution. The explicit form of the interaction matrix
is described in Figure 2 (left) and the total number of non-zero entries is equal to 32,439.
The initial number of posts of the agents of the population is the following: b0

i = 1, for all
i = 1, . . . , N (see Figure 2, right). The initial condition for the unknowns xi is:

(4.4) x0
i = −0.9999 + 1.9998× i− 1

N − 1 , i = 1, . . . , N.

0 500 1000
i

0

200

400

600

800

1000

j

Figure 2. Interaction matrix (left) and time evolution of the number of posts
(right) in Cases 1 and 2.

4.1.1. Case 1. In Case 1, we suppose that the microblogging network’s provider is neutral.
We see that the geometry of the network representing the connections between the individuals
strongly modifies the behaviour of the system. In particular, the system tends to an equilib-
rium, which is different from zero (see Figure 3, right). This behaviour is the consequence
of the non-symmetric interactions in the network representing the interactions between the
members of the population. The evolution of the population S+ starts from 0.5 at time t = 0
and reaches in a non-monotone way, at time t = 5, the value S+(5) = 0.455. We underline
that the high-frequency oscillations in all the graphs of S+ are not originated by a noise. This
effect is purely deterministic and is due to the presence of many opinion trajectories whose
ordinate change its sign.

4.1.2. Case 2. In this case, we study the effects of hidden manipulation on the same population
studied in Case 1. We suppose that the highlighting functions have the form

ψi,j(t, xi(t), xj(t)) =


1 if xj(t) ≥ xi(t)

4
5 otherwise.

We underline that this form of the highlighting functions drives the system towards positive
opinions. This feature of the highlighting functions is confirmed by the numerical experiments.
We see that the subpopulation S+ is weakly oscillating, but reaches in five weeks the value 1,
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0 1 2 3 4 5
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0.45

0.46

0.47

0.48

0.49

0.5

0.51

S
+

Figure 3. Time evolution of the opinions (left) and of S+ (right) in Case 1.

starting from the value S+(0) = 0.5 (Figure 4, right) and with an interaction matrix which
clearly favours the negative opinions, as shown in Case 1. Hence, hidden manipulation is an
efficient way for driving the system towards positive opinions.

0 1 2 3 4 5
Time

0.5

0.6

0.7

0.8

0.9

1

S
+

Figure 4. Time evolution of the opinions (left) and of S+ (right) in Case 2.

4.2. Clustered population. Another series of tests of this subsection studies a population
composed of distinct clusters. These clusters include individuals with different initial view-
points about the underlying binary question. The initial condition – which is randomly chosen
from the uniform distribution – and the interaction matrix are detailed in Figure 5. The total
number of connexions of the network is equal to 15,028.

Initially, the population has average opinion equal to -0.0062. The fraction of the population
with positive opinion at time t = 0 is S+(0) = 0.499. Even if S−(0) > S+(0), we see that the
average opinion has a major effect on the time evolution of the population, as underlined in
Section 2. This indicator can be more important than the fraction of the population having
opinions of the same sign.

We will study two types of hidden manipulation. In Case 4, the network highlights opinions
which have negative sign whereas Case 5 treats a possible structure of highlighting functions
which put in light, for the i-th individual, all the opinions which are closer to −1 than xi(t).

Being interested in studying the hidden manipulation effects, also in this case we suppose
that all the agents have the same blogging activity (i.e. b0

i = 1 for all i = 1, . . . , N).
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Figure 5. Interaction matrix (left) and initial condition (right) in Cases 3, 4
and 5.

4.2.1. Case 3. We first treat the situation without hidden manipulation. In Figure 6 we
reproduce the individual opinion evolution and the evolution of the fraction of the population
with positive opinions. We observe that the agents aggregate themselves in several clusters and
that S+ grows from S+(0) = 0.499 to S+(5) = 0.5. The four detected clusters are consistent
with the four interconnected sub-populations of the network.

0 1 2 3 4 5
Time

0.47

0.475

0.48

0.485

0.49

0.495

0.5

S
+

Figure 6. Time evolution of the opinions (left) and of S+ (right) in Case 3.

4.2.2. Case 4. The hidden manipulation effect is simulated by using highlighting functions of
type

(4.5) ψi,j(t, xi(t), xj(t)) =


1 if xj(t) ≤ 0

4
5 otherwise.

