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Abstract

We propose a kinetic model which describes a mixture of reactive gases, in which a unique continuous internal energy
parameter is present. This model enables to recover at the level of its hydrodynamical limit the Euler equations of a mixture of
reactive polytropic gases.

0 2004 Elsevier SAS. All rights reserved.

1. Introduction

In this paper we propose a kinetic model of Boltzmann typeafmixture of reactive gasesh@& originalityof our model is
that it satisfies the following requirements:

1. we wish to introducenly oneinternal energy parameter which has moreover todsginuoug(that is, not discrete);
2. we wish to be able to write down precisely the kernels, and to rigorously prove the conservations laws and the H-theorem;
3. we wish to be able to take into account any chemical reversible reactions of type

A1+ Ar= A3+ Ay,

in which the mass of thd; may all be different, and which may be either endothermic or exothermic;

4. when looking at the hydrodynamical limit (that is, the limit when the Knudsen number goes to 0), we wish to be able
to relate (in a simple and computable way) the cross sections at the Boltzmann level with the macroscopic parameters of
the corresponding reactive Euler equations (that is, for example, the energy law of each specie, or the dependence of the
reaction rate with respect to temperature). In particular, &etwo be able to recover the energy law of polytropic gases.

Let us comment briefly on these requirements: the adjunction of only one parameter of internal energy which is moreover
continuous will ensure that the numerical computations (under the form of particle methods) remain tractable (no need to take
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into account a large number of discrete energy levels). This is at variance with classical models such as those presented in [1-3]
and [4], and constitutes the main originality of our work. The second and fourth requirements ensure that (at least at the formal
level) the link between the microscopic and macroscopic description is rigorous. In particular, thanks to the fourth requirement,
one has the possllly to couple numerical codes of both types (partiotethods for the kinetic part, finite volumes for the
Euler part). Finally, it is clear that one should be able to treat at least chemical reactions as described in the third requirement.
Our model certainly can be extended to more complicated d#situations, but in order to keep a readable paper, we shall
not investigate in this direction. For very general models, cf. [8].

Our model is presented in the framework of the so-called Borgnakke—Larsen procedure (cf. [5]), and is a generalization of
the models (which do not include chemical reactions) already introduced in [6] and [7].

For each specid; (i =1, ..., 4) of the mixture, we introduce mumber density functiori;, which depends on the tinme
the position (in space) in RV (of courseN = 3 in the applications, but we shall kedpin the sequel so that it is possible to
see the dependence of the kernels with respect to the dimension), the vel@oit? ), but also arinternal energyl, which
will vary in R4 (that is, as required, one unigue contbus parameter). This lagtiantity will enable to gegeneral energy laws
at the level of the Euler equation.

If we denote byz; (x, 1) dx thenumber of particlesf the specie at timer in an infinitesimal region of thicknessc&entered
in x, the physical meaning of the densifyis the following:

+o0
ni(t,X)=/ / fi(t,x, v, Dg; (I)dvdl, (1)
RV O

whereg; (1) dI is a nonnegative measure which is a parameter of the model (typically, one cap; tdke- 1% for some
a; = 0).

As we shall see, the introduction of the functigns/) is crucial, since it will permit to obtain a mass action law and a set
of energy laws that are typical of polyatomic (polytropic) gases.

The paper is organized as follows: in Section 2, we write dtiverkernels corresponding tolisions between molecules of
the same specie or of different species, but without chemical reactions. These kernels are close to that described in [6] and [7].
One of the differences (with the kernels presented in these papers) is that we take into account the mass of the molecules (which
may be different for the different species) and the non-symmetric aspect of the bi-species kernel.

Then, in Section 3, we shall explain how to modify the previous description when chemical reactions are allowed. The main
difficulty here is to include in the model the energy which is dissipated when a chemical reaction occurs.

Finally, in Section 4, we link our kinetic model with the fluid-dynamic (Euler) system corresponding to a mechanical (but
not chemical) equilibrium.

2. Nonreactive collision kernels

We consider the (nonreactive) collisibetween two molecules of specieand j, with massn; andm ;, velocity v anduy,
and internal energy and I, respectively. After this collision, the molecules belong to the same specie, they still havemass
andmj, but their velocities and internal energies have changed, and are now denatedyl’ and I, (as a matter of fact,
the kernel that we shall write use the in(&nd traditional) converan: the primed qudities correspond to the state of the
molecules before the collision).

The conservations of momentum and total energy write:

miv’—l—mjv;:m,-v—l—mjv*, (2)

1 1 1 1

Smi |2+ 3 WP+ 1+ 1, = Smi ]2 + 3 losl? + 1 + . (3)
Since we shall systematically work in the reference frame of the center of mass, we introduce the reduced mass

The Borgnakke—Larsen procedure, which we shall use throughout this paper, is one of the simplest (and most natural) way
to describe the evolution of the different energies (kinetieriml) in the process of collision (from the mathematical point of
view, it can also be seen as a simple way of parametrizing equations (2) and (3)). The idea of this procedure can be described
as follows: one first computes the total eneeggf the incoming molecules in the center of mass reference frame (thanks to
Egs. (2) and (3), this is also the total energy of the outgoing molecules in the center of mass reference frame):

1 1
e = sijlv = vl + 1+ Lo= Syl =l P14 1 ()
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Then, a proportion R (with R € [0, 1]) of this energy is attributed to the internal energy of the outgoing molecules, that is
I'+1,=(1-Re. (6)

This internal energy is itself distributed between the two outgoing molecules: we introduce therefore a para@téf in
such a way that

I'=r(1= R)s, I,=1-r)(1-R)e. @)
The kinetic energy of the outgoing molecules (in the center of mass reference frame) is now
1
Euijlv/—v;|2=R8- (8)
This last equation can be parametrized by a unitary vestors™ —1:
2R —
v’—v;= _STw[w]’ (9)
Hij [v — vyl
where

