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Abstract. We obtain equilibration rates for nonlinear Fokker-Planck equa-

tions modelling the relaxation of fermions and bosons gases. We show how the
entropy method applies to quantify explicitly the exponential decay towards

Fermi-Dirac and Bose-Einstein distributions in the one dimensional case.

1. Introduction

The main aim of this work is to analyze the large-time behavior of solutions of
the Cauchy problem:

∂f

∂t
=

∂2

∂v2
f +

∂

∂v
[vf(1 + kf)], v ∈ R, t > 0, k = ±1, (1)

with initial data
f(v, 0) = f0(v). (2)

These nonlinear Fokker-Planck equations have been proposed in [8, 7, 4] and the
references therein, as kinetic models for the relaxation to equilibrium for bosons
(k = 1) and fermions (k = −1). These models have been introduced as a simpli-
fication with respect to Boltzmann-based models as in [9, 5]. Here, we will show
that entropy methods apply in a direct way to analyze the equilibration rate for
the one-dimensional case.

Let us finally remark that some of these formal computations can be generalized
to the fermion case in any dimension. However, the extensions to several dimensions
both for fermions and for bosons are relevant open problems. In the rest, we
will assume that we are dealing with smooth positive fast-decaying solutions of
equation (1). The well-posedness of the Cauchy problem (1)-(2), the properties of
their solutions and the rigorous proof of the convergence in entropy sense will be
developed elsewhere.

2. Reckoning the Stationary Distributions and the Entropy Form

We first give the explicit form of integrable stationary solutions for equation (1):

Lemma 2.1. Let F∞ be an integrable, strictly positive, stationary solution for
Equation (1), with F∞ < 1 in the fermion case. Then

F∞(v) =
1

βe
v2
2 − k

.

Moreover, for each value of the mass M > 0, there exists a unique β = β(M) ≥ 0
such that F∞(v) has mass M .
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Proof.- We consider the stationary version of Equation (1):

∂2

∂v2
f +

∂

∂v
[vf(1 + kf)] = 0,

that can be written in the form
∂

∂v

{
f(1 + kf)

[
1

f(1 + kf)
∂f

∂v
+

∂

∂v

(
v2

2

)]}
= 0,

or equivalently,

∂

∂v

{
f(1 + kf)

∂

∂v

[
log

(
f

1 + kf

)
+

v2

2

]}
= 0.

Since the solution is smooth fast-decaying and less than one in the fermion case,
then previous equation implies that

∂

∂v

[
log

(
f

1 + kf

)
+

v2

2

]
= 0

from which we analytically obtain the stationary solution to Equation (1):

F∞(v) =
1

βe
v2
2 − k

with β ≥ 0. Now, it is easy to check that these stationary solutions are integrable
for all β > 0 in the fermion case and for β > 1 in the boson case, and moreover, in
the boson case the map M(β) : β ∈ (1,∞) −→ (0,∞) given by:

M(β) =
∫

R

1

βe
v2
2 − k

dv

is decreasing, surjective and invertible. In the fermion case, M(β) has the same
properties defined on β ∈ (0,∞).

Remark 2.2. Since the stationary states depend on M through β, we shall write
F∞,M (v) instead of F∞(v). This family of stationary states corresponds to the
classical Fermi-Dirac (k = −1) and Bose-Einstein (k = 1) distributions. Lemma
2.1 can be generalized to any dimension in the fermion case and to 2D in the boson
case. However, in the 3D boson case, the stationary solutions F∞,β(v) converge as
β → 1+ to an integrable singular solution, and thus we have the well-known critical
mass for Bose-Einstein equilibrium distributions.