We underline that this form of the highlighting functions has a decisive effect in pushing the
system towards negative opinions. In Figure 7, we note that the subpopulation S+ decreases
from S+(0) = 0.499 to S+(5) = 0.320. Moreover, the whole population reduces itself to four
clusters, two of them are centred below zero. The result is very sensitive to the weights of the
opinion in the highlighting functions.
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Figure 7. Time evolution of the opinions (left) and of S+ (right) in Case 4.

4.2.3. Case 5. The hidden manipulation effect of this simulation is obtained thanks to high-
lighting functions of type

ψi,j(t, xi(t), xj(t)) =


1 if xi(t) ≥ xj(t)

4
5 otherwise.

Figure 8 shows that this strategy is less efficient than the strategy used in Case 4, even if this
strategy could help in decreasing the value of the opinion variable of individuals which are
exclusively in contact with individuals of positive opinion. However, this strategy is enough
for driving the system to S+(5) = 0.486.
In order to compare with greater accuracy the behaviour of S+ in these different cases, figure
9 shows on the same scale the trend of this variable.

0 1 2 3 4 5
Time

0.4

0.42

0.44

0.46

0.48

0.5

S
+

Figure 8. Time evolution of the opinions (left) and of S+ (right) in Case 5.

4.3. Effects of a leadership. In the previous scenarios, we studied the process of opinion
formation in the presence or absence of hidden manipulation. Another way to influence the
opinions of a population is the presence of one or more leaders within the community. A
leader is, for our purposes, an agent who interact with the population, is not influenced by
it but attracts the opinions of other individuals towards his/her positions. Therefore, it can
be interesting to compare the effects of hidden manipulation and the presence of a leader in
a network. Three situations will then be compared: the first one is a neutral situation, in
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Figure 9. Comparison of the behaviour of S+ in Case 3, 4 and 5.

the second one hidden manipulation is present, and, in the third ones, a leader influences
the population. The structure of the model is the same adopted in the previous sections.
In all simulations, we consider a population composed of N = 103 agents. The interaction
matrix is composed of five distinct clusters with 31,457 non-zero entries. Opinions are initially
distributed as follows:

(4.6) zi = −0.9999 + 1.9998× i− 1
N − 1 , i = 1, . . . , N.

We then have:
(4.7) x0

i = zi|zi|, i = 1, . . . , N.
Figure 10 shows the interaction matrix and the initial opinions.
In this series of tests, individuals interact with a bounded confidence level. This term

is included in the highlighting functions. The confidence level is equal to 0.6. The set of
parameters considered is the following: β = 2, γ = 10, µ = 10−4, ∆t = h = 5× 10−3 and the
simulations have been displayed for t ∈ (0, 100).
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Figure 10. Interaction matrix (left) and initial conditions (right)

4.3.1. Neutral network. We have, at first, studied the behaviour of the opinion formation in
absence of hidden manipulation and without any leader. The evolution of the population S+
starts from 0.5 at time t = 0 and reaches in a non-monotone way the value S+ = 0.6 at time
t = 100.
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4.3.2. Hidden manipulation. We have then studied the evolution of the opinions in presence
of hidden manipulation. The hidden manipulation effect of this simulation is obtained thanks
to highlighting functions of type

ψi,j(t, xi(t), xj(t)) =


1|xi(t)−xj(t)|<3/5 if xi(t) ≥ xj(t)

1
21|xi(t)−xj(t)|<3/5 otherwise.

We underline that S+ = 0.565 at time t = 100, and this is in line with the form of the
highlighting functions.

4.3.3. Presence of a leader. The last scenario studies the effect of a leader on the opinion of
the population, in the absence of hidden manipulation. For consistency with the other tests,
in this case N = 1.001× 103 and the leader is denoted by the index N . The leader has initial
opinion xN = −0.3. The highlighting functions involving the leader have much greater weight
than the highlighting functions of the other agents. Specifically, we determined that each
member of the population has weight equal to 1, while the leader has weight equal to 104.
Moreover, the leader is not influenced by the other agents of the population:

ψi,j(t, xi(t), xj(t)) =


1|xi(t)−xj(t)|<3/5 if i = 1, . . . , N − 1 and j = 1, . . . , N − 1

104 × 1|xi(t)−xj(t)|<3/5 if i = 1, . . . , N − 1 and j = N

0 if i = N and j = 1, . . . , N − 1.
The simulation shows that S+ = 594 at t = 100, as indicated in Figure 11. Therefore,
even though the leader influences the opinion of members of the population, in the situations
examined in this paper, hidden manipulation is more efficient in changing opinions within the
community. To better compare the behaviour of S+, we report all three results in Figure 11.