Tpx=x—2w-x)w

is the symmetry with respect tol-. Coming back in the laboratory refexnframe, we end up with the formulas:

;U uy m; 2Re [v—v*] (10)
v = — 1,

mi +m; mi+mj\ i “LIv—vsl
, mpvtmju m; 2RsT [ v — Uy ] (11)
V, = —_ - .
T omi+mj mi+mj\ wij O — sl

Finally, we introduce (for the sake of symmetry: this will help in the computations of the Jacobian determinants) the extra
parameters

1 _ I
R/=§Mij|v—v*|2<9 Loor= T 12)

The main properties of the Borgnakke—Larsen transformations (5)—-(12) are collected in the following lemma:

Lemma 1. Let us defingfor a givenw € SV¥~1) the transformation
S v L L r R) > (00, 1 I R,

by formulas(5)-(12)

Thens;] is a(one-to-onginvolution of the seE = {(v, v4) € RN xRN 1,1, >0;r, R €[0, 1]}, and its Jacobian determi-
nantJ (defined here and in all this paper as the absolute value of the determinant of the Jacobian matrix of the transfprmation
is given by

C1-R (W - \N? RV 1la-p)
C1-F ( ) (RN - R

[V — vyl

Proof. Note first that the inversion (ﬂé{ leads to the following formulas:

1
8=§Mij|v/—v;|2+1/+1fw (13)
_miv/—i—mjvf|< m; 2R¢ [v/—v;] (14)
omimy mimy\ o L =il ]
m;v' +m ;v . 2R I
Uy = ! J 7+ — e ¢ a)|: v, v;k i|, (15)
mi +m; mi +mj\ Wij [v" — vyl
I=r'"(1—Re, Li=1-rYA-R)s, (16)
e S (17)
2" '+ 1
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As a consequence, the transformatﬁﬁh is one to one and ont&.
In order to compute its Jacobian determinant, we shall decompose it in a chain of elementary changes of variables.
o First, we consider the passage to the center of mass reference frame. Since the transformation
A1 (v, v, 1, Iy, 1, R) — (g,G, I, I, 1, R),
with g = v — v, andG = (m;v +mjvy)/(m; +mj), has a Jacobian determinant equal to 1, as well as the transformation
B1:(g, G\ I, I,/ R (W v, I I,,r' R,
with ¢’ =v" — v}, andG’ = (m;v" +m jv})/(m; +m ) = G, we are led to study the transformation
C1:(g, I, I,r, O~ (¢, I, I,,r', R).
o We now pass to spherical coordinates for the relative velogjt@sdg’. We perform therefore the transformations
Az:(g. 1. Le.r, R~ (Igl. g/Igl. 1. I, r, R)
and
Ba: (18", &' /18", 1 v R ) > (8 1 1, R,
and study the transformation
C2:(lgl /18l 1. In.r. R) = (181, 8"/18"1. 1. L. 1 R'),

taking into account the Jacobian determinafty —1 /¢ =1 coming fromA5 and B.
o In the next step, we consider the transformation

A3:(lgl,g/1gl, I, I, 7, R) = (Igl. &/1gl. I, &, 1, R),

which thanks to (5) has a Jacobian determinant equal to 1. As a consequence, we only have to study the Jacobian determi-
nant of the transformation

C3:(1gl. g/Igl. Ie.r,R) — (I1g'1.8'/18'). 1" I, ¥ R).

In the sequel, we will denote hy[-] the Jacobian determinant of a transformation. We use Egs. (5), (9) and (12), in order
to compute the Jacobian determinantaf

2R I el2
J[(Igl,ﬁ,l,s,r,R>n—>< —8,Tw[i],r(l—R)s,(l—r)(l—R)g’ . ’I’Ll./|g| )]
g1 Wij gl e —wijlgle/2 2

SinceT, is a symmetry, the previous quantity is equal to

2
2R I ..
f[(lgl’l,&r’R)H< £ rd= R)e, - r)(1— Rye, L ﬂ
Hij e—pijlgle/2° 2
1 2R 1el2
- ﬁl[(lgl,e,r, R) ( £ =Ry, 1—r)1- R, M)]
8_I’Lij|g| /2 Mij 2¢

and, by denoting = Re, itis also equal to

Hijlgl 2
(%)J[(s,r, p) > ( L e =), A=)~ p))].
& — pijlgle/2 Hij
If we call w = ¢ — p, we get for the Jacobian @f3 the formula:
(%)J{(w,r,p)n% < 2—p,rw,(1—r)w>]
e—uijlgle/2 Hij

_ (sl [ 2 1 )= S8l w
_<(1—R’)s o 2ﬁ>J[(w,r)H(rw,(l w)]=./2u;j 1—R)e 2p

_1-R gl
I-R gl
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Taking into account the term coming from the Jacobian determinant of the spherical change of variables, we finally get

1-R (v - \N2 RN21la_p)
1— R/ - (R/)N/Zfl(l_ R/)’

JISa 1= -
- Ux

and this ends the proof of the lemman

Note that whenn; = m ;, the Borgnakke—-Larsen equations (5)—(12) reduce to

m,- 2
s=7|v—v*| + 1+ Iy,

v+ v Re v— v
U/= *+ _Ta) * s
2 m; v — vy

v

;U Re [v—v*]

- = 18
x > ] R e— (18)
I'=r(1—R)e, I,=(1-r)(1-R)e,

m; _ 1
R/=TI|U—U*|€ 1, r/=m,

which are the equations of [6] (Whem;, = 1).