Following similar ideas as in [2, 1, 3], we can define the entropy of f as

H(f) =
∫

R

[
v2

2
f + Φ(f)

]
dv (3)

where
Φ(f) = f log(f)− k(1 + kf) log(1 + kf) (4)

which acts as a Liapunov functional for the system, namely:

Proposition 2.3 (H-theorem). The functional H defined on the set of positive
integrable functions with given mass M attains its unique minimum at F∞,M (v).
Moreover, given any solution to (1) with initial data f0 of mass M , we have

H(F∞,M ) ≤ H(f(t)) ≤ H(f0) (5)

for all t ≥ 0.
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Proof.- We first remark that the entropy functional coincides with the one intro-
duced in [1] for the nonlinear diffusion equation

∂g

∂t
=

∂

∂x

{
g

∂

∂x
[x + h(g)]

}
(6)

for the function g(x, t), x ∈ R, t > 0, where

h(g) = log
(

g

1 + kg

)
. (7)

We leave the readers to check that the nonlinear diffusion defining previous equation
verifies all hypotheses needed [1, Proposition 5], that implies the first statement of
this proposition. Let us remark the minimizing character of the Fermi-Dirac and
Bose-Einstein distributions for this entropy is also a consequence of the results in
[5, 10]. Concerning the second part, we can compute the evolution of the entropy
functional along solutions getting

−Dk(f) :=
∂

∂t
H(f) = −

∫
R

f(1 + kf)
[
v +

∂

∂v
h(f)

]2

dv ≤ 0 (8)

where Dk(f) is by definition the entropy dissipation for equation (1).

Let us point out that the entropy dissipation for the nonlinear diffusion equation
(6) is given by

−D0(g) =
∂

∂t
H(g) = −

∫
R

g

[
x +

∂

∂x
h(g)

]2

dx.

The relation between the entropy dissipations for the solutions of the nonlinear
diffusion equation (6) and (1) will be the basis of our results.

3. A-priori estimates

In order to get decay rates towards equilibrium states for this problem, we sketch
the proof of some comparison properties between solutions of the equation that are
obtained by classical arguments, see [6] for instance.

Lemma 3.1. Let f be a solution of the Cauchy problem (1)-(2). If f0 ∈ L1(R),
then the L1-norm of f is non-increasing for t ≥ 0.

Proof.- Let us consider a regularized increasing approximation of the sign func-
tion sign ε(z), z ∈ R, and let us define the regularized approximation |f |ε(z) of
|f |(z) by the primitive of sign ε(f)(z). We now multiply Equation (1) by sign ε(z)
to obtain

d

dt

∫
R
|f |ε dv = −

∫
R

sign ′ε(f)|∂vf |2 dv +
∫

R
sign ε(f)∂v (vf(1 + kf)) dv. (9)

We integrate by parts the last term deducing

d

dt

∫
R
|f |ε dv = −

∫
R

sign ′ε(f)|∂vf |2 dv −
∫

R
v sign ′ε(f)f(1 + kf)∂vf dv.
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Since sign ′ε(f)f∂vf = ∂v[f sign ε(f)− |f |ε] and sign ′ε(f)f2∂vf = ∂v[f2 sign ε(f)−
f |f |ε], we obtain, after another integration by parts in the last term of the right-
hand side of Equation (9) that, in the limit ε → 0, such term vanishes, and deduce

d

dt

∫
R
|f | dv ≤ 0,

that is the L1-norm is non-increasing in time. �

A simple consequence of the previous lemma is given by the following corollary:

Corollary 3.2. Let f be a solution of the Cauchy problem (1)-(2), with initial
condition f0 ∈ L1(R). If f0 is non-negative a.e. in R, then f is also non-negative
a.e. in R for any t > 0.

Proof.- We consider the time evolution of f−ε (v, t) = (|f |ε − f)/2. By the con-
servation of mass in Equation (1) and the proof of Lemma 3.1, we have∫

R
|f |−ε dv ≤

∫
R
|f0|−ε dv + O(ε) ∀t > 0.

Taking the limit ε → 0, the thesis follows easily. �

The main arguments of Lemma 3.1 lead to comparison results between positive
solutions.

Lemma 3.3 (L1-contraction). Let f and g be two solutions of the Cauchy problem
(1)-(2), with with non-negative a.e. initial conditions f0 and g0 ∈ L1(R) respec-
tively. Then

‖f(v, t)− g(v, t)‖1 ≤ ‖f0(v)− g0(v)‖1
for all t > 0. Moreover, if f0(v) ≤ g0(v) a.e., then f(v, t) ≤ g(v, t) a.e. for all
t > 0.