The behaviour does not vary very much if the weight of the leader’s opinion has the value
106.

0 20 40 60 80 100
Time

0.48

0.5

0.52

0.54

0.56

0.58

0.6

S
+

No Manipulation
Manipulation
Leader

Figure 11. Time history of the quantity S+ for the cases described in Sub-
sections 4.3.1, 4.3.2 and 4.3.3.

4.4. Stability analysis. In this subsection, we study the robustness of the outputs of the
model with respect to the form of the interaction matrix (which describes the degree of con-
nectivity of the network). All the simulations have been obtained for N = 100 agents and by
considering the initial condition

xi(0) = −1 + 7
10(i− 1) 2

N − 2 if i = 1, . . . , N2

xi(0) = 1− 7
10(N − i) 2

N − 2 if i = N

2 + 1, . . . , N.
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As a consequence, the initial fraction of the population with negative opinions has exactly
the same magnitude as the fraction of the population with positive opinions. In all the
simulations, we have used the highlighting function family (4.5).

We have studied the evolution of the population by supposing to modify, at each run, the
geometry of the network (or, in other words, the values of the interaction matrix), by imposing
an upper bound on the number of non-zero elements of the interaction matrix. Then, we have
studied the efficacy of the highlighting function family in driving the opinions of the population
towards negative opinions.

Let Nmax be the maximal number of non-zero elements of the interaction matrix (which is
obviously linked to the sparsity index of the matrix).

We have considered the following values of Nmax: Nmax = 600, Nmax = 700, Nmax = 103,
Nmax = 1, 4×103, Nmax = 2×103, Nmax = 2.5×103, Nmax = 3×103. For each value of Nmax,
we have studied 10 numerical simulations, each of them with a different interaction matrix.
As far as the sparsity index increases, the number of simulations which have a majority of
positive opinions at time t = 5 decreases and, consequently, the quantity S+(5) decreases.

In two tables, we have collected some relevant results.

Label Number of S−(5) without S+(5) without S−(5) with S+(5) with
non-zero σi,j manipulation manipulation manipulation manipulation

1 672 0.85 0.15 0.96 0.04
2 671 0.19 0.81 0.92 0.08
3 677 0.08 0.92 0.87 0.13
4 671 0.98 0.02 0.98 0.02
5 677 0.30 0.70 0.94 0.06
6 683 0.04 0.96 0.21 0.79
7 673 0.13 0.87 0.92 0.08
8 684 0.15 0.85 0.92 0.08
9 676 0.66 0.34 0.92 0.08
10 679 0.90 0.10 0.97 0.03
Table 1. Comparison between 10 simulations with random entries of the in-
teraction matrix (Nmax = 700).

In Table 1, we have labelled, in the first column, the number of the simulation and then we
have collected, in the second column the number of non-zero entries of the matrix representing
the network and, in the third and fourth column, the values of S−(5) and S+(5) without
hidden manipulation effect. As expected, the population reaches an equilibrium in which
the numbers of positive and negative opinions heavily depend on the connexions between the
agents, represented by the non-zero entries of the interaction matrix.

However, if the system is under the effect of the highlighting function family (4.5), which
favours the negative opinion, the behaviour of the population is clearly influenced by it. Its
quantification is collected in the fifth and in the sixth column. We observe that the highlighting
functions family has always a non-negligible effect and that, in some cases, it is able to renverse
the majority inside the population.

For the sake of completeness, we have collected in Table 2 the results in the case Nmax =
1.4× 103. At each run, we have considered a different strongly connected network obeying to
the same hypotheses as in Subsection 4.1, and by varying the value ofNmax. It is apparent that,
when the population is sufficiently interconnected, the manipulation effect of the highlighting
functions becomes more efficient and, above a given threshold, it is the dominant effect.