We now introduce the Boltzmann kernels corresponding to the previous transformations. We begin with the kernel corre-
sponding to the collisions betweemlecules of the same species:

Definition 1. The (nonreactive) mono-speciellégion kernel for the specieis given by

oM(f. Hw, D= / / [fQ I fQL 1) = f, 1) f(vs, 1) ]
2 peSN-1
1
@i (1)

where2 = {vx e RV; I, > 0;r, R [0, 1]}, v/, I, v}, I, are defined by Egs. (5)—(12) (or the simplified formulation (18)), and
the cross sectionB; are supposed to satisfy the (noceversibility) assumptions:

X Bi (v, i, I, I, R, 1, @) (L — R)[v — vy 2N

dvy dI dr dR do, (29)

Bi(v,v*,1,1*,R,r,w)=B,’(v*,v,1*,1,R,1—r,w),

(20)
Bi(v,vs, I, I, R, r,0) = B; V', v, I, I, R, ¥/, w).

The standard conservation properties of this kernel are consequences of the following weak formulation:

Lemma2. Lety : RN x [0, +00) — R be a function such that the weak formulation
/ /Q,m(f,f)(v,l)tlf(v,1)<ﬂi(1)d1dv
veRN 120

makes sense. Then

/ /Q?‘(f,f)(v,l)w(v,nwi(l)dldv

veRNI>0
1
= | [] | benrenm-rense.)
veRNI 208 pesN-1
X [P 1) + Y (i, 1) = ¥ (v, 1) — ¥ (v, 1))
x Bi (v, vg, I, Iy, R, 7, ) (1 — R)|v — v|>~" dv dv, dI dI dr dR do. (21)
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Proof. We use the changes of variables (witke SV 1 fixed):

W, v, I, I, R, r) = (vx, v, I, I, R, 1 —71)

W, v, I I, R,7) > V0, T T, R Y. O
* *

Note that this weak formulation is nothing but a rewriting (with slightly different notations and with the addition of the

explicit dependence on the masses) of the main result of [7].

2
As a consequence, considerifigv, 1) = 1, m; v, m; ‘—vz‘— +1 (fork=1,..., N, vy denoting thek-th component ob),

we get the conservation of the number of molecules of specemomentum, and of total (kinetie internal) energy (also for
each specie):

1
/ / OM(f, Hw, D | Mivk) | (I)dIdv=0. (22)
veRNI1>0 m; ‘—UZE +1

We now write down the collision kernel between molecules of different species (thiatig), but still without chemical
reactions.

Definition 2. The (nonreactive) bi-specieslision kernel for the speciesand j, with i # j, is given by

0% (f oW, D)= f f [f O 18 W, 1) — f (v, Dg (s, 14)]
£2 pesN-1

1

@i (1)

X Bij (v, vs, I, I, R, r,0)(1— R)|v — vy |2~V dvy dI,. dr dR do, (23)

where 2 = {vx € RN I, >0,r,Re[0,1]}, v, I, v, I, are defined by Egs. (5)—(12) (with the indiceg corresponding
to S%. In other words, when we writhj,., it means that we exchange the masseandm ; in Egs. (5)-(12)), and the cross
sectionsB;; are supposed to satisfy the (maceversibility) assumptions:

Bij(,vs, I, Ix, R, r, ) = Bjj (v&, v, Is, [, R, 1 — 1, w),

24
Bij(v,vs, I, Is, R, 1, 0) = Bij(v/, v, I IR 1, ). @)
Then, the weak formulation of the kernel (23) is given by the lemma:
Lemma3. Lety, : RN x [0, +00) — R be functions such that the formulas
f 0, (£, ), DY (v, D (1) dl dv,
veRNI2>0
and
/Qg,-,-(g,f)(v,I)l/fj(v,l)fpj(l)dldv,
veRNI1>0
make sense. Then, on one hand,
f 08, (f, ), DY (v, D (1) dI dv
veRNI1>0
1
=3 / / / / [f(v/, 1NgWi, I}) — f(v, Dg(vs, 1*)][1//,'(1/, 1y = ¥;(v, 1)]
2yeRNI20pesN-1
X Bij (v, vg, I, I, R, 1, 0)(1 = R)|v — v*lz_N dv dvy dI dI, dr dR dw, (25)

and on the other hand
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/ / 0P, (. ) (v, i (v, i (1) Al v + / / 08, (¢, (v, DY (v, Do (1)l o

veRNI>0 veRNI>0

l / / / /
= -3 v, 8(Vy, 1) — v, 8(Ux, Ix
2/// / [fQ 18, 1) = f(v, Dg(vs, 1x)]

2yeRNI200pesN-1
X (Wi 1) 4+ (W, ) = i (0, 1) = (vs, 1))
X Bjj (v, vs, I, I, R, 7, 0)(1— R)|v — vy |>~N dv v, dI dI, dr dR dov. (26)
Proof. In order to get formula (25), it is enough to use the change of variables
W, v, [, L, R, 1) > (0, I 1L, R ).
We now turn to formula (26). We consider the second integral in the left-hand side of Eq. (26). By expliciting the primed

variables (that is, by using Egs. (10), (11) and (7)), we obtain

fQk;,-,-(g,f)(v,I)w,(v,nwja)dldv
veRNI1>0

m;v + n; v m; 2Re U — Ux
_ gl — + —T, ,r(1—R)e
mi +m; mi+mj\ i [V — vyl

veRN 12082 pesN-1

mi+ﬁn/ m;+n” Mij

(mjv + m; vy m;j 2Rs w[ﬂ] (1—r)1— R)g) — g, ) f(vs, 1*)]¢j(v, i3]

[v — vy
X Bji(v,vi, I, Iy, R, 7, @) (1 — R) v — v4|2~N dv dv, d1 dI dr dR do.
Then, by the change of variables (withe SV 1 fixed)
(W, ve, I, I, R, r) > (vs,v, I4, [, R, 1 —r),
the kernel takes the form

/ngi(g»f)(v,I)I/Jj(v,l)(ﬂj(l)dldv
veRNI2>0

m;vsx +m;v m; 2Re U — Uy
= g - —Ty| —— |\ A=A =R
mj +m; mj+m;j\ pij v — vy

veRNI 2082 pesN-1

m;vy +m;v m; 2R —
Xf( JUx i + j & w|: v Ux
mr+mj mi+n” Mij

]r(l - R)8> — 8y, Ii) f (v, 1)}#/(11*, Iy)

[v — vy]
X Bji(s, v, Ix, [, R, 1 =1, 0)(1 = R)|v — v*|2_N dv dv, dI dI,. dr dR dw.
The proposition is then obtained bising the change of variables
W, vi, I, I, Ror) > 0 0, I L, RGP O
As a consequence, considerifig(v, I) = 1 in formula (25), we get the conservation of the number of molecules of specie
f 0, (s, A, De; (1) dl dv=0. @7)
veRNI2>0
lv]?