Proof.- Since both f and g are solutions of Equation (1), we deduce

∂

∂t
(f − g) =

∂2

∂v2
(f − g) + ∂v (v(f − g)) + k∂v

(
v(f2 − g2)

)
.

We multiply this equation by sign ε(f−g) and integrate with respect to v ∈ R. The
same computations of Lemma 3.1 and the observation sign +

ε (f − g) = sign +
ε (f2−

g2) for positive solutions due to previous Corollary finishes the proof.
The order-preserving property of the equation is an immediate consequence of

the time evolution of the quantity

[f(v, t)− g(v, t)]−ε = |f(v, t)− g(v, t)|ε − (f − g).

Since the initial conditions are of class L1(R), from the conservation of mass and the
L1-contraction principle, we deduce immediately that the condition f0(v) ≤ g0(v)
a.e. in R implies that f(v, t) ≤ g(v, t) a.e. for all t > 0. �

As a consequence, we can compare solutions to the stationary states F∞,M .

Corollary 3.4. Let f be a solution of (1)-(2) with initial condition f0 such that
f0(v) ≤ F∞,M (v) a.e.. Then f(v, t) ≤ F∞,M (v) a.e. for all t > 0.
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4. Entropy Dissipation and Convergence Rates Towards Equilibria

Theorem 4.1. Let f be a solution for (1) and F∞,M be the stationary state of
the solution with the same mass M . In the fermion case, k = −1, we additionally
assume that the initial data f0 is below a given Fermi-Dirac distribution F∞,M∗ ,
i.e., f0 ≤ F∞,M∗ a.e. Then

H(f)−H(F∞,M ) ≤ (H(f0)−H(F∞,M ))e−2Ct (10)

for all t ≥ 0, where C = 1 for the boson case, k = 1, and C depends on M∗ in the
fermion case, k = −1.

Proof.- We leave the readers to check that h(f) given by (7) verifies in one
dimension the hypotheses of the Generalized Log-Sobolev Inequality [1, thm 17],
in the fermion case we must restrict f ∈ (0, 1). The Generalized Log-Sobolev
Inequality asserts in our case that

H(g)−H(F∞,M ) ≤ 1
2
D0(g) (11)

for all integrable positive g with mass M for which the right-hand side is well-
defined and finite. We can now compare the entropy dissipation Dk(f) of equation
(1) and the one D0(f) of equation (6) in each case:

• Bosons: convergence to Bose-Einstein distribution, k = 1:

D1(f) =
∫

R

(
f + f2

) [
v +

∂

∂v
h(f)

]2

dv ≥
∫

R
f

[
v +

∂

∂v
h(f)

]2

dv. (12)

• Fermions: convergence to Fermi-Dirac distribution, k = −1: Thanks to
Corollary 3.4 we have f(v, t) ≤ F∞,M∗(v) ≤ (β∗ + 1)−1 a.e. in R, and thus

D−1(f) =
∫

R
f(1− f)

[
v +

∂

∂v
h(f)

]2

dv ≥ R

∫
R

f

[
v +

∂

∂v
h(f)

]2

dv (13)

where R = 1− (β∗ + 1)−1.
Applying the Generalized Log-Sobolev Inequality (11) to the solution f(t) and

taking into account previous estimates, we conclude

H(f(t))−H(F∞,M ) ≤ (2C(k))−1Dk(f(t)) (14)

where C(k) = 1 if k = 1 and C(k) = R if k = −1. Finally, coming back to the
entropy evolution:

d

dt
[H(f(t))−H(F∞,M )] = −Dk(f(t)) ≤ −2C(k) [H(f(t))−H(F∞,M )] ,

and the result follows from Gronwall’s lemma.