The simulations suggest hence that there is a threshold effect on the sparsity index of the
interaction matrix.
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Label Number of S−(5) without S+(5) without S−(5) with S+(5) with
non-zero σi,j manipulation manipulation manipulation manipulation

1 1377 0.12 0.88 0.92 0.08
2 1395 0.17 0.83 0.93 0.07
3 1387 0.88 0.12 0.99 0.01
4 1393 0.14 0.86 0.91 0.09
5 1395 0.73 0.27 0.99 0.01
6 1396 0.16 0.84 0.92 0.08
7 1391 0.52 0.48 0.99 0.01
8 1391 0.89 0.11 0.99 0.01
9 1399 0.23 0.77 0.95 0.05
10 1386 0.36 0.64 0.97 0.03
Table 2. Comparison between 10 simulations with random entries of the in-
teraction matrix (Nmax = 1.4× 103).

5. Conclusion

We have studied some dynamics of opinion dynamics. In the simulations, we have considered
a fixed network, but the model allows to treat, in the same way, an evolutionary network. The
model takes into account the effects on public opinion caused by the sign and the intensity of
the initial opinions of the agents, their activity in microblogging platforms and the possible
manipulations of the visibility of the posts by the microblogging platform provider. We have
numerically studied the stability of the hidden manipulation phenomenon with respect to the
sparsity of the network and we have shown that very mild interventions of the network owner
can have major effects on the opinion of the population.

Moreover, we have shown simulations suggesting that, in some situations, hidden manipu-
lation is more efficient than a leader in modifying the opinion of a population, at least if the
time interval is not too large.

Hence, hidden manipulation may have an important impact on the public opinion formation.

Appendix

In several situations, it may be convenient to work in discrete-time, especially if it is neces-
sary to consider punctual events. For this reason, we describe here the discrete-time version
of our model. Let i = 1, . . . , N the label of each agent and let t ∈ N. Let bi : N → R+ the
number of posts sent to the network by the i-th agent, σi,j : N→ {0, 1} for all i, j = 1, . . . , N
the entries of the discrete-time interaction matrix, and xi : N → [−1, 1] the opinion of the
i-th agent. The discrete-time model has the following form:

(5.1)


bi(t+ 1) = bi(t) + µi(γi − bi(t))

N∑
j=1

σi,j(t)
t∑

k=0
bj(k) γi, µi > 0

xi(t+ 1) = xi(t) + αi(xi(t))(Φi(t)− xi(t)),
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where

(5.2) Φi(t) =



N∑
j=1

σi,j(t)
t∑

k=0
bj(k)xj(k)ψi,j(k)

N∑
j=1

σi,j(t)
t∑

k=0
bj(k)ψi,j(k)

t > 0

N∑
j=1

σi,j(0)bj(0)xj(0)ψi,j(0)

N∑
j=1

σi,j(0)bj(0)ψi,j(0)
t = 0

and

(5.3) ψi,j =
{
ψi,j(k, xj(k), bj(k)) > 0 i 6= j

1 i = j.

The model is coupled with suitable initial conditions: for all i = 1, . . . , N

(5.4) bi(0) = b0
i ∈ (0, γi),

(5.5) xi(0) = x0
i ∈ Ω.

We underline that the discrete-time Equations (5.1)-(5.5) have the same structure as the
first-order Euler scheme of the continuous-time model (2.1)-(2.5), with time step equal to one.

The model can be further simplified if we suppose that the number of posts published by
each agent is constant with respect to time, i.e. the posts production has rapidly reached the
saturation regime. Under this assumption, if we denote with γi the number of posts written
by the i-th agent at each time step, the discrete-time model has the following structure:

xi(t+ 1) = xi(t) + αi(xi(t))(Φi(t)− xi(t)),
where

Φi(t) =



N∑
j=1

σi,j(t)
t∑

k=0
γjxj(k)ψi,j(k)

N∑
j=1

σi,j(t)
t∑

k=0
γjψi,j(k)

t > 0

N∑
j=1

σi,j(0)γj(0)xj(0)ψi,j(0)

N∑
j=1

σi,j(0)γjψi,j(0)
t = 0

and

ψi,j =
{
ψi,j(k, xj(k), γj) > 0 i 6= j

1 i = j.

The initial conditions are xi(0) = x0
i ∈ Ω for all i = 1, . . . , N .
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