Considering themy; (v, 1) = m;v), m; 5 + I (for k =1,..., N) in formula (26), we get the conservation of the momentum
and total (kinetic + internal) energy when all species are considered together:
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m; v(k)

f 0, (£, 0, 1) (
m

)(p,-([) d/ dv
veRN 120

2
i+
m (k)

+ / / Qg’.,.xg,f)(v,n(

)(pj(l)dldvzo. (28)
veRNI2>0

2
myly 41

We conclude this section by a brief discussion relative to the assumption on the cross sgctinds®;;. We observe that
the requirement that these quantities are invariant when, I, I, r, R becomev’, v}, I’, I, ', R" is automatically satisfied
when they depend uponatfollowing quantitiese, S R|v — v«|? (because it can also be writtéR'z), S5 R|(v — v4) - w]?
(because it can still be writteRR’¢), and(/ + I.)(1 — R) (because it can also be writt¢h— R)(1— R')e).

3. Scatteringin presence of chemical reactions

Let us now consider the possibility for the molecules of the gas mixture to react with themselves, according to:
A1+ Ay = A3+ Ay. (29)

The mass is conserved during a collision; we denotéfby: m1 + mo = m3 + my its constant value.

Moreover, we define; = m; /M (so thatu;; = (m;m;)/M). We get the relatiom; + ro = r3 +r4 = 1. Finally we denote
by E > 0 the energy which is dissipated by (or which has to be supplied to) the system when we pass frota to A3+ A4.

This means that we consider the reaction (29) from the left to the right as an endothermic reaction, whereas the inverse one
is an exothermic reaction.

The conservation laws of momentum and energy are:

mqv1 + movp = m3v3 + mquy,

1
Emlv% + Emzu§ +h+Ip= Em3u§ + Em4u§1 +I3+14+E.

The passage to the center of mass reference frame is made thanks to the equation:

(30)

1 1 1 1
Eerivi +rjvj|2+ E/L,'jlv,' - vj|2= Em;viz-i- Em/vjz"

so that equation (30) becomes

1 1
El‘-lzh’l — P+ R+ = 5#34lv3 —va+ I3+ 14+ E.

We now introduce the energy
1 > E 1 > E
e=spr2vi—vA "+ hh+— 5 =sp3alva—wl "+ I3+ 14+
2 2 2 2
and definevs, I3, v4 and 1, in function ofvy, I1, vo, I> and of the parameters R (in [0, 1]) andw € SV 1 by:

2 E\L/2 _
V3 =rqv1 +rovp —14 —(RS — —) Tw[u], (31)
134 6 lvg — vl
2 EN\1/2 _
vg=riv1 +rovp+r3 —(Rs — —) Tw[u], (32)
134 6 lvy — va|

E
I3=(1-Ryre -4, (33)
E
la=(1-R)(A-re - ¢ (34)
Moreover, we introduce for the sake of symmetry the parameters
1/ p12 2 E
/ e —_ J— RN —
R_s< 5 lvg — vo| 6 ) (35)
, Nh—E/6 11— E/6

r = = . 36
e1—R)  &—piovi—vol2/2+E/6 (36)
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The previous equations can be written backwards, and so become:

2 EN\1/2 _

V1 =r3v3 +r4v4 —rp —(R’e—i——) Tw[u], (37)
K12 6 lvg — v4]
2 E\Y? -

V2 =r3v3+r4v4+ry —(R/s—l——) Tw[u], (38)
n12 6 |vg — v4l

E
IL=Q-R)e+ = (39)
/ / E
L=Q1-R)A-r)e+ =, (40)
13 2, E
R—8(2|v3 v4| +6 , (41)
o 3TE/S (42)
e(1—R)
In the sequel, we shall denote the application corresponding to the previous change of variables (that is, to Egs. (31)—(36)) by
$12: (v, v2. 11, 2.7, R) > (v3.v4. 13, 14,7 R').

In the following lemma, we prove the main properties of this transformation.

Lemma 4. The applicationS12 is a one-to-one map from the set

F={(1,v) eRYN xRN, 11,1, > E/6;r, R €[0,1]; Re > E/6;
x pu1olvy — val?/2> E/6; (L— Ryre > E/6; (L— R)(1—r)e > E/6)
onto
G= {(vg, vg4) € RN x RN; I3,14>0; ', R’ €0, 1]},

and its Jacobian determinant is given by
7 (mam2 1— R\ (lvz—va] \" 72
_<m3m4)<1—R’)<lv1—v2|> '
Proof. In order to prove the first part of the lemma, we observe §atis well defined or¥ sinceRe > E /6.

Moreover,I3 and 4 are nonnegative sindd — R)re > E/6 and(1— R)(1—r)e > E /6.

Finally 0< R’ < 1 sinceuqolvi — v2|2/2> E/6, I1, I > E/6, and 0< r' < 1 sincely > E/6, & — u1olvi — v2|2/2 +
E/6=(I1—E/6)+ (I - E/6) > 0.