Now, we can try to give more accurate convergence properties by reckoning rates
of decay for the entropy dissipation:

Dk(f) =
∫

R
f(1 + kf)ξ2 dv

where ξ = v + ∂vh(f). Computing the evolution of the dissipation of the entropy
in time, we deduce

DDk(f) =
d

dt
Dk(f) =

∫
R
(1 + 2kf)

∂f

∂t
ξ2 dv + 2

∫
R

f(1 + kf)ξ
∂ξ

∂t
dv = (I) + (II)
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Integrating (II) by parts, we obtain that

(II) = −2
∫

R

1
f(1 + kf)

(
∂

∂v
[f(1 + kf)ξ]

)2

dv

Using again integration by parts with (I) and repeating the process for the term
with ∂

∂v (1 + 2kf) we obtain

(I) =− 2
∫

R

(
f +

3
2
kf2 + f3

)
ξ2 ∂ξ

∂v
dv

=− 2
∫

R
ϕ1(f)ξ2 dv + 2

∫
R

ϕ′2(f)
(

∂f

∂v

)2

f(1 + kf)ξ2 dv

+ 4
∫

R
ϕ2(f)ξ

∂f

∂v

∂

∂v
[f(1 + kf)ξ] dv

where we have considered

ϕ1(f) = f +
3
2
kf2 + f3 and ϕ2(f) =

ϕ1(f)
(f(1 + kf))2

.

Finally, we have

DDk(f) = −2
∫

R
ϕ1(f)ξ2 dv − 2

∫
R
(B − ϕ2(f)A)2dv + 2

∫
R

[
ϕ2(f)2 + ϕ′2(f)

]
A2

where

A := ξ
∂f

∂v

√
f(1 + kf) and B :=

∂
∂v [f(1 + kf)ξ]√

f(1 + kf)
.

For k = 1, it is easy to show that
[
ϕ2(f)2 + ϕ′2(f)

]
≤ 0, so the last term in DDk(f)

is negative, and we get

DD1(f) ≤ −2
∫

R
ϕ1(f)ξ2 dv ≤ −2D1(f) (15)

since for k = 1, we have ϕ1(f) ≥ f(1 + f). We conclude:

Proposition 4.2 (Entropy Dissipation Decay for bosons). Let f be a solution for
(1) with k = 1, then, for all t ≥ 0,

D1(f(t)) ≤ D1(f0)e−2t.

Finally, we will remark the consequences of the entropy convergence on L1 spaces.
Due to mass conservation and positivity of the stationary states F∞,M , we have

H(f |F∞,M ) :=
∫

R
[Φ(f)− Φ(F∞,M )− Φ′(F∞,M )(f − F∞,M )] dv= H(f)−H(F∞,M ).

Corollary 4.3. Under the assumptions of Theorem 4.1, then

‖f(t)− F∞,M‖L1(R) ≤ C2(H(f0|F∞,M ))1/2e−Ct (16)

for all t ≥ 0, where C2 depends only on the mass M .

This is a consequence of a direct application of Taylor theorem to the relative
entropy H(f(t)|F∞,M ) obtaining:

H(f |F∞,M ) ≥ 1
2

∫
R

Φ′′(ξ(v, t))(f − F∞,M )2 dv ≥ 1
2

∫
S∞

Φ′′(ξ(v, t))(f − F∞,M )2 dv
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where ξ(v, t) lies on the interval between f(v, t) and F∞,M (v) and S∞ = {v ∈
R such that f(v, t) ≤ F∞,M (v)}. Now, a direct Cauchy-Schwartz inequality gives

‖f − F∞,M‖2L1(S∞) ≤
(∫

S∞

1
Φ′′(ξ(v, t))

dv

) (∫
S∞

Φ′′(ξ(v, t))(f − F∞,M )2 dv

)
≤ 2γ

(∫
S∞

F∞,M (v) dv

)
H(f |F∞,M ) ≤ 2γMH(f |F∞,M ) (17)

where γ = 1+(β(M)−1)−1 for bosons and γ = 1 for fermions. Taking into account
that f(v, t) and F∞,M (v) have equal mass, then

‖f − F∞,M‖L1(R) = 2‖f − F∞,M‖L1(S∞). (18)

Corollary 4.3 is obtained putting together (17) and (18).
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