Conversely, if(vs, va, I3, 11, 7', R') € G, we deduce, by using formulas (37)-(42), thigt I» > E/6, u1olvy — vo|2/2 =
R'e + E/6> E/6, Re = 34 vz — v4|2/2 +E/62E/6,r(1—R)e=1I3+ E/6> E/6, and finally(1 —r)(1 — R)e =
I4+E/6> E/6.

The fact thats12 is one-to-one directly follows from the inversion formulas (37)—(42).

The last part of the proof is based on a series of changes of variables, and is very similar to the proof of Lemma 1.
In what follows, we shall use the following notation:

M12 M34
g§= T(Ul—vz), g = T(Us—v4)~

We recall moreover that the transformations of variablaitvare used here refer to £q31)—(36) ad (37)—(42).
The Jacobian determinant of the transformaifféA can be computed as follows:

ni2
1434

By representing andg’ in spherical coordinates, we get the Jacobian determinant of the original transformation:

N/2 ;1\ N—-1
(w> <M> ‘I[(lg|7 Il, Iz,r, R) — (|g/|713714’ r/, R/)]

N/2
J[(1,v2, 11, 12,7, R) = (v3,v4, I3, I3, 7', R') | = ( ) J[(g I, 12,7, R) = (¢, 13, 14, 1", R)].

134 1]
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This means that we are led to compute the Jacobian determinant of the following transformation:

E\ Y2 E E NL-E6 1(/ , E
I, I, r, R ((Re— 2 1-Ryre——,(1-R(1—r)e— —, — =1~ = -=)).
(Igl, I1, I2. 7, R) (( e 6) ( e — 5 ( Y(L—r)e 6,8_|g|2+E/6,8<|g| 6))

Itis equal to

el [ten R~ (( —5>1/2 a-rre-g.a-Ra-ne- g (162~ ¢ )]
TR E/ gl,e,r, £- % , re— & re—5. -\l 5 .

Finally, we follow the same steps as in Lemma 1. We compute

E\Y? E E1l/ , E
J|:(|g|,8»r,R)'—><(R8—E> ,(1—R)r8—E,(l—R)(l—r)s—g,g(Lgl —€>>]
ey _R (( E)l/z( - Ee—pa-n-= l( 2 E))
=¢ [(Igl,s,r,p— g) p=g) E-pr-ge-pl-n-=-(lg°-¢ ]

E\Y/2 E E
=2|gll[(8,r,p)r—><<p—g> ,(8—p)r—E,(s—p)(l—r)—gﬂ.

Using the change of variables (of Jacobiam 3)p = w we observe that the quantity above is equagtoo — E/6)_1/2(s —p).
Collecting together all the computations, we finally see that

J[5%2 = (ﬂ)Nﬁ('g_/')Nl l8l <p _ E)l/z(g —p
w34 I8l e—|gl2+E/6 6 :

Using the original variables, this means

J[512] = (a2 1- R\ (lvg—vg\" 2
m3mg ) \1—R' ) \ |vy — vo ’

and the last part of the lemma is proverta

We now write down the collision kernels (one for each specig)esponding to the chemical reaction considered here. We
first define some sets:

112 E
Fisace= 11, I2, Re, Tlv — %, (1= Ryre, A= RY(L—r)e > 5 }
112

2
Freact= 11, 11, Re,

S5l - v1]?, (L= Ryre, 1 — R)(1—r)e > %}

Frseact= I4>0; vy eRY; O<r’,R’<1},

Freact={13>0; v3eR"; Ogr/,R’gl},

and the following Heaviside functions:

1 whent € Flope
0 otherwise.
Finally, we define the following quantities:

Hi(§)={

1 2 E
e1=gu12v -2+ I+ —

2 2’
€ L | P+I+1 E
== v—v - =,
2= 5H12 1 15
1 > E
£3=uzalv —val"+ 1+ Iat <.

1 5 E
4= puz4lv —v3l"+ 1+ I3+ <.
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Definition 3. We define the reactive collision kernels by

N _
0w, 1)—/ / Hl[('"m) fs(r1v+rzvz—r4 i<R81—5>Tw[” "2],<1—R>rsl—5>
m3mg 134 6 [v— v 6

210eSN-1

2 E v — E
X fa\riv+rova+r3 | —(Re1— < | Tp| —— [ A-R)QA—r)e1 — <
134 6 [v— 2| 6

— f1(v, I)fz(vz,lz)i|BreaCt(v vo, 1,12, R, 7, a))(mlmz)l va v |2 N ol )) dvy dI> dr dR dw,
reac mqmo N E E
t(v 1) = / / ( ) f3 (rlvl +rov—rg <R82 — ,(L—R)rep — —)
manig 6 |l) - 6

220eSN-1

( : ( E) [ o ] E)
X fal rivi+rov+r3 Rey — — | Ty A-R)(A—-r)epg— —=
134 6

6 lv1 — vl
— f1(v1, I) f2(v, I)i|BreaCt(v1, v, 11,1, R,r, a))(mlmz)l_val |2 i a )) dv1 dI1dr dR dw,
¥2
N _
react(v = / / [(m3m4> fl(r3v+r4v4—r2 i(R’es-i-E)Tw[ e ],(1—R/)r’83+£>
mymz H12 6 [v — vaq 6

23wesN-1

2 E E
sz(r3v+r4v4+r1 —(R’83+—>Tw|:—v4] 1- R)(l—r)83+ )
H12 6 v —vq] 6

— f3(v, I) fa(va, 14)]3“9""%, va. 1. 14, R’ ¥, ) (mamg) N v — vg|>~N d (R) ) dvg di dr’ dR’ do,
31
Qreact( = / / H4[<m3m4> f1<r3v3+r4v—r2 i(R’u—i-E)Tw[ - ],(1—R/)r/84+£>
mymy H12 6 lvz — v 6

R40eSN-1

2 E v3 — E
x fa\ravz+rav+ry R'eg+ — ,(1-RNYA-rNes+ =
"12 6/) “Llvs— | 6

— f3(v3, I3) fa(v, 1)]BfeaCW(U3,v,13,1,R/,r/,w)(m3m4)1*N|v3 % N(¢4( )) dvgdi3 dr’ dR’ do,
where
21={veRY; L >0;r,Re[0,1]},
2;={v1eRY; 13 >0;r,Re[0,1]},
23= {v4e]R 14>0;r', R €[0,1]},
24={v3eR"; 13> 0,7/, R €[0,1]}.

As in the previous section, we now write down the wéatn of the kernel. The following proposition holds:

Lemmab. Lety; ‘RN x [0, +00) — R be a function such that for all=1, . .., 4, the formula

[ [ et v naara
veRNI2>0
makes sense.
Then, if
BI®Nv1, v, 11, I, R, 7, ) = BY®N w1, vp, 1, Ip, R, 1, @) = BY N3, v4, I3, 14. R, ¥, )

= BN v3, v4. I3, 14, R, 7, w), (43)
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where the different variables have the same meaning as in forr{@das(36) then

4
> [ [ et nvie nemadrd
=L, crN1>0
- f f [m3 N faua, Iymy ™ fa(va. 1a) —m7™ fr(vr. Iymy ™ fa(v. 1))
F{x)ESN71
x [¥3(v3, I3) + Ya(va, I4) — Y1 (v1, I1) — Yr2(v2, I2)]
X B;eacr(vl, v, I1, I, R, r, w)mimo(1 — R)|vq — v2|2_N dvq dvp di1 dl> dr dR dw. (44)

Proof. Let us consider first
2
> [ [ o= e numdd.
=1 RNI>0

SinceB[®aNvq, v, I, I, R, r, @) = B3N v1, va, I, I, R, r, ), this is equal to
mimy N 2 E V] — V2 E
f3l rivy +rovo —rg,/— | Re — Tp| —=|,(1—R)re —
m3maq w34 6 lvg —val |’ 6
F pesN-1

2 E
X f4(r1v1 +rovp+r3 [ — (Rs - _>Tw|:7i| 1-R)(A-r)e— —) — f1(v1, I1) fo(vo, 12)]
34 6 [v1 — V2| 6

x [Y1(v1, 1) + Y2(v2, 1B Ny, vp, I, I, R, 7, @) (mam) Y™ (1 — R)|vg — v21?~N dvy dvpdiy dldr dR do.

SinceBgeaC‘(vg, va, I3, 14, R, 1, 0) = Bfac'(v3, va, I3, 14, R', ', w), a similar formulation also holds for the two other terms
in the left-hand side of Eq. (44):

4
> f f 072w, Iy (v, De; (1) dI dv
=3, RNI>0
N _
/ / [<m3m4) f1<r3v3+r4v4—r2 i(R’84—|— E)Tw[siv],(l—R/)r/m—i—E)
A mima n12 6 vz — val 6
weS

E

E
E)%[*] A-RYA—rea+ — )—fs(v3,13)f4(v,14)]
[v3 — v4 6

x [¥3(v3. I3) + Va(va. 1) BE3 N, vg. I3, 14, R . v’ ) (mamg) ™V [vg — vg >N (1 - R))
x dvzdvg dizdl4 dr’ dR’ dow.

2
X f2 <r3v3 +rqvg+ry | — (R’84 +
Hniz

If in the last formula, we use the change of variables defined by (31)—(36) and (37)—(42), then thanks to the symmetry
BN vy, v, 11, I2, R. 7, 0) = BF?Nv3,v4, I3, 14, R .1/, )
and Lemma 4, we obtain:

4
> / / 01w, Ny (v, N; (1 dI dv
=3, (RNI>0

/ / [(ms 4) f1(v1,11)f2(v2,12)—fs(vs,13)f4(v,1)][1/;3(v3,13)+¢4(v4,[4)]

F pesh-1
% B;eact(vl, vo, I, In, R, r, @) (mama) ~N (mim2) vy — v2)2~N (1 — R) dvy dvy diy dip dr dR doo.

This concludes the proof of the lemmac
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If we choose the test functiong; = 1, ¥; = m; andy; =m; v, in the weak form of the reactive kernels, we obtain the
conservation of total number of molecules, total mass and total momentum:

1

4

Z/ /Qgeacku,n( m; )w,-(ndmu:o. (45)
=L, crNI>0 m;v()

Note that the total energy is not conserved when the reactive collisions are present.

4. Thehydrodynamical limit
4.1. The mechanical anchemical equilibria

In this subsection, we write down the H-theorems corresponding to the kernels defined earlier.
We begin with the nonreactive kernels. We shall denote;lthe Laplace transform af; (as a function of 1T), that is

+00
qi(T) = / gi(he /T dr.
0
Proposition 1. We suppose that the cross sectidhs(i = 1,...,4) and B;; (i # j) are strictly positive a.e., as well as the

functionsg; (i =1,...,4).
First part of the H-theoremFor all f; = f;(v,I) >0 (i =1, ..., 4) such that the followingjuantities are defined, one has

“+00

4
(v, 1
2 / /Q (i 7). ’)'Og(f( )><p,(1>d di
:veRN 0 i
(v, 1
+ZZ / / Sz;(fl»f])(v 1)|Og<f( )><p,(1)dvd1
i=1j#i,cry 0 m!

Second part of the H-theorerloreover, the three following properties are equivalent

e Foralli=1,...,4,j#i,veRN >0,
QI (fi [, =0, Q% (fi, Fw. ) =0;

Ao fiw, D
Z / /QT(fi,ﬂ)(v,I)lOg<’ )ml)d dr
:veRN 0 l
(v, 1
+ZZ / / 0L, (i Fp, 1>Iog<f( )><p,(1)d dr =0
i=1j#i,crn 0 mi

e There exists; >0(i=1,...,4),u e RN andT > 0 such that

N2
(mi ) / e—%(7’|v—u|2+1). (46)

(v, [
fitv, ) = q(T)

Proof. We begin with the first part of the H-theorem. We use Lemmas 2 andg;far, ) = Iog(%) and observe that
ViV, 1)+ W./(vfk, L) =i, 1) - Vi (s, I) = log(fi (v, 1/)fj(vf.<, 1)) —log( fi (v, D fjv, D),
so that

(i I 04 1) = fiw. D fj . D) (Wi 1) + ¥, 1)) — i (. 1) — ¥ (ve, 14)) >0
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We now turn to the second part of the H-theorem.

It is easy and classical to show that the first property implies the second one, and that the third one implies the first one.
Suppose now that the second property hoRisce the term corresponding to thdlistons between molecules of the same
specie (and in fact each part of this term corresponding to a given specie) is equal to 0, we know (cf. [6]) that there exists
n; >0,u; e RN andT; >0 (i =1,...,4) such that

. CNN/2 _my 2

n; m; — 7 (5 lv—ui|“+1)

fitv, I) = (—) e Tiv2 ) (47)
’ qi(Ty) \ 2 T;

Then, it remains to show that = u; and7; =T; forall i # j.
Using the terms corresponding to thdlisions between the molecules of speciesnd j (i # j), we see that (still when

i # )
i@ 1) fji, 1) = fi(v, D f (v, L), (48)

with v/, v, I’ and I, given by (5)—(12).
We plug (47) in formula (48). We get (for a.e. vy, I, I, r, R)

2

1 [ m;|miv+m;vs m; 2Re v — Uk
R w —u;| +r(1—R)e
T;| 2 mj +m; mp+mj\ puij [v — vy
1[m;|mjv+m;v : 2R _ 2
_|__|:_/ i jUx om; ke w[&}_“j +(1_r)(1_R)8}
Tj 2 mj +m; mp+mj\ Wij [V — vy
1[m; 1[m;
=E[7’|v—ui|2+l]+T—j[7jlv*—uj|2+1*]. (49)
We consider in this identity the term of degree Tjrand get
1 1
LT
so thatl; = T;.

Using this property and taking the term of (49) of lowest degre¢’ Iy we get

1 |m;v+ mjv>,<|2 (mijv+mjvs)

~(m~u»—|—m~u~)—|—ﬂw—1)>,<|2=1'rrrv2—|—1'm~vz—m»u~-v—m~u~~v>,<
2 mi—{—mj mi—l—mj L 17 2 2 2 P I
Using the term iy, we get
L =
mi+mj

that isu; = uj. O
We now turn to the question of chemical equilibrium (assuming that mechanical equilibrium is reached).
Proposition 2. We suppose that the cross sectidi;@a‘:t (i =1,...,4 are strictly positive a.e., as well as the functions

¢ (i=1,...,8).
First part of the H-theoremFor all f; = f;(v,1) >0 (i =1, ...,4) such that the followingjuantities are defined, one has

4 +oo /
> / /Q,fe""CYu,1)|og<f’(v1’V ))w,»(ndvmgo.
i=Lcry 0 i

Second part of the H-theorerMoreover, let f; be defined by46) (that is, assume that the mechanical equilibrium is
reached. Then the three following properties are equivalent

e Foralli=1,....,4,veRN, 1>0,
0. n=0
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. Z / /Q,‘eaciv,l)log<ﬁ;” 1)>¢,(1)d dr =0

Lery 0 i
e The foIIowmg mass action law holds

ning _ <m3m4)_N/ o/ T 41(1a2(T)
nghg  \mima q3(T)qa(T)’

Proof. The first part of the H-theorem is a consequence of Lemma 5, when we/tékel ) = Iog(%). This is due to the

identity:
(m3™ fa(va, Iymyg ™ fa(va, 1g) —m™ fr(v1, IDmy™ fo(va, 1))
x (¥3(v3. 13) + ¥a(va. 14) — Y1(v1. 11) — Y2(v2, I2))
= (m3" faz. Iymy N faa. 1) —mN L1, my " fo(vz. 1))
x (log (mz™ fa(v3, lym ™ fa(va, 19)) —log (m1 ™ fi(v1, Inm; ™ fa(va, 1)) > 0
The (nonobvious implication) of the second part of thehiderem is obtained by plugyy Eqg. (46) in the identity

mz N fa(vs. Iymy " fava, 1g) =my "N frw IDmyN fo(va. ). O
4.2. Reactive Euler equations

We introduce at this level the Hilbert expansion related to the Boltzmann system:
f’)
at

= —Qm(f,”, fH+= ; ( PN HTAN )) + Qe (50)
JF#
That is (keeping in mind that will tend to 0), we consider a situation in whi there are many nonreactive collisions (with
respect to macroscopic scales) but not so many reactive collisions. As a conse(ﬂe{mcé) converges (at the formal level)
towards the mechanical equilibriugfa(v, I') described by formula (46). That is, we have

C\NNJ2 .
mi — & (% v—ul?41)
I e T2 . 51
fit = q,(T><2nT> &b
Note that the number of molecules of thth specie, their momentum and their total (kinetic + internal) energy are given by
1 nj
/ / fiv, | ™Mivk) i (Hdvdl = miliU (k) , (52)
2
|”| +1 mn,‘—%——l— ;T +n; 1 g;

where the indexk) indicates th&-th component and

ni(T) = / Ig;(He H/Tdr.
1>0

The reactive Euler equations are obtained by integrating (and partly by summing-ever . ., 4) the Hilbert expansion (50)
against the qudities that are conserved nonreactive collisionsumber of molecules of thieth specie, total momentum and
total energy) and by letting go to 0.

4.2.1. Conservation of the number of molecules of ttrespecie
As announced, we riiply Eq. (50) byg; (I), and then we integrate with respecttandl in RY x R . We obtain thanks
to properties (22) and (27):

5 +00 N 5 —+00 —+00
E / / fiﬂ(pl_(l)dl) dr + Z m / / U(k)f,-”(pi(l) dvdl = / / Q;eaCEpl_(l)dv d], (53)
RN 0 k=1""gNn 0 RN 0

where the notatiom ;) means thé-th component of the vectar.
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Lettingn go to 0, we get
N

a a

whereS; = (=1 S, ri=rp=1,r3=r4=0, and

/ / / / exp(——[—|v3—u|2+13+—|v4—u|2+14]>

r',R'€[0,1] v3,v4€RN I3,12€Rt e SN-1
x BN vz, v4, 13, 1, R, v/, 0)(mama)' ™V |vg — vg]*N (1 — R') dvg dva dI3dl4 0’ dR' doo

x [<m3m4>Nnlnz(mlmz)N/zeXP(—E/T) __ngng(mgmy)™/? ]
mimy (2nT)Nq1(T)q2(T) (rT)Ng3(T)qa(T) |

4.2.2. Conservation of momentum

In order to obtain the equation of conservation for thh component of the momentuny &1, ..., N), we multiply
equation (50) byn; v(jy¢; (1), we integrate with respect toand/ in RN x Ry, and we sum over (i =1,...,4). We get
thanks to properties (22), (28) and (45):

Zm,//v(j)f (p,(])dvdl—{—z Zm,//v(/)v(k)f @i (I)dvdl =0. (54)
=1 gy o i=1 gy o0

Letting go to 0, we obtain
4 +00 N/2
0 . o mi (mi 2 @i ()
Eizlml//nl<2ﬂT> exp[ ( v — ul +I>/Ti| v(j) (T)dvdl
= RN

Zax Z // ( )N/ZeXp[ <2|v—u|2+1>/T]v(/)v(k) (T)dvdl—

which, after having computed the integrahirand 7, leads to
4 N 4 4

%[Z(’"i”i)um] + %[Z(’" niu(jugo + Y ni ”zk] 0.

i=1 k=1 i=1

4.2.3. Conservation of energy

Finally, the conservation law of energy is obtained by multiplying Eq. (SOIth,yvlz/2+ Ig; (I), by summing ovet
(i =1,...,4) and by integrating with respect toand/ in RY x R

We obtain in this way, thanks to properties (22) and (28):

Z/ / [—|v|2+1]f”¢,(1)dvdl+z Z/ / [—|v|2+1]v(k)f’7¢,(1)dvd1
_]']RN

—Z(//[ |v|2+1]QreaCt><p,(1)dvd1

Letting n tend to 0, we get
i (T)
( Z(m ni)lul®+ 5 Z [NT+2%_(T)D

z 1
N P 1 4 5 4 ( )
+l§.a E;(m,»n,»nm Uy + ; [ (T)] ug | = —ES.

I\)ll—‘
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4.2.4. Entropy inequality

We now multiply Eq. (50) by Iogf,-/mlN)%-(I), we sum ovet (i =1,...,4) and we integrate with respect tcand in
RN x Ry.
We get thanks to the first parts of Propositions 1 and 2 the following entropy inequality:

4 +o00 7
%ZIR//f,»”[log<n%>—l]w,(1)dvdl+z Z//f”[log< ) ]v(k)¢,(1)dvd1<0
1= N 0 1

Letting n tend to 0, we get the macroscopic entropy inequality:

4 , N/2
0 . ni 1 N\ 1n,(D)
5(;"’['0("(%0)(%%) )_<1+7) Tq,(T)])
4

N . N/2
d ) n; 1 _ E 19;(T)
+Za—(§"’['°g<qm<2ﬂmi> ) (” 2> Tqm} (")><O' 9

i=1

4.3. Recapitulation and comments

The system (ofV + 5 equations) obtained in the previous subsection is nothing else than the Euler system of polytropic,
perfect and reactive gases. We rewrite it here as a whole (without repeating the entropy relation (55)):

9 Ny
Enz +kzla(”i“(k)) =S,

a4 N4 4
o |:Z(mini)u(j):| + Z E[Z(mini)u(j)u(k) + ZniTajk:| =0,

i=1 i=1 i=1
4 4
a1 1 i (T)
E(Zé(m ni)luf? 5; [NT+2ql(T)])
= 13 i (T)
+Zax ( Z(mn)lul u(k)—l—le;n,[(N—I—Z)T—i—Z ’( )] (k)> —ES.

According to the equation of conservation of energy, the (internal) energy law of the mixture of gases considered here is

ni(T)]
q;(T) ]

4
1
e(ny,...,ng, T)= EZni[NT—I—Z
i=1
A typical choice of the functiong; would consist in taking; (1) = I¢ for somex > 0. Then, the previous law becomes

4
1
ey, ....na, 1) =53 ni(N +2@+D)T,
i=1

anda = 0 corresponds to the law of diatomic gases.
We now recall the form of the reaction ternf$:= (-1)"iS, ri =ro=1,r3=r4=0, and

1
/ / / / exp(—;[%ws—ulz-klg—k%|v4—u|2+14]>
r’,R'€[0,1] vz, v4eRN I3, [4€R e sN-1
x Breact(vs, va, I3, 14, R, ', @) (mama)* = jug — vg>~N (1 — R') dvz dvg dI3dIg ' dR’ doo

x [(m3m4>Nnlnz(mlmz)N/zeXP(—E/T) __nang(mgmy)N/? ]
2 T)N g1(T)g2(T) 2 T)Ng3(T)qa(T) |

mim2

This shows that the temperature dependence of the reactio matelves power terms (namelg2z T)N g1 (T)g2(T) and
27 T)N g3(T)q4(T) wheng; (1) = %), which do not disappear in the mass action law as soomasag — a1 — a2 # 0.